if they're in a bundle of 10 then theres 10 pencils
1
1 point
mZABD = 79
D
C
V
(5x + 4)
(8x - 3)
В B.
A
x= type your answer...
2
1 point
Answer:
x = 6
Step-by-step explanation:
∠ DBC + ∠ ABC = ∠ ABD , substitute values
5x - 4 + 8x - 3 = 79
13x + 1 = 79 ( subtract 1 from both sides )
13x = 78 ( divide both sides by 13 )
x = 6
Find the reciprocal of the equation in standard form. The selected answer is incorrect.
Answer:
C
Step-by-step explanation:
reciprocal of z=1/z
[tex]z=2(cos \frac{\pi }{4} +i sin\frac{\pi }{4} )=2e ^{i \frac{\pi } {4}\\\frac{1}{z}=\frac{1}{2e^{i \frac{\pi}{4} } }\\\frac{1}{z} =\frac{1}{2} e^{-i\frac{\pi}{4} } \\\frac{1}{z} (cos\frac{\pi}{4} -isin\frac{\pi}{4} ) \\\frac{1}{z}=\frac{1}{2} (\frac{\sqrt{2} }{2} -\frac{\sqrt{2} }{2} )\\\frac{1}{z} =\frac{\sqrt{2} }{4} -i \frac{\sqrt{2 } }{4}[/tex]
When she graduates college, Linda will owe $43,000 in student loans. The interest rate on the federal loans is 4.5% and the rate on the private bank loans is 2%. The total interest she owes for one year was $1,585. What is the amount of each loan?
Answer:
federal loans = $29,000
private loans = $14,000
Step-by-step explanation:
x + y = 43000
.045x + .02y = 1585
x = 29,000
y = 14,000
Answer:
Amount of loan from federal : $ 29,000
Amount of loan from private bank : $ 14,000
Step-by-step explanation:
We know that Linda owes $43,000 in student loans. It is also given that the interest rate on the federal loans is 4.5%, while the interest rate on private loans is 2%, the total interest for a year being $1,585.
If Linda were to say own x dollars in federal loans, and y dollars in private loans, we know that she owns a total of $43,000, so -
x + y = 43,000
At the same time the loan interest amount is $1,585, while the interest rate on the federal loans is 4.5%, and the interest rate on private loans is 2%. The loans from each account will add to $1,585 -
0.045x + 0.02y = 1585
Let's solve the following system for x and y, the amount of each loan,
[tex]\begin{bmatrix}x+y=43000\\ 0.045x+0.02y=1585\end{bmatrix}[/tex] ( Substitute x = 43000 - y )
[tex]0.045\left(43000-y\right)+0.02y=1585[/tex] ( Simplify )
[tex]1935-0.025y=1585[/tex],
[tex]1935000-25y=1585000[/tex],
[tex]-25y=-350000[/tex],
[tex]y=14000[/tex],
[tex]x=29000[/tex]
Thus, the amount of loan from federal is $ 29,000 and the amount of loan from private bank is $ 14,000.
At the age of 10, Edgar received an inheritance of $10,000. His father wants to invest the money in an account that will double in value in 8 years. Approximately what interest rate does the father need to find in order to reach his goal?
Answer:
9%
Step-by-step explanation:
Use the rule of 72. If you want the money to double in 8 years, it will need to be at 9 percent interest rate to reach this goal.
Give the domain and range of each relation using set notation
Answer:
See below.
Step-by-step explanation:
First, recall the meanings of the domain and range.
The domain is the span of x-values covered by the graph.
And the range is the span of y-values covered by the graph.
1)
So, we have here an absolute value function.
As we can see, the domain of the function is all real numbers because the graph stretches left and right infinitely. Therefore, the domain of the function is:
[tex]\{x|x\in\textbb{R}\}[/tex]
(You are correct!)
For the range, notice how the function stops at y=7. The highest point of the function is (-2,7). There graph doesn't and won't ever reach above y=7. Therefore, the range of the graph is all values less than or equal to 7. In set notation, this is:
[tex]\{y|y\leq 7\}[/tex]
2)
We have here an ellipse.
First, for the domain. We can see the the span of x-values covered by the ellipse is from x=-4 to x=6. In other words, the domain is all values in between these two numbers and including them. Therefore, we can write it as such:
[tex]-4\leq x\leq 6[/tex]
So x is all numbers greater than or equal to -4 but less than or equal to 6. This describes the span of x-values. In set notation, this is:
[tex]\{x|-4\leq x\leq 6\}[/tex]
For the range, we can see that the span of x values covered by the ellipse is from y=-5 to y=1. Just like the domain, we can write it like this:
[tex]-5\leq y\leq 1[/tex]
This represents all the y-values between -5 and 1, including -5 and 1.
In set notation, thi is:
[tex]\{y|-5\leq y\leq 1\}[/tex]
Select the correct answer -1/4(12x+8) is less than it equal to -2x+11
Answer:
x ≤ [tex]\frac{9}{5}[/tex]
Step-by-step explanation:
Given
[tex]\frac{1}{4}[/tex](12x + 8) ≤ - 2x + 11 ← distribute parenthesis on left side
3x + 2 ≤ - 2x + 11 ( add 2x to both sides )
5x + 2 ≤ 11 ( subtract 2 from both sides )
5x ≤ 9 ( divide both sides by 5 )
x ≤ [tex]\frac{9}{5}[/tex]
-¼(12x+8) ≤ -2x+11
• Divide by 44X-¼(12x+8) ≤-2x+11
= -12x + 8 ≤ -2x + 11
• Group like terms-12x + 2x ≤ 11 - 8
= -10x/10 ≤ 3/-10
x≤ 3/-10A signal light is green for 4 minutes, yellow for 10 seconds, and red for 3 minutes. If you drive up to this light, what is the probability that it will be green when you reach the intersection? Round your answer to two decimal places.
Answer:
0.56 is the required probability.
Step-by-step explanation:
Time for which signal shows green light = 4 minutes
Time for which signal shows yellow light = 10 seconds
Time for which signal shows red light = 3 minutes
To find:
Probability that the signal will show green light when you reach the destination = ?
Solution:
First of all, let us convert each time to same unit before doing any calculations.
Time for which signal shows green light = 4 minutes = 4 [tex]\times[/tex] 60 seconds = 240 seconds
Time for which signal shows yellow light = 10 seconds
Time for which signal shows red light = 3 minutes = 3 [tex]\times[/tex] 60 seconds = 180 seconds
Now, let us have a look at the formula for probability of an event E:
[tex]P(E) = \dfrac{\text{Number of favorable cases}}{\text {Total number of cases}}[/tex]
Here, E is the event that green light is shown by the signal.
Number of favorable cases mean the time for which green light is shown and Total number of cases is the total time (Time for which green light is shown + Time for which Yellow light is shown + Time for which red light is shown)
So, the required probability is:
[tex]P(E) = \dfrac{240}{240+10+180}\\\Rightarrow P(E) = \dfrac{240}{430}\\\Rightarrow \bold{P(E) \approx 0.56 }[/tex]
The table shows the height, in meters, of an object that is dropped as time passes until the object hits the ground. A 2-row table with 10 columns. The first row is labeled time (seconds), x with entries 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.6. The second row is labeled height (meters), h with entries 100, 98.8, 95.1, 89.0, 80.4, 69.4, 55.9, 40.0, 21.6, 0. A line of best fit for the data is represented by h = –21.962x + 114.655. Which statement compares the line of best fit with the actual data given by the table? According to the line of best fit, the object would have hit the ground 0.6 seconds later than the actual time the object hit the ground. According to the line of best fit, the object was dropped from a lower height. The line of best fit correctly predicts that the object reaches a height of 40 meters after 3.5 seconds. The line of best fit predicts a height of 4 meters greater than the actual height for any time given in the table.
Answer: A. According to the line of best fit, the object would have hit the ground 0.6 seconds later than the actual time the object hit the ground.
The statement first "According to the line of best fit, the object would have hit the ground 0.6 seconds later than the actual time the object hit the ground" is correct.
What is the line of best fit?A mathematical notion called the line of the best fit connects points spread throughout a graph. It's a type of linear regression that uses scatter data to figure out the best way to define the dots' relationship.
We have a line of best fit:
h = –21.962x + 114.655
As per the data given and line of best fit, we can say the object would have impacted the ground 0.6 seconds later than it did according to the line of best fit.
Thus, the statement first "According to the line of best fit, the object would have hit the ground 0.6 seconds later than the actual time the object hit the ground" is correct.
Learn more about the line of best fit here:
brainly.com/question/14279419
#SPJ2
What is the domain of f?
Answer:
-5 ≤x ≤6
Step-by-step explanation:
The domain is the values that x can take
X goes from -5 and includes -5 to x =6 and includes 6
-5 ≤x ≤6
Answer:
See attached!
Step-by-step explanation:
(05.06A LC)
Line segment AB has a length of 4 units. It is translated 1 unit to the right on a coordinate plane to obtain line segment A'B'. What is the length
of A'B'?
1 unit
4 units
5 units
6 units
Answer:
4 units
Step-by-step explanation:
A transformation is the movement of a point from one position to another position. If a shape is transformed all its points are also transformed. Types of transformations are translation, rotation, reflection and dilation.
If a shape is transformed, the length of its sides and shape remains the same, only the position changes.
If Line segment AB has a length of 4 units. It is translated 1 unit to the right on a coordinate plane to obtain line segment A'B, the length of A'B' remains the same which is 4 unit. To prove this:
Let A be at ([tex]x_1,y_1[/tex]) and B be at ([tex]x_2,y_2[/tex]). The length of AB is:
[tex]AB=\sqrt{(y_2-y_1)^2+(x_2-x_1)^2}[/tex]
If AB is translated to the right by 1 unit the new points are A' at ([tex]x_1+1,y_1[/tex]) and B' at ([tex]x_2+1,y_2[/tex]). The length of A'B' is:
[tex]A'B'=\sqrt{(y_2-y_1)^2+(x_2+1-(x_1+1))^2}=\sqrt{(y_2-y_1)^2+(x_2+1-x_1-1)^2}\\\\A'B'=\sqrt{(y_2-y_1)^2+(x_2-x_1)^2}[/tex]
AB = A'B' = 4 units
An experimental probability is ______ likely to approach the theoretical probability if the number of trials simulated is larger. A. as B. more C. less D. not
Answer:
B. More
Step-by-step explanation:
This is according to the law of large numbers
An experimental probability is more likely to approach the theoretical probability if the number of trials simulated is larger.
What is an experimental probability and theoretical probability?Experimental probability is an experimental outcome whereas theoretical probability is a possible or expected outcome.
An experimental probability is more likely to approach the theoretical probability if the number of trials increased because of the law of large numbers which states that the average of the results obtained from a large number of trials should be close to the expected value and tends to become closer to the expected value as more trials are performed
Thus using the concept of the law of large numbers we can say that an experimental probability is more likely to approach the theoretical probability.
Learn more about probability here:
https://brainly.com/question/9627169
#SPJ5
Write "six and thirty-four thousandths" as a decimal
Answer:
6.034
Step-by-step explanation:
6 is a whole number.
.034 because it is 34 thousandths, not 34 hundredths.
The equation below is written in words. x plus ten equals two. What's the value of x?
Answer:
x+10 =2
x = -8
Step-by-step explanation:
plus means add
x+10 =2
Subtract 10 from each side
x+10-10 =2-10
x = -8
Please answer! I am struggling with this question! Please show ALL work! <3 (the answer choices are provided on a separate image)
Answer:
The radius is 18 inches
Step-by-step explanation:
The circumference of a circle is given by
C = 2 * pi *r
36 pi = 2 * pi *r
Divide each side by pi
36 = 2r
Divide each side by 2
18 =r
Answer:
The answer is option CStep-by-step explanation:
Circumference of a circle = 2πr
where
r is the radius of the circle
From the question
Circumference = 36π inches
To find the radius substitute the value of the circumference into the above formula and solve for the radius
That's
[tex]36\pi = 2\pi r[/tex]Divide both sides by 2π
We have
[tex] \frac{36\pi}{2\pi} = \frac{2\pi \: r}{2\pi} [/tex]We have the final answer as
r = 18 inchesHope this helps you
Find the sum of (5x3 + 3x2 - 5x + 4) and (8x3 -5x2 + 8x + 9)
Answer:
(5x³+3x²-5x+4) + (8x³-5x²+8x+9)
= 5x³+3x²-5x+4 +8x³-5x²+8x+9
= 5x³+8x³+3x²-5x²-5x+8x+4+9
= 13x³-2x²+3x+13
Hope this helps
if u have question let me know in comments ^_^
Brian needs to paint a logo using two right triangles. The dimensions of the logo are shown below. What is the difference between the area of the large triangle and the area of the small triangle?
Answer:
7.5 cm²
Step-by-step explanation:
Dimensions of the large ∆:
[tex] base (b) = 3cm, height (h) = 9cm [/tex]
[tex] Area = 0.5*b*h = 0.5*3*9 = 13.5 cm^2 [/tex]
Dimensions of the small ∆:
[tex] base (b) = 2cm, height (h) = 6cm [/tex]
[tex] Area = 0.5*b*h = 0.5*2*6 = 6 cm^2 [/tex]
Difference between the area of the large and the small ∆ = 13.5 - 6 = 7.5 cm²
8 sin2 x + cos x - 5 = 0
[tex]8 {sin}^{2} x + cos \: x - 5 = 0[/tex]
[tex]recall \: that \: {sin}^{2} x + {cos}^{2} x = 1[/tex]
[tex]then \: {sin}^{2} x = 1 - {cos}^{2} x[/tex]
then substitute,
[tex]8( 1 - {cos}^{2} x) + cos \: x - 5 = 0[/tex]
After Further Simplication,
[tex]8 {cos}^{2} x - cos \: x - 3 = 0[/tex]
[tex]let \: y = \cos(x) [/tex]
[tex]8 {y}^{2} - y - 3 = 0[/tex]
use quadratic formulae
[tex]y = 0.375 \: or \: - 0.25[/tex]
therefore
[tex] \cos(x) = 0.375 \: or \: - 0.25[/tex]
[tex] x = 70degrees \: or \: 104.5degrees[/tex]
Which expression is equivalent to (jk)l? A. (j + k) + l B. j(kl) C. (2jk)l D. (j + k)l
Answer:
B. j(kl)
Step-by-step explanation:
(jk)l
We can change the order we multiply and still get the same result
j(kl)
Answer:
Step-by-step explanation:
its B i did it
A particle moves according to a law of motion s = f(t), t ≥ 0, where t is measured in seconds and s in feet. (If an answer does not exist, enter DNE.) f(t) = t3 − 8t2 + 27t
The question is not clear, but it is possible to obtain distance, s, from the given function. This, I would show.
Answer:
s = 17 units
Step-by-step explanation:
Given f(t) = t³ - 8t² + 27t
Differentiating f(t), we have
f'(t) = 3t² - 16 t + 27
At t = 0
f'(t) = 27
This is the required obtainaible distance, s.
The area of the circle x² + y2 - 6x-4y +9 = 0 is
Answer:
Your answer is here.Enjoy dude
Answer:
12.56 unit²
Step-by-step explanation:
Given:x² + y² - 6x - 4y + 9 = 0To find:The area of circleSolution:The form of the circle is:
(x- h)² + (y-k)² = r²Let's bring the given to the form of a circle as above:
x² + y² - 6x - 4y + 9 = 0x² - 6x + y²- 4y + 9 = 0 ⇒ combining like terms and completing squarex² - 6x + 9 + y²- 4y + 4 = 4 ⇒ adding 4 to both sides(x-3)² + (y - 2)² = 2² ⇒ got the form of this circleAs per the form, we got r² = 2², so the radius of circle is 2 units.
The area of circle:
A= πr² = 3.14×2² = 12.56 unit²A cabinet door has a perimeter of 76 inches. Its area is 357 square inches. What are the dimensions of the door?
Answer:
17 by 21 inches
Step-by-step explanation:
The perimeter is twice the sum of the dimensions, and the area is their product, so you have ...
L + W = 38
LW = 357
__
Solution:
W(38 -W) = 357 . . . . . substitute for L
-(W^2 -76W) = 357 . . expand on the left
-(W^2 -38 +19^2) = 357 -19^2 . . . . complete the square
(W -19)^2 = 4 . . . . . . . write as a square
W -19 = ±√4 = ±2 . . . take the square root; next, add 19
W = 19 ±2 = {17, 21} . . . . if width is one of these, length is the other
The dimensions are 17 by 21 inches.
if f(x)=3x-3 and g(x)=-x2+4,then f(2)-g(-2)=
Answer:
3
Step-by-step explanation:
f(x)=3x-3
g(x)=-x^2+4,
f(2) = 3(2) -3 = 6-3 =3
g(-2) = -(-2)^2+4 = -4+4 = 0
f(2)-g(-2)= = 3-0 = 3
On a coordinate plane, 2 lines are shown. Line A B has points (negative 4, negative 2) and (4, 4). Line C D has points (0, negative 3) and (4, 0). Which statement best explains the relationship between lines AB and CD? They are parallel because their slopes are equal. They are parallel because their slopes are negative reciprocals. They are not parallel because their slopes are not equal. They are not parallel because their slopes are negative reciprocals.
Answer:
A. they are parallel because their slopes are equal.
Step-by-step explanation:
edge 2020
Answer:
its A in egde
Step-by-step explanation:
what is the distance between the first and third quartiles of a data set called?
Answer:
Interquartile range is the distance between the first and third of a data.
Step-by-step explanation:
Hope it will help you :)
10/7p+13/8+15/2p=909/56 i NEED THiS solving multi step equations w fractions and #8 PLEASE
Answer:
P= 2
Step-by-step explanation:
10/7p+13/8+15/2p=-909/56
Combine like terms
10/7p+15/2p=-909/56-13/8
20p+105p/14=-909-13*7/56
125/14p=-909-91/56
125/14p= -1000/56
125/14p*14/125= -1000/56*14/125
simplify
P= 8/4=2
And for #8 n =1 I answered this question it
Search
what is the average rate of change from 1 to 3 of the function represented by the graph? the graph is attached.
Answer: -4
At 1, the parabola is at (1, 3). And at 3, it's at (3, -5). The rate of change is -4, since each time it moves right 1, it goes down 4.
Hope that helped,
-sirswagger21
Transform the polar equation to a Cartesian (rectangular) equation: r= 4sinθ
options include:
x^2+y^2 = 4y
x^2+y^2 = -4
x^2+y^2 = 4
x^2+y^2 = -4y
Answer:
x^2 +y^2 = 4y
Step-by-step explanation:
Using the usual translation relations, we have ...
r^2 = x^2+y^2
x = r·cos(θ)
y = r·sin(θ)
Substituting for sin(θ) the equation becomes ...
r = 4sin(θ)
r = 4(y/r)
r^2 = 4y
Then, substituting for r^2 we get ...
x^2 +y^2 = 4y . . . . . matches the first choice
3.24 (4 being repeated) to a fraction
Answer:
146/45
Step-by-step explanation:
Let x represent the value of the number of interest. Then we can do the following math to find its representation as a fraction.
[tex]x=3.2\overline{4}\\10x=32.4\overline{4}\\10x-x=9x=32.4\overline{4}-3.2\overline{4}=29.2\\\\x=\dfrac{29.2}{9}=\boxed{\dfrac{146}{45}}[/tex]
__
Comment on procedure
The power of 10 that we multiply by (10x) is the number of repeated digits. Here, there is a 1-digit repeat, so we multiply by 10^1. If there were a 2-digit repeat, we would compute 10^2x -x = 99x to rationalize the number.
which expression shows a way to find 2813×7
Answer:
19,691
Step-by-step explanation:
Answer:
2813 x 7 = 19691
Hope this helps!
I don’t really get this question
You can put [tex]n[/tex] different elements in order in [tex]n![/tex] different ways.
So, you can visit 12 different cities in [tex]12!=479001600[/tex] different ways.
Answer: 479,001,600
Step-by-step explanation:
There are 12 ways to go to the first place, 11 for the second, ten for the third, and so on. So 12! Means 12x11x10x9x8x7x6x5x4x3x2x1.