how does the graph of the function g(x) = 2x – 3 differ from the graph of f(x) = 2x?

Answers

Answer 1

Answer: The graph of function g(x) is shifting down by 3 (vertical shift) because the -3 is not part of x but y (the whole graph). Originally there is no y-intercept and the f(x) function crosses the origin, but now there is a y-intercept at (0, -3)


Related Questions

Find the following percentiles for the standard normal distribution. Interpolate where appropriate. (Round your answers to two decimal places.)a. 81stb. 19thc. 76thd. 24the. 10 th

Answers

The percentiles for the standard normal distribution

a. 0.93

b. -0.88

c. 0.67

d. -0.65

e. -1.28

To determine the percentiles for the standard normal distribution, use the standard normal distribution table. Percentiles for standard normal distribution are given by the standard normal distribution table.

The standard normal distribution is a special type of normal distribution with a mean of 0 and a variance of 1.

Step 1: Write down the given percentiles as a decimal and round to two decimal places.

For example, for the 81st percentile, 0.81 will be used.

Step 2: Use the standard normal distribution table to find the corresponding z-score.

Step 3: Round off the obtained answer to two decimal places.

a) 81st percentile:

The area to the left of the z-score is 0.81.

The corresponding z-score is 0.93.

Hence, the 81st percentile for the standard normal distribution is 0.93.

b) 19th percentile:

The area to the left of the z-score is 0.19.

The corresponding z-score is -0.88.

Hence, the 19th percentile for the standard normal distribution is -0.88.

c) 76th percentile:

The area to the left of the z-score is 0.76.

The corresponding z-score is 0.67.

Hence, the 76th percentile for the standard normal distribution is 0.67.

d) 24th percentile:

The area to the left of the z-score is 0.24.

The corresponding z-score is -0.65.

Hence, the 24th percentile for the standard normal distribution is -0.65.

e) 10th percentile:

The area to the left of the z-score is 0.10.

The corresponding z-score is -1.28.

Hence, the 10th percentile for the standard normal distribution is -1.28.

To know more about the "standard normal distribution": https://brainly.com/question/27275125

#SPJ11

Write the given third order linear equation as an equivalent system of first order equations with initial values. (t - 2t^2)y' - 4y'" = -2t with y(3) = -2, y'(3) = 2, y"(3) = -3 Use x_1 = y, x_2 = y', and x_3 = y". with initial values If you don't get this in 2 tries, you can get a hint.

Answers

The given third-order linear equation is (t - 2t^2)y' - 4y'' = -2t with y(3) = -2, y'(3) = 2, y''(3) = -3.

We can write this equation as a system of first-order linear equations with initial values by introducing three new variables x_1, x_2, and x_3 such that:

x_1 = y

x_2 = y'

x_3 = y''

with initial values x_1(3) = -2, x_2(3) = 2, x_3(3) = -3.

The resulting system of equations is:

x_1' = x_2

x_2' = x_3

x_3' = (2t^2 - t)x_2 - 4x_3 + 2t

This system can be solved numerically for the unknown functions x_1, x_2, and x_3 with the initial conditions given.

for such more questions on  linear equation

https://brainly.com/question/28732353

#SPJ11

Can some one solve this and show their work please

Answers

Answer:

m = 2n = 7

Step-by-step explanation:

we solve with two equations between the corresponding sides

9m = 7m + 4

9m - 7m = 4

2m = 4

m = 2

----------------------------------

check

9 x 2 = 7 x 2 + 4

18 = 18

this answer is good

n + 6 = 2n - 1

n + 7 = 2n

7 = n

-----------------------------------

7 + 6 = 2 x 7 - 1

13 = 13

this answer is good

a pastry chef accidentally inoculated a cream pie with six s. aureus cells. if s. aureus has a generation time of 60 minutes, how many cells would be in the cream pie after 7 hours?

Answers

After the time of seven hours, the cream pie would have approximately 768 S. aureus cells after 7 hours with a generation time of 60 minutes.

How many cells would be in the cream pie after 7 hours?

Six S. aureus cells have been accidentally inoculated into a cream pie. S. aureus has a generation time of 60 minutes. S. aureus is a pathogenic bacterium found in the environment, as well as on the skin, and in the upper respiratory tract.

The generation time of this bacterium is 60 minutes, meaning that a single bacterium can produce two new cells in 60 minutes.

If there are 6 S. aureus cells in a cream pie, the number of bacteria will continue to increase as time passes.

The number of generations (n) in seven hours is calculated as:

n = t/g

n = 7 hours × 60 minutes/hour/60 minutes/generation = 7 generations

The number of cells in the cream pie after 7 hours is calculated as :

N = N₀ × 2ⁿ

N = 6 cells × 2⁷

N = 768 cells

Therefore, after seven hours, the cream pie would have approximately 768 S. aureus cells.

Learn more about Number of generations here:

https://brainly.com/question/17045618

#SPJ11

To compare the pain control offered by two different analgesics in pediatric patients, the authors selected the Wong-Baker FACES pain rating scale as the primary end point. Before beginning the clinical trial, the authors sought to validate this ordinal scale by showing a correlation with a previously validated visual analog scale. Which one of the following statistical test is most appropriate to assess whether a correlation exists between these two measurements?
A. Pearson correlation
B. Analysis of variance (ANOVA)
C. Spearman rank correlation
D. Regression analysis

Answers

The most appropriate statistical test to assess whether a correlation exists between the Wong-Baker FACES pain rating scale and a previously validated visual analog scale is the (C) Spearman rank correlation.

What is correlation?

Correlation refers to the connection between two variables in which a modification in one variable is linked to a modification in the other variable. Correlation can be positive or negative.

Spearman rank correlation- A non-parametric approach to test the statistical correlation between two variables is Spearman rank correlation, also known as Spearman's rho or Spearman's rank correlation coefficient. This is based on the ranks of the values rather than the values themselves. The results are denoted by the letter "r".

The formula for Spearman's rank correlation coefficient:

Rs = 1 - {6Σd₂}/{n(n₂-1)}

Where, Σd₂ = the sum of the squared differences between ranks.

n = sample size

Thus, the most appropriate statistical test to assess whether a correlation exists between these two measurements is the (C) Spearman rank correlation.

To know more about the "Spearman rank correlation": https://brainly.com/question/14646555

#SPJ11

Use the integration capabilities of a graphing utility to approximate to two decimal places the area of the surface formed by revolving the polar equation over the given interval about the polar axis. r = 7 cos(20), [0, Phi/4]

Answers

The approximate area of the surface formed by revolving the polar equation over the given interval about the polar axis is 67.59 square units.

To solve the question, we can use the integration capabilities of a graphing utility to approximate to two decimal places the area of the surface formed by revolving the polar equation over the given interval about the polar axis. Polar curve is a type of curve that is made up of points that represent polar coordinates (r, θ) instead of Cartesian coordinates.

A polar curve can be represented in parametric form, but it is often more convenient to use the polar equation for a curve. According to the question, r = 7 cos(20), [0, Phi/4] is the polar equation and we need to find the approximate area of the surface formed by revolving the polar equation over the given interval about the polar axis.

To solve the problem, follow these steps: Convert the polar equation to a rectangular equation. The polar equation r = 7 cos(20) is converted to a rectangular equation using the following formulas: x = r cos θ, y = r sin θx = 7 cos (20°) cos θ, y = 7 cos (20°) sin θx = 7 cos (θ - 20°) cos 20°, y = 7 cos (θ - 20°) sin 20°

Sketch the curve in the plane. We can sketch the curve of r = 7 cos(20) by plotting the points (r, θ) and then drawing the curve through these points. Use the polar equation to set up the integral for the volume of the solid of revolution.

The volume of the solid of revolution is given by the formula: V = ∫a b πf2(x) dx where f(x) = r, a = 0, and b = Φ/4.We can find the volume of the solid of revolution using the polar equation: r = 7 cos(20) => r2 = 49 cos2(20) => x2 + y2 = 49 cos2(20)Thus, f(x) = √(49 cos2(20) - x2) = 7 cos(20°) sin(θ - 20°)

So, V = ∫a b πf2(x) dx = ∫0 Φ/4 π(7 cos(20°) sin(θ - 20°))2 dθStep 4: Use a graphing utility to evaluate the integral to two decimal places. Using a graphing utility to evaluate the integral, we get V ≈ 67.59.

Learn more about Interval

brainly.com/question/30486507

#SPJ11

Two percent of all individuals in a certain population are carriers of a particular disease. A diagnostic test for this disease has a 95% detection rate for carriers and a 3% detection rate for noncarriers. Suppose the test is applied independently to two different blood samples from the same randomly selected individual. A. What is the probability that both tests yield the same result?

Answers

The probability that both tests yield the same result is 7.7%.

Simply put, probability is the likelihood that something will occur. When we don't know how an occurrence will turn out, we can discuss the likelihood or likelihood of various outcomes. Statistics is the study of occurrences that follow a probability distribution.
It is predicated on the likelihood that something will occur. The justification for probability serves as the primary foundation for theoretical probability. For instance, the theoretical chance of receiving a head when tossing a coin is 12.
Let's break it down:-
90% don't have of those 99%
5% will be positive
1% positive of those 1%
90% positive
10% negative.
Well we need it to be the same, so 99*(.05*.05+.95*.95)+.01*(.9*.9+.1*.1)= 90.4%.
If both tests are positive, we have:-

0.99*0.05*0.05 and 0.01*0.9*0.9 for being positive, so :-

[tex]\frac{carrier}{positive} = \frac{0.01*0.9*0.9}{(0.99*0.05*0.05+0.01*0.9*0.9)} = 7.7[/tex]

hence, the probability of the two tests yield the same result is 7.7%.

To know more about probability go through:-

https://brainly.com/question/13604758

#SPJ4

Your monthly take-home pay is $900. Your monthly credit card payments are about $135. What percent of your take-home pay is used for your credit card payments?

i came up with $765

Answers

Answer:15 percent

Step-by-step explanation:

If the pyramids below are similar, what is the
ratio of their surface area?
21 in
14 in
A. 3:2
B. 6:4
C. 9:4
D. 27:8

Answers

The required ratio of the surface area of the given pyramids is (A) 3:2.

What are ratios?

A ratio can be used to show a relationship or to compare two numbers of the same type.

To compare things of the same type, ratios are utilized.

We might use a ratio, for example, to compare the proportion of boys to girls in your class.

If b is not equal to 0, an ordered pair of numbers a and b, denoted as a / b, is a ratio.

A proportion is an equation that equalizes two ratios.

For illustration, the ratio may be expressed as follows: 1: 3 in the case of 1 boy and 3 girls (for every one boy there are 3 girls)

So, the given surface area is:

- 21 in

- 14 in

Now, calculate the ratio as:

= 21/14

= 3/2

= 3:2

Therefore, the required ratio of the surface area of the given pyramids is (A) 3:2.

Know more about ratios here:

https://brainly.com/question/2328454

#SPJ1

Find the first 4 terms of the sequence represented by the expression 3n + 5

Answers

The first 4 terms of the sequence represented by the expression 3n + 5

is 8, 11, 14 and 17.

Sequence:

In mathematics, an array is an enumerated collection of objects in which repetition is allowed and in case order. Like a collection, it contains members (also called elements or items). The number of elements (possibly infinite) is called the length of the array. Unlike sets, the same element can appear multiple times at different positions in the sequence, and unlike sets, order matters. Formally, a sequence can be defined in terms of the natural numbers (positions of elements in the sequence) and the elements at each position. The concept of series can be generalized as a family of indices, defined in terms of any set of indices.

According to the Question:

Given, aₙ = (3n+5).

First four terms can be obtained by putting n=1,2,3,4

a 1=(3×1+5) = 8

a 2 =(3×2+5) = 11

a 3 =(3×3+5) = 14

a 4 =(3×4+5) = 17

First 4 terms in the sequence are 8, 11, 14, 17.

Learn more about Sequence:

https://brainly.com/question/30262438

#SPJ4

A bus arrives every 10 minutes at a bus stop. It is assumed that the waiting time for a particular individual is a random variable with a continuous uniform distribution.
a) What is the probability that the individual waits more than 7 minutes?
b) What is the probability that the individual waits between 2 and 7 minutes?A continuous random variable X distributed uniformly over the interval (a,b) has the following probability density function (PDF):fX(x)=1/0.The cumulative distribution function (CDF) of X is given by:FX(x)=P(X≤x)=00.

Answers

In the following question, among the various parts to solve- a) the probability that the individual waits more than 7 minutes is 0.3. b)the probability that the individual waits between 2 and 7 minutes is 0.5.

a) The probability that an individual will wait more than 7 minutes can be found as follows:

Given that the waiting time of an individual is a continuous uniform distribution and that a bus arrives at the bus stop every 10 minutes.Since the waiting time is a continuous uniform distribution, the probability density function (PDF) can be given as:fX(x) = 1/(b-a)where a = 0 and b = 10.

Hence the PDF of the waiting time can be given as:fX(x) = 1/10The probability that an individual waits more than 7 minutes can be obtained using the complementary probability. This is given by:P(X > 7) = 1 - P(X ≤ 7)The probability that X ≤ 7 can be obtained using the cumulative distribution function (CDF), which is given as:FX(x) = P(X ≤ x) = ∫fX(t) dtwhere x ∈ [a,b].In this case, the CDF of the waiting time is given as:FX(x) = ∫0x fX(t) dt= ∫07 1/10 dt + ∫710 1/10 dt= [t/10]7 + [t/10]10= 7/10Using this, the probability that an individual waits more than 7 minutes is:P(X > 7) = 1 - P(X ≤ 7)= 1 - 7/10= 3/10= 0.3So, the probability that the individual waits more than 7 minutes is 0.3.

b) The probability that the individual waits between 2 and 7 minutes can be calculated as follows:P(2 < X < 7) = P(X < 7) - P(X < 2)Since the waiting time is a continuous uniform distribution, the PDF can be given as:fX(x) = 1/10Using the CDF of X, we can obtain:P(X < 7) = FX(7) = (7 - 0)/10 = 0.7P(X < 2) = FX(2) = (2 - 0)/10 = 0.2Therefore, P(2 < X < 7) = 0.7 - 0.2 = 0.5So, the probability that the individual waits between 2 and 7 minutes is 0.5.

For more such questions on probability

https://brainly.com/question/24756209

#SPJ11


cindy and tom, working together, can rake the yard in 8 hours. working alone, tom takes twice as long as cindy. how many hours does it take cindy to rake the yard alone?

Answers

Cindy and tom, working together, can rake the yard in 8 hours. Working alone, Tom takes twice as long as Cindy, it takes Cindy to rake the yard 2 hours

How do we calculate the time it takes Cindy?

To find the time it takes Cindy to rake the yard alone, let's use the following steps:Let x be the time taken by Cindy to rake the yard alone . Then the time taken by Tom to rake the yard alone will be 2xIt is given that Cindy and Tom can rake the yard in 8 hours when they work together.

Using the formula for working together, we get:[tex]\[\frac{1}{x} + \frac{1}{2x} = \frac{1}{8}\][/tex] Multiplying the equation by the least common multiple of the denominators, we get:[tex]\[16 + 8 = 2x\][/tex] Simplifying, we get:[tex]\[2x = 24\][/tex]Dividing both sides by 2, we get:[tex]\[x = 12\][/tex]Therefore, it takes Cindy 12 hours to rake the yard alone.

See more about calculating the working time at: https://brainly.com/question/20290932

#SPJ11

50 POINTS
A bathroom heater uses 10.5 A of current when connected to a 120. V potential difference. How much power does this heater dissipate?
Remember to identify all data (givens and unknowns), list equations used, show all your work, and include units and the proper number of significant digits to receive full credit

Answers

The power dissipated by the heater is 1260 watts (W).

What is a polynomial?

A polynomial is a mathematical expression consisting of variables (also known as indeterminates) and coefficients, which are combined using only the operations of addition, subtraction, and multiplication.

Given:

Current (I) = 10.5 A

Potential Difference (V) = 120 V

Unknown:

Power (P) = ?

The formula to calculate the power is:

P = VI

Substituting the given values:

P = 120 V × 10.5 A

P = 1260 W

It's important to note that the number of significant digits should be based on the precision of the given values. In this case, both values have three significant digits, so the answer should also have three significant digits. Thus, the final answer should be:

P = 1260 W (rounded to three significant digits).

Therefore, the power dissipated by the heater is 1260 watts (W).

To learn more about polynomial from the given link:

https://brainly.com/question/11536910

#SPJ1

Arun’s mother’s age is 6 years more than 4 times Arun’s age. If Arun’s age is m years, find
mother’s age

Answers

As per the unitary method, Arun's mother would be 36 years old if Arun is 3 years old.

Let Arun's age be m years.

Let Arun's mother's age be n years.

From the problem statement, we know that n = 4m + 6. This means that Arun's mother's age is directly proportional to Arun's age, with a constant ratio of 4 and a constant difference of 6.

To solve for n, we can use the unitary method. We can set up a proportionality between the two ages as follows:

n / m = (4m + 6) / m

To solve for n, we can cross-multiply to get:

n = m x (4m + 6)

Expanding the right-hand side of the equation, we get:

n = 4m² + 6m

Therefore, Arun's mother's age is 4m² + 6m years. We can simplify this expression by factoring out 2m:

n = 2m(2m + 3)

This gives us a simpler form of the equation for Arun's mother's age. To find her age, we simply substitute Arun's age (m) into this expression and simplify.

If Arun is 3 years old (m = 15), then his mother's age would be:

n = 2m(2m + 3) = 2(3)(2(3) + 3) = 2(3)(6) = 36

To know more about unitary method here

https://brainly.com/question/28276953

#SPJ4

Will give brainlest to first correct answer!!!
Evelyn has a bag that contains 3 red marbles and 2 blue marbles.
Evelyn randomly pulls a marble from the bag and then puts it back in the bag. She repeats this 20 times. How many times should she expect to draw a red marble from the bag?

Answers

Answer:

She will draw 120 times for a red marble

Step-by-step explanation:

Write the line equation of (5,-12) and (0,-2)

Answers

Answer:

To find the equation of the line passing through the points (5,-12) and (0,-2), we first need to find the slope of the line:

slope = (change in y) / (change in x)

slope = (-2 - (-12)) / (0 - 5)

slope = 10 / (-5)

slope = -2

Now that we have the slope, we can use the point-slope form of the line equation to find the equation of the line:

y - y1 = m(x - x1)

where m is the slope, and (x1, y1) is one of the given points on the line.

Let's use the point (5,-12):

y - (-12) = -2(x - 5)

y + 12 = -2x + 10

y = -2x - 2

Therefore, the equation of the line passing through the points (5,-12) and (0,-2) is y = -2x - 2.

write the equation in standard form for the circle with center (5,0) passing through (5, 9/2)

Answers

The equation in standard form for the circle with center (5,0) passing through (5, 9/2) is 4x² + 4y² - 40x + 19 = 0

Calculating the equation of the circle

Given that

Center = (5, 0)

Point on the circle = (5. 9/2)

The equation of a circle can be expressed as

(x - a)² + (y - b)² = r²

Where

Center = (a, b)

Radius = r

So, we have

(x - 5)² + (y - 0)² = r²

Calculating the radius, we have

(5 - 5)² + (9/2 - 0)² = r²

Evaluate

r = 9/2

So, we have

(x - 5)² + (y - 0)² = (9/2)²

Expand

x² - 10x + 25 + y² = 81/4

Multiply through by 4

4x² - 40x + 100 + 4y² = 81

So, we have

4x² + 4y² - 40x + 19 = 0

Hence, the equation is 4x² + 4y² - 40x + 19 = 0

Read more about circle equation at

https://brainly.com/question/1506955

#SPJ1

When a homeowner has a 25-year variable-rate mortgage loan, the monthly payment R is a function of the amount of the loan A and the current interest rate i (as a percent); that is, R = f(A). Interpret each of the following. (a) R140,000, 7) - 776.89 For a loan of $140,000 at 7% interest, the monthly payment is $776.89. For a loan of $140,000 at 7.7689% interest, 700 monthly payments would be required to pay off the loan. For a loan of $140,000 at 7% interest, 776.89 monthly payments would be required to pay off the loan. For a loan of $140,000 at 7.7689% interest, the monthly payment is $700.

Answers

The monthly payment required to pay off a loan of $140,000 at 7% interest would be $776.89 is the correct statement(A).

The statement given is describing a function that relates the monthly payment R of a 25-year variable-rate mortgage loan to the loan amount A and the current interest rate i.

The given values are R = $776.89 and A = $140,000, with an interest rate of 7%. This means that the monthly payment required to pay off a loan of $140,000 at 7% interest would be $776.89.

However, the other statements are incorrect interpretations. For instance, the statement "For a loan of $140,000 at 7.7689% interest, 700 monthly payments would be required to pay off the loan" is incorrect.

This is because the number of payments required to pay off a loan depends not only on the loan amount and interest rate, but also on the term of the loan.

Similarly, the statement "For a loan of $140,000 at 7% interest, 776.89 monthly payments would be required to pay off the loan" is also incorrect, as the number of payments required would be determined by the term of the loan.

Finally, the statement "For a loan of $140,000 at 7.7689% interest, the monthly payment is $700" is also incorrect. This is because, for the given loan amount and interest rate, the monthly payment required would be $776.89, as calculated above.

For more questions like Interest click the link below:

https://brainly.com/question/13324776

#SPJ11

f of x is equals to 3 - 2 x and g of x is equals to X Minus x square + 1 where x is an element of I have set of numbers find the inverse of G and the value for X for which f of G is equals to g of f​.

Answers

The inverse of the function g(x) is g⁻¹(x) = 0.5 + √(1.25 - x) and the value for x for which f(g(x)) = g(f(x))​ is 1

Calculating the inverse of g(x)

Given that

f(x) = 3 - 2x

Rewrite as

g(x) = -x² + x + 1

Express as vertex form

g(x) = -(x - 0.5)² + 1.25

Express as equation and swap x & y

x = -(y - 0.5)² + 1.25

Make y the subject

y = 0.5 + √(1.25 - x)

So, the inverse is

g⁻¹(x) = 0.5 + √(1.25 - x)

Calculating the value of x

Here, we have

f(g(x)) = g(f(x))​

This means that

f(g(x)) = 3 - 2(-x² + x + 1)

g(f(x)) = -(3 - 2x)² + (3 - 2x) + 1

Using a graphing tool, we have

f(g(x)) = g(f(x))​ when x = 1

Hence, the value of x is 1

Read more about inverse function at

https://brainly.com/question/3831584

#SPJ1

Complete question

f(x) = 3 - 2x and g(x) = x - x² + 1 where x is an element of f have set of numbers

Find the inverse of G and the value for x for which f(g(x)) = g(f(x))​.

Three softball players discussed their batting averages after a game.


Probability
Player 1 four sevenths
Player 2 five eighths
Player 3 three sixths


By comparing the probabilities and interpreting the likelihood, which statement is true?

Answers

The statement that is true is: Player 2 has the highest likelihood of getting a hit in their at-bats.

How to determine the true statement from the options

By comparing the probabilities, we can interpret the likelihood of each player getting a hit in their at-bats. The highest probability indicates the highest likelihood of getting a hit.

Comparing the probabilities of the three players, we can see that:

Player 2 has the highest probability (5/8), which means they are the most likely to get a hit in their at-bats.

Player 1 has a lower probability (4/7) than Player 2, but a higher probability than Player 3. This means they are less likely to get a hit than Player 2, but more likely to get a hit than Player 3.

Player 3 has the lowest probability (3/6 = 1/2) of getting a hit, which means they are the least likely to get a hit in their at-bats.

Therefore, the statement that is true is: Player 2 has the   of getting a hit in their at-bats.

Learn more about probabilities at https://brainly.com/question/24756209

#SPJ1

question if all other factors are held constant, which of the following results in an increase in the probability of a type ii error? responses the true parameter is farther from the value of the null hypothesis. the true parameter is farther from the value of the null hypothesis. the sample size is increased. the sample size is increased. the significance level is decreased. the significance level is decreased. the standard error is decreased. the standard error is decreased. the probability of a type ii error cannot be increased, only decreased.

Answers

If all other factors are held constant, decreasing the significance level results in an increase in the probability of a type II error. This is true. we can say that the probability of making a type II error increases when the significance level is lowered.

What is a type II error? In hypothesis testing, a type II error occurs when a false null hypothesis is not rejected. When there is a real effect and the null hypothesis is false, this happens. It's a mistake that occurs when a researcher fails to reject a false null hypothesis.

A false negative is another term for a type II error. The power of the test, the size of the sample, the confidence level, and the effect size are all factors that influence the probability of making a type II error. Only if we decrease the significance level can the probability of a type II error be increased.

What is the significance level? The significance level is also known as alpha. It is the probability of rejecting a null hypothesis when it is true. It is represented by α. It is usually set at 0.05 or 0.01 in most studies. When the significance level is lowered, the probability of making a type I error decreases, but the probability of making a type II error increases. Therefore, we can say that the probability of making a type II error increases when the significance level is lowered.

For more such questions on type II error

https://brainly.com/question/30403884

#SPJ11

parabola a and parabola b both have the x-axis as the directrix. parabola a has its focus at (3,2) and parabola b has its focus at (5,4). select all true statements.
a. parabola A is wider than parabola B
b. parabola B is wider than parabola A
c. the parabolas have the same line of symmetry
d. the line of symmetry of parabola A is to the right of that of parabola B
e. the line of symmetry of parabola B is to the right of that of parabola A

Answers

In the following question, among the given options, Option (b) "Parabola B is wider than Parabola A" and option (d) "The line of symmetry of Parabola A is to the left of that of Parabola B" are the true statements.

The following statements are true about the parabolas: c. the parabolas have the same line of symmetry, and d. the line of symmetry of parabola A is to the right of that of parabola B.

Parabola A and Parabola B have the x-axis as the directrix, with the focus of Parabola A at (3,2) and the focus of Parabola B at (5,4). As the focus of Parabola A is to the left of the focus of Parabola B, the line of symmetry for Parabola A is to the right of the line of symmetry of Parabola B.

Parabola A and Parabola B may have different widths, depending on their equation, but this cannot be determined from the information given.

For more such questions on Parabola

https://brainly.com/question/29635857

#SPJ11

Seven bags of cement weighs 3kg 52g what Is the weight of the each?​

Answers

Answer:

436g

Step-by-step explanation:

1kg=1000g

3kg=3000g

3000+52=3052

3052÷7=436

Isaiah is grounded and has to stay in his room all day. He made up a game where he throws balled-up paper called a "trashball" into his trash can. The diameter of the top of the trash can 1 the diameter of the top of is 12 in. Isaiah wants the "trashball" to have a diameter that is the trash can. > What should the diameter of Isaiah's "trashball" be? d Level G ? in. 12 in.​

Answers

Answer:

Isiah Thomas

Step-by-step explanation:

I amazing fact

Answer:

the correct answer is 4

Step-by-step explanation:

yea sorry i don’t know step-by-step

Each angle of a regular polygon is 1680. How
many sides has it? What is the name of this
polygon?

Answers

Answer: 2 solutions

Step-by-step explanation:

To find the angle of a regular polygon, use the formula 180(n-2)/n (where n is the amount of sides.)

Setting them equal, we get (180n-360)/n = 1680.

Multiplying by n on both sides, we get 180n-360 = 1680n.

Solving, we get 1500n = 360.

n = 0.24, which means it is not a shape, as you cannot have a shape with 0.24 sides.

The other way to look at it is to take full revolutions of 360 away from each angle, giving us 240 (the smallest remainder without it going negative). However, all the angles would be concave. If all the angles are concave, then it might connect backwards.

Subtracting 240 from 360 (to get the "exterior" angles, we get 120. Plugging it in to our equation 180(n-2)/n and solving, we get 180n-360 = 120n, and solving gives us 60n = 360, or n=6.

Since the amount of sides came together cleanly, we can classify this polygon as a normal hexagon, which has 6 sides.

c) assume that 25% of the defendants in the state are innocent. in a certain year 200 people put on trial. what is the expected value and variance of the number of cases in which juries got the right decision?

Answers

The expected value of cases in which juries got the right decision is 150, and the variance is 375.

1. Since 25% of defendants in the state are innocent, that means that 75% of the defendants are guilty.
2. This means that in the given year, 150 out of the 200 people put on trial will be guilty.
3. Thus, the expected value of cases in which juries got the right decision is 150.
4. The variance of the number of cases in which juries got the right decision is calculated by taking the expected value and subtracting it from the total number of people put on trial, which is 200.
5. The result of the calculation is 375, which is the variance of cases in which juries got the right decision.

See more about variance at: https://brainly.com/question/9304306

#SPJ11

if (20x+10) and (10x+50) are altenative interior angle then find x ​

Answers

Answer:

x = 4

Step-by-step explanation:

Alternative interior angles means these angles are equal in magnitude and sign

[tex]{ \tt{(20x + 10) = (10x + 50)}} \\ \\ { \tt{20x - 10x = 50 - 10}} \\ \\ { \tt{10x = 40}} \\ \\ { \tt{x = 4}}[/tex]

F(x)=-(x+3)(x+10) pls help

Answers

Answer:

Zeros: x = -10 and x = -3

Vertex: [tex](-\frac{13}{2} , \frac{49}{4} )[/tex]

Step-by-step explanation:

Pre-Solving

We are given the following function:
f(x) = -(x+3)(x+10)

We want to find the zeros and the vertex of the parabola.

SolvingZeros

The zeros are the values of the function where f(x) = 0.

So, in order to find the zeros, we can set f(x) = 0.

0 = -(x+3)(x+10)

We can divide both sides by -1, to get:

0 = (x+3)(x+10)

To solve this, we will use zero product property.
Split and solve:

x+3 = 0

x = -3


x+10=0

x = -10

Vertex

Now, to find the vertex, we first get the average of the zeros.

Add the values of the zeros together, then divide by two:

[tex]\frac{-3-10}{2}[/tex] = [tex]\frac{-13}{2}[/tex]

Now, we plug this in for x to get the y value (found through f(x)) of the vertex.

[tex]f(-\frac{13}{2}) = -(-\frac{13}{2} + 3) (-\frac{13}{2} + 10)[/tex] = [tex]\frac{49}{9}[/tex]

So, the vertex is [tex](-\frac{13}{2} , \frac{49}{4} )[/tex]

cosθ(1+tanθ)=cosθ+sinθ​

Answers

Answer:

Starting with the left side of the equation:

cosθ(1+tanθ) = cosθ(1+sinθ/cosθ) (since tanθ = sinθ/cosθ)

= cosθ + sinθ

Therefore, the left side of the equation is equal to the right side of the equation, which means that cosθ(1+tanθ) = cosθ+sinθ is true.

Can someone help me with this please?

Answers

To solve the question asked, you can say:  So, the other angle of the figure is 49 degree.

what are angles?

In Euclidean geometry, an angle is a shape consisting of two rays, known as sides of the angle, that meet at a central point called the vertex of the angle. Two rays can be combined to form an angle in the plane in which they are placed. Angles also occur when two planes collide. These are called dihedral angles. An angle in planar geometry is a possible configuration of two rays or lines that share a common endpoint. The English word "angle" comes from the Latin word "angulus" which means "horn". A vertex is a point where two rays meet, also called a corner edge.  

here the given angles are as -

107 + (180-156) + x = 180

as total angle sum of a triangle is 180

so,

x = 180 - 131

x = 49

So, the other angle of the figure is 49 degree.

To know more about angles visit:

https://brainly.com/question/14569348

#SPJ1

Other Questions
With respect to the average cost curves, the marginal cost curve: Intersects average total cost, average fixed cost, and average variable cost at their minimum point b. Intersects both average total cost and average variable cost at their minimum points Intersects average total cost where it is increasing and average variable cost where it is decreasing d. Intersects only average total cost at its minimum point Creating a new product to increase margin is an example of using product implementations to achieve competitive advantage.True or false Early signs and symptoms of intra-abdominal bleeding include: A) pain and distention. B) widespread ecchymosis. C) significant hypotension. D) bruising only. 4x 2 +6x13=3x 2 to the nearest tenth. Suppose an angle has a measure of 140 degrees a. If a circle is centered at the vertex of the angle, then the arc subtended by the angle's rays is______ times as long as 1/360th of the circumference of the circle. b. A circle is centered at the vertex of the angle, and 1/360th of the circumference is 0.06 cm long. What is the length of the arc subtended by the angle's rays? _______ cmc. Another circle is centered at the vertex of the angle. The arc subtended by the angle's rays is 70 cm long. - 1/360th of the circumference of the circle is _____ cm long. - Therefore the circumference of the circle is _______ cm strong property rights are important for modern economic growth because group of answer choices business cycle fluctuations will be smaller and less likely to disrupt investment patterns. they ensure an equitable distribution of income. people are more likely to invest if they don't fear that others can take their returns on investment without compensation they allow governments to extract the gains from private citizens' investments The roots of a quadratic equation a x +b x +c =0 are (2+i 2)/3 and (2i 2)/3 . Find the values of b and c if a = 1. What was the main cause of the process of urbanization that occurred in 19th-century Britain and elsewhere in western Europe?a. poor crop yieldsb. industrializationc. improved living conditions in citiesd. more efficient transportation systems Panhandle definition A ball is released from rest at the left of the metal track shown here. Assume it has only enough friction to roll, but not to lessen its speed. Rank these quantites from greatest to least at each point: a) Momentum, b)KE, c)PEA) C, B = D, AB) C,B = D,AC) A,B = D,C use a direct proof to show that every odd integer is the difference of two squares. [hint: find the difference of the squares of k 1 and k where k is a positive integer.] when a peptide bond is formed, two amino acids are linked between the group of one amino acid and the group of the other. At noon, ship A is 50 nautical miles due west of ship B. Ship A is sailing west at 16 knots and ship B is sailing north at 15 knots. How fast (in knots) is the distance between the ships changing at 6 PM? (Note: 1 knot is a speed of 1 nautical mile per hour. ) what concept states that various outcomes may stem from similar beginings such as child maltreatment Which of the following is NOT part of postformal thinking?knowing there is no single right answer to many life dilemmasweighing different perspectives when making decisionsbeing open to new experiencessticking to one's guns and never backing down Which of the following events or actions has a chance to call an IT security risk with business impact? O a. Infection of computers with a computer virus O b. Putting off antivirus software O c. Sharing a critical business password- encryption O d. All Anyone know the answer? Scenario 1In the Case Study- Vokes v. Arthur Murray (pg. 84); how would you build a case for the plaintiff? Consider what information you would need to build a case against Arthur Murray. Discuss what information you would use and how it would be presented in court.Scenario 2In the Case Study- Vokes v. Arthur Murray (pg. 84); how would you build a case if you were the defendant's lawyer? Consider what kind of information you would need to build in defense of the dance school. Discuss what information you would use and how it would be presented in court.The defendant is Aruthur Murray. The plaintiff is Vokes. Why do doctors today think Itards lessons didnt work very well? Most of the successful urban plans that have made cities more livable have designed space to be centered on A) the movements and interactions of people. B) efficient automobile traffic. C) oceans as a common source for water and mode of transportation. D) housing and places for people to park their cars