Answer:
First, the number of ammonium sulfide molecules should be calculated:
N = NA × n,
where NA - the Avogadro number, n - number of moles.
N (ammonium sulfide) = 6.022 × 1023 × 8.5 mol = 51.187 × 1023.
The moelcular formula of ammonium sulfide is (NH4)2S. It means that each molecule contains 8 hydrogen atoms.
As a result, 8.5 mol of (NH4)2S contain:
51.187 × 1023 × 8 = 41 × 1024 hydrogen atoms.
Answer: 41 × 1024 hydrogen atoms
Part A
When the following liquids are poured into the same container, they separate as shown in the image. Based on the data
in the table below, what caused the order of the layers?
rubbing alcohol
vegetable oil
water
corn syrup
Mass
Liquid
corn syrup
water
Volume Used
95 cm
90 cm
85 cm
105 cm?
130.158
90.00 8
77.358
81.908
Density
1.37 g/cm
1 g/cm
0.91 g/cm
0.78 g/cm
vegetable oil
rubbing alcohol
I
B
X
Font Sizes
A- A -
E 3
Answer: The layers are ordered by density, with the least dense layer on top, and the densest layer on the bottom.
Explanation:
Plato
Hydrocarbons do not dissolve in concentrated sulfuric acid, but methyl benzoate does. Explain this difference and write an equation showing the ions that are produced.
Answer:
See explanation
Explanation:
For a substance to dissolve in another, there must be some sort of interaction between the substances.
Recall that like dissolves like. That is, polar substances dissolve polar substances and non polar substances dissolve nonpolar substances.
Hydrocarbons are nonpolar hence they do not dissolve in polar sulphuric acid. Methyl benzoate is polar hence it dissolve in polar sulphuric acid.
The equation showing the ions is depicted in the image attached to this answer.
The density of toluene (C7H8) is 0.867 and that of thiophene (C4H4S) is 1.065 g/ml. A solution is made by dissolving 10.00g thiophene in 250.00ml of toluene. a)Calculate the molarity of the solution
b)Assuming the volume are addictive ,calculate the molarity of the solution
Answer:
Calcular la molaridad de una solución que se preparó disolviendo 14 g de KOH en suficiente
agua para obtener 250 mL de solución. (masa molar del KOH = 56 g/mol).
Resolución: de acuerdo a la definición de “molaridad” debemos calcular primero, el número de mol de soluto (KOH) que
se han disuelto en el volumen dado, es decir, “se transforma g de soluto a mol de soluto” por medio de la masa molar,
así:
56 g de KOH 14 g de KOH
----------------- = ------------------- X = 0,25 mol de KOH
1 mol X
Ahora, de acuerdo con la definición de molaridad, el número de mol debe estar contenido en 1000 mL (o 1 L) de
solución, que es el volumen estándar para esta unidad de concentración, lo que se determina con el siguiente planteamiento:
0,25 mol X
----------------------- = ------------------------- X = 1 mol de KOH
250 mL de solución 1000 mL de solución
Explanation:
Given the following balanced reaction: 2Na(s) + F2(g) --> 2NaF(s)
a) How many moles of NaF will be made from 2.6 moles of F2?
b) How many moles of NaF will be made from 4.8 moles of Na?
Answer:
yes it is corrwect iyt is absolitle correct
Explanation:
Where do reactions in a solid generally take place?
A. At the center of the solid.
B. All throughout the solid
C. Only on opposite sides of the solid due to repelling forces.
D. On the surface of the solid.
Answer:
It's D. On the surface of the solid.
Explanation:
If the reactant is a solid, the surface area of the solid will impact how fast the reaction goes. This is because the two types of molecule can only bump into each other at the liquid solid interface, i.e. on the surface of the solid. So the larger the surface area of the solid, the faster the reaction will be.
work 10
HOMEWORK ASSIGNMENTS Content
Detai
Question 1
6.25 Points
р А.
71
Calculate AE of a gas for a process in which the gas evolves 24 J of heat and has 9 of work done on it.
A
✓
A -33)
B +33)
Gradin
-220)
D) +15)
E -15)
Question 2
6.25 Points
Answer
A
Explanation:
due to high specific heat capacity it loses heat and has low temperature
Convert the concentration of 0.700 M Na2SO4 to g/mol
To convert from mass concentration to molar concentration we use the formula;
Mass concentration = molar concentration * molar mass
Molar concentration of Na2SO4 = 0.700 M
Molar mass of Na2SO4 = 2(23) + 32 + 4(16) = 142 gmol-1
Hence;
Mass concentration = 0.700 M * 142 gmol-1
Mass concentration = 99.4 g/mol
To know more about concentration, see
https://brainly.com/question/23437000
To draw a Lewis structure for a polyatomic ion, begin by calculating A, the available electrons, and N, the needed electrons. What is N for CIO3-, the chlorate ion?
A = 26
N = ?
Answer:
16
Explanation:
Because the sum of all electron in that compound should be 41 and as it has one electron extra ,total no. of electrons are 42 .
So if we add 26 +16 we get 42
Hence it's correct answer
A system fitted with a piston expands when it absorbs 53.1 ) of heat from the surroundings. The piston is working against a pressure of 0.677 atm. The final volume is 63.2 L. What was the initial volume of the system if the internal energy of the system decreased by 108.3 J?
a. 65.6 L
b. 64.0 L
c. 70.8 L
d. 60.8 L
e. 54.4L
Answer:
d. 60.8 L
Explanation:
Step 1: Given data
Heat absorbed (Q): 53.1 JExternal pressure (P): 0.677 atmFinal volume (V2): 63.2 LChange in the internal energy (ΔU): -108.3 JStep 2: Calculate the work (W) done by the system
We will use the following expression.
ΔU = Q + W
W = ΔU - Q
W = -108.3 J - 53.1 J = -161.4 J
Step 3: Convert W to atm.L
We will use the conversion factor 1 atm.L = 101.325 J.
-161.4 J × 1 atm.L/101.325 J = -1.593 atm.L
Step 4: Calculate the initial volume
First, we will use the following expression.
W = - P × ΔV
ΔV = - W / P
ΔV = - 1.593 atm.L / 0.677 atm = 2.35 L
The initial volume is:
V2 = V1 + ΔV
V1 = V2 - ΔV
V1 = 63.2 L - 2.35 L = 60.8 L
Part A
3.75 mol of LiCl in 3.36 L of solution
Express the molarity in moles per liter to three significant figures
Answer:
1.12 mol/L.
Explanation:
From the question given above, the following data were obtained:
Mole of LiCl = 3.75 moles
Volume = 3.36 L
Molarity =?
Molarity is simply defined as the mole of solute per unit litre of the solution. Mathematically, it is expressed as:
Molarity = mole / Volume
With the above formula, we can obtain the molarity of the solution as follow:
Mole of LiCl = 3.75 moles
Volume = 3.36 L
Molarity =?
Molarity = mole /Volume
Molarity = 3.75 / 3.36
Molarity = 1.12 mol/L
Thus, the molarity of the solution is 1.12 mol/L
Which of these is an organic compound?
CaO
H2SO4
C3H8
H2O2
Answer:
which class are you please mention
Which process refers to the dissociation of Naci into Na+ and Ci+?
Answer:
dissolution is the process
Are acids harmful to work with.
Answer:
yes it is
Explanation:
because there are some acid which really harm skin.
What volume of 1.50 mol/L stock solution is needed to make 125 mL of 0.60 mol/L solution?
Chemistry 11 Solutions
978Ͳ0Ͳ07Ͳ105107Ͳ1Chapter 8 Solutions and Their Properties • MHR | 85
Amount in moles, n, of the NaCl(s):
NaCl
2.5 g
m
n
M
58.44 g
2
4.2778 10 m l
ol
o
/m
u
Molar concentration, c, of the NaCl(aq):
–2 4.2778 × 10 mol
0.100
0.42778 mol/L
0.43 mol
L
/L
n
c
V
The molar concentration of the saline solution is 0.43 mol/L.
Check Your Solution
The units are correct and the answer correctly shows two significant digits. The
dilution of the original concentrated solution is correct and the change to mol/L
seems reasonable.
Section 8.4 Preparing Solutions in the Laboratory
Solutions for Practice Problems
Student Edition page 386
51. Practice Problem (page 386)
Suppose that you are given a stock solution of 1.50 mol/L ammonium sulfate,
(NH4)2SO4(aq).
What volume of the stock solution do you need to use to prepare each of the
following solutions?
a. 50.0 mL of 1.00 mol/L (NH4)2SO4(aq)
b. 2 × 102 mL of 0.800 mol/L (NH4)2SO4(aq)
c. 250 mL of 0.300 mol/L NH4
+
(aq)
What Is Required?
You need to calculate the initial volume, V1, of (NH4)2SO4(aq) stock solution
needed to prepare each given dilute solution.
The dilution gives the relationship between the molarity and the volume of the solution. The volume of stock solution with a molarity of 1.50 mol/L is 50 mL.
What is dilution?Dilution is said to be the addition of more volume to the concentrated solution to make it less in molar concentration. This tells about the inverse and indirect relationship between the volume and the molar concentration of the solution.
Given,
Initial volume = V₁
Initial molar concentration (M₁) = 1.50 mol/L
Final volume (V₂) = 125 mL = 0.125 L
Final molar concentration (M₂)= 0.60 mol/L
The dilution is calculated as:
M₁V₁ = M₂V₂
V₁ = M₂V₂ ÷ M₁
Substituting the values in the above formula as
V₁ = M₂V₂ ÷ M₁
V₁ = (0.60 mol/L × 0.125 L) ÷ 1.50 mol/ L
V₁ = 0.05 L
= 50 mL
Therefore, 50 mL of stock solution is needed to make a 0.60 mol/L solution.
Learn more about dilution, here:
https://brainly.com/question/15718488
#SPJ2
Dung dich NaCl 0.9% có 0.9g NaCl trong 100 mL dung dịch
Answer:
Explanation: Độ thẩm thấu của NaCl 0.9% và glucose 5% lần lượt là 308 và 278 ... Dung dịch natri clorid sử dụng trong pha thuốc tiêm truyền thường dùng
True or false? The smaller the temperature differences, the stronger the wind will be.
Answer:
true because whenever the temperature drops it gets colder
In an analysis of interhalogen reactivity, 0.350 mol ICl was placed in a 5.00 L flask and allowed to decompose at a high temperature.
2 ICl(g) I2(g) + Cl2(g)
Calculate the equilibrium concentrations of I2, Cl2, and ICl. (Kc = 0.110 at this temperature.)
I2 M
Cl2 M
ICl M
Answer:
[ICl] = 0.0420 M
[I₂] = [Cl₂] = 0.0140 M
Explanation:
Step 1: Calculate the initial concentration of ICl
[ICl] = 0.350 mol / 5.00 L = 0.0700 M
Step 2: Make an ICE chart
2 ICl(g) ⇄ I₂(g) + Cl₂(g)
I 0.0700 0 0
C -2x +x +x
E 0.0700-2x x x
The concentration equilibrium constant (Kc) is:
Kc = 0.110 = [I₂] [Cl₂] / [ICl]² = x² / (0.0700-2x)² = (x/0.0700-2x)²
0.332 = x/0.0700-2x
x = 0.0140
The concentrations at equilbrium are:
[ICl] = 0.0700-2x = 0.0700-0.0280 = 0.0420 M
[I₂] = [Cl₂] = x = 0.0140 M
CaCl2 has which bond?
Answer:
CaCl2 has ionic bond because here calcium gives its electron to the chlorine atom and becomes positivetly charged ion.
Is Trygliceride a saturated or unsaturated molecule? Please explain.
Fats may be either saturated or unsaturated. A saturated fat is a fat that consists of triglycerides whose carbon chains consist entirely of carbon-carbon single bonds. ... An unsaturated fat is a fat that consists of triglycerides whose carbon chains contain one or more carbon-carbon double bonds.
What is the Equation of Reduction in Mg+F2 gives MgF2, I WILL MARK YOU AS BRAINLIST
Answer:
Mg+F2= Mgf2
Explanation:
F 2 is an oxidizing agent, Mg is a reducing agent. ; Pale-yellow to greenish gas with a pungent, irritating odor.
Which of the following options would be the best for dissolving PbBr2(s)?
1) add to a solution of CH3COOH
2) add to a solution of NaBr
3) add to a solution of NH3
4) add to a solution of NH4Br
5) add to a solution of NaOH
The best option for dissolving PbBr₂ is option (2)
2) Add a solution of NaBr
The reason for choosing the above option is as follows;
Lead (II) bromide is an inorganic powdery substance that has a solubility in water of 0.973 g/100 mL at 20°C. It is insoluble in alcohol but is soluble in alkali, ammonia, NaBr, and KBr.
PbBr₂ is slightly soluble in ammonia, and it reacts with NaOH to produce Pb(OH)₂ and NaBr.
Taking the solubility product of PbBr₂ as [tex]K_{sp}[/tex] = 6.60 × 10⁻⁶, in a solution of 0.5 M NaBr, we have;
PbBr₂ → Pb⁺ + 2Br⁻
[tex]K_{sp}[/tex] = [Pb]·[2Br]²
Therefore, we get;
6.60 × 10⁻⁶ = [x]·[0.5]²
Where;
x = The number of moles of lead, Pb, in per liter of solution
∴ x = (6.60 × 10⁻⁶)/[(0.5 )²] = 2.64 × 10⁻⁵.
The molar solubility of PbBr₂ per liter of NaBr, x = 2.64 × 10⁻⁵ mol/L
PbBr₂ is more soluble in NaBr.
Given that ammonium ion NH₄Br in water gives similar products to ammonia, NH₃, it is expected to be more suitable to dissolve PbBr₂ in NaBr.
Therefore, the best solution for dissolving PbBr₂(s) is NaBr, the correct option is option (2) add a solution of NaBr.
Learn more about solubility product here;
https://brainly.com/question/14300821
The decomposition of ammonia is: 2 NH3(g) ⇌ N2(g) + 3 H2(g). If Kp is 1.5 × 103 at 400°C, what is the partial pressure of ammonia at equilibrium when N2 is 0.20 atm and H2 is 0.15 atm?
Answer:
"[tex]6.7\times 10^{-4} \ atm[/tex]" is the right answer.
Explanation:
Given:
Partial pressure of [tex]N_2[/tex],
= 0.20 atm
Partial pressure of [tex]H_2[/tex],
= 0.15 atm
[tex]K_p = 1.5\times 10^3[/tex] at [tex]400^{\circ} C[/tex]
As we know,
⇒ [tex]K_p = \frac{pN_2\times pH_2^3}{pNH_3^2}[/tex]
By putting the values, we get
[tex]1.5\times 10^3=\frac{0.20\times (0.15)^3}{pNH_3^2}[/tex]
[tex]pNH_3^2 = \frac{0.000675}{1.5\times 10^3}[/tex]
[tex]=6.7\times 10^{-4} \ atm[/tex]
During electrophilic aromatic substitution, a resonance-stabilized cation intermediate is formed. Groups, already present on the benzene ring, that direct ortho/para further stabilize this intermediate by participating in the resonance delocalization of the positive charge. Assume that the following group is present on a benzene ring at position 1 and that you are brominating the ring at positon 4. Draw the structure of the resonance contributor that shows this group actively participating in the charge delocalization.
-----OCH3
Answer:
See explanation and image attached
Explanation:
Aromatic compounds undergo electrophilic aromatic substitution reactions in which the aromatic ring is maintained.
Substituted benzenes may be more or less reactive towards electrophilic aromatic substitution than benzene depending on the nature of the substituent present in the ring.
Substituents that activate the ring towards electrophilic substitution such as -OCH3 are ortho-para directing.
The major products of the bromination of anisole are p-bromoanisole and o-bromoanisole. The resonance structures leading to these products are shown in the image attached.
For centuries scientists found evidence that supports the theory of spontaneous generation. Which of the following
supported this theory?
A. The sun rising in the east and seeing in the west.
B. Maggots appearing on rotten meat.
C. The swan-next flask experiment.
D. All living things are made of cells.
Spontaneous generation theory is that living organisms can arise by non living things.
This theory follows the concept of abiogenesis where there is non living parent for a living child.
The appearance of maggots from rotten meat is the idea of abiogenesis, this creates a living organism with a dead parent.
The rotten piece of meat is a non living object but still maggots were formed from this.
Therefore the correct answer is B.
Answer:
a
Explanation:
Draw all four products when the following compound undergoes dehydrohalogenation and rank them in terms of stability. Which product do you expect to be the major product?
Answer:
2 Methyl pent 2 ene
It is necessary to make 225 mL of 0.222 M solution of nitric acid. Looking on the shelf, you see only 16 M nitric acid. How much concentrated nitric acid is required to make the desired solution?
Explanation:
The required concentration of [tex]HNO_3[/tex] M1 =0.222 M.
The required volume of [tex]HNO_3[/tex] is V1 =225 mL.
The standard solution of [tex]HNO_3[/tex] is M2 =16 M.
The volume of standard solution required can be calculated as shown below:
Since the number of moles of solute does not change on dilution.
The number of moles [tex]n=molarity * volume[/tex]
[tex]M_1.V_1=M_2.V_2[/tex]
[tex]V2=\frac{M_1.V_1}{M_2} \\=0.222M x 225 mL / 16 M\\=3.12 mL[/tex]
Hence, 3.12 mL of 16 m nitric acid is required to prepare 0.222 M and 225 mL of nitric acid.
Which of the following will affect the rate of a chemical reaction?
solution temperature
solution color
solute mass
solution volume
Answer:
Solution temperature.
Explanation:
Hello there!
In this case, considering this question about chemical kinetics, it will be possible for us to analyze two perspectives:
1. Molecular: here, we infer that the solution temperature will provide more energy to the molecules in order to undergo more effective crashes which will make more products and therefore, increase the rate constant.
2. Mathematical: by means of the Arrhenius equation, it will be possible to tell that the increase in the temperature of the system, the negative of the exponent present in such equation will increase and therefore turn the rate constant bigger.
In such way, we infer the answer is solution temperature.
Regards!
why styrene undergoes and ionic polymerization at a faster rate than p methoxystyrene
Answer:
In styrene, there is a phenyl group which is electron-withdrawing. So the electronic density in the double bonds increases, hence easy to associate as monomers. While in methoxystyrene, there is a carbonyl group which is not electron deficient. so no easy association with monomers.
Explanation:
[tex]{ \sf{styrene \: is \: phenylethene \: }} \\ { \sf{its \: polymer \: is \: polystyrene}}[/tex]
Which of the following is true of solutes dissolving in water?
a) C2H4 will dissolve because it is able to hydrogen bond.
b) CH3CH2OH will dissolve because it contains a polar bond.
c) HCI will not dissolve because it connot hydrogen bond.
d) KBr will not dissolve because it contains all ionic bonds.
B is the answer to your question.
C2H4 is not capable of hydrogen bonding because the H's are attached to the Carbon, and the charge is 0.
Although HCl cannot hydrogen bond, that aspect does not hinder it's ability to dissolve. Because HCl is polar and so is water, the positive side of H2O will be attracted to the negative side of HCl, thus "tearing" the molecule apart. (Like dissolves like - polar dissolves polar)
Based on the Solubility rule, KBr is soluble because it contains a group 1 metal.
An individual was injected with 80 mg of inulin and 960,000 counts per min (cpm) of tritium-labeled water (3H20) to determine the volume of various body fluid compartments. After equilibration a blood sample was obtained and the plasma inulin concentration was 0.5 mg% and the plasma activity (concentration) of tritium was 20 cpm/ml. The volumes of which body compartments can be determined?
The measurement of body fluid compartments can be achieved by the dilution of chemical compounds that only circulate and disperse in the region of selected areas in the body. The dilution process is dependent on how the concentration is defined.
Given that:
the concentration of plasma insulin after equilibrium = 0.5 mg %∴
Concentration C = 0.5 mg/100
Concentration C = 0.005 mg/ml
The mass of insulin = 80 mgSince the mass amount of the chemical compound(i.e. insulin) and the concentration is known.
The volume of the body fluid compartment can be calculated as:
[tex]\mathbf{volume = \dfrac{\text{mass of the marker }}{concentration }}[/tex]
[tex]Volume = \dfrac{80 \ mg}{0.005 \ mg/ml}[/tex]
Volume = 16000 ml
Thus, it is known that insulin is generally utilized for the measurement of the extracellular fluid volume and serves as a cell impermeant marker.
As a result;
The volume of the extracellular fluid compartment is 16000 ml.
However, the tritium-labeled water is a good marker for the entire body fluid compartment due to the fact that:
its diffusion occurs throughout the entire body,it is identical to water and;the equilibrium concentration is typically easy to measure due to the radioactive characteristics of tritium.Given that:
plasma activity of tritium = 20 cpm/ml
i.e.
In 1 ml of plasma, 20 cpm of tritium is present.
As such, in 960,000 counts per min (cpm) of tritium-labeled water, the volume of the whole body compartment is:
[tex]\mathbf{= \dfrac{960000}{20} ml \plasma}[/tex]
= 48000 ml of plasma
Therefore, we can conclude that the volumes of the body compartment that can be determined are:
The volume of the extracellular fluid compartment, which is 16000 ml.The volume of the whole body compartment, which is 48000 mlLearn more about body fluid compartments here:
https://brainly.com/question/6791522?referrer=searchResults