Answer:
Step-by-step explanation: distribute -3 to the parenthesis (-2y-4) to eliminate the parenthesis. you’ll be left with 6y +12 -5y-2. From there you combine like terms. do 6y-5y= 1y or just y and 12-2 = 10. your answer would be 10
Solve x/10 = -7 A. x = 3 B. x = -0.7 C. x = -17 D. x = -70
Answer:
x = -70
Step-by-step explanation:
x/10 = -7
Multiply each side by 10
x/10*10 = -7*10
x = -70
Two samples from the same population both have M = 84 and s2 = 20, but one sample has n = 10 and the other has n = 20 scores. Both samples are used to evaluate a hypothesis stating that μ = 80 and to compute Cohen’s d. How will the outcomes for the two samples compare?
Complete Question
Two samples from the same population both have M = 84 and s2 = 20, but one sample has n = 10 and the other has n = 20 scores. Both samples are used to evaluate a hypothesis stating that μ = 80 and to compute Cohen’s d. How will the outcomes for the two samples compare?
a.
The larger sample is more likely to reject the hypothesis and will produce a larger value for Cohen’s d.
b.
The larger sample is more likely to reject the hypothesis, but the two samples will have the same value for Cohen’s d.
c.
The larger sample is less likely to reject the hypothesis and will produce a larger value for Cohen’s d.
d.
The larger sample is less likely to reject the hypothesis, but the two samples will have the same value for Cohen’s d.
Answer:
The Cohen's d value is [tex]d = 0.895[/tex]
The correct option is b
Step-by-step explanation:
From the question we are told that
The sample mean of each population is [tex]M = 84[/tex]
The variance of each population is [tex]s^2 = 20[/tex]
The first sample size is [tex]n_1 = 10[/tex]
The second sample size is [tex]n_2 = 20[/tex]
The null hypothesis is [tex]H_o : \mu = 80[/tex]
Generally the standard deviation is mathematically evaluated as
[tex]s = \sqrt{20 }[/tex]
=> [tex]s = 4.47[/tex]
The first test statistics is evaluated as
[tex]t_1 = \frac{M - \mu }{ \frac{\sigma }{ \sqrt{n_1} } }[/tex]
=> [tex]t_1 = \frac{84 - 80 }{ \frac{4.47 }{ \sqrt{10} } }[/tex]
=> [tex]t_1 = 2.8298[/tex]
The second test statistics is evaluated as
[tex]t_2 = \frac{M - \mu }{ \frac{\sigma }{ \sqrt{n_2} } }[/tex]
=> [tex]t_2 = \frac{84 - 80 }{ \frac{4.47 }{ \sqrt{20} } }[/tex]
=> [tex]t_2 = 4.0[/tex]
The sample with the larger test statistics (sample size) will more likely reject the null hypothesis
Generally the Cohen's d value is mathematically evaluated as
[tex]d = \frac{M - \mu }{s }[/tex]
=> [tex]d = \frac{ 84 - 80 }{4.47 }[/tex]
=> [tex]d = 0.895[/tex]
Given that the the sample mean and sample size are the same for both sample the Cohen's d value will be the same
A la propiedad fundamental de las proporcionas, comprueba si las siguientes son o no hay elementos a) 5/7 a 15/21 b) 20/7 a 5/3 c) 16/8 a 4/2
Answer:
fucuvucybycych tcy bic ttx TV ubtx4 cub yceec inivtxr xxv kb
Step-by-step explanation:
t tcextvtcbu6gt CNN tx r.c tct yvrr TV unu9gvt e tch r,e xxv t u.un4crcuv3cinycycr xxv yctzrctvtcrzecycyvubr xiu nyfex tut uhyh
Suppose that the neighboring cities of Tweed and Ledee are long-term rivals. Neal, who was born and raised in Tweed, is confident that Tweed residents are more concerned about the environment than the residents of Ledee. He knows that the average electricity consumption of Tweed households last February was 854.11 kWh and decides to test if Ledee residents used more electricity that month, on average. He collects data from 65 Ledee households and calculates the average electricity consumption to be 879.28 kWh with a standard deviation of 133.29 kWh. There are no outliers in his sample data. Neal does not know the population standard deviation nor the population distribution. He uses a one-sample t-test with a significance level of α = 0.05 to test the null hypothesis, H0:µ=854.11, against the alternative hypothesis, H1:μ>854.11 , where μ is the average electricity consumption of Ledee households last February. Neal calculates a t‑statistic of 1.522 and a P-value of 0.066.
Based on these results, complete the following sentences to state the decision and conclusion of the test.
Neal's decision is to__________ the __________ (p 0.066). There is_________ evidence to _________ the claim that the average electricity consumption of ____________ is _________ , ________
Complete Question
The option to the blank space are shown on the first uploaded image
Answer:
Neal's decision is to fail to reject the null hypothesis (p 0.066). There is no sufficient evidence to prove the claim that the average electricity consumption of all Ledee household is greater than , 854.28 kWh
Step-by-step explanation:
From the question we are told that
The population mean is [tex]\mu = 854.11[/tex]
The sample size is [tex]n = 65[/tex]
The sample mean is [tex]\= x = 879.28 \ kWh[/tex]
The standard deviation is [tex]\sigma = 133.29 \ kWh[/tex]
The level of significance is [tex]\alpha = 0.05[/tex]
The null hypothesis is [tex]H_o: \mu = 854.11[/tex]
The alternative hypothesis is [tex]H_a : \mu > 854.11[/tex]
The t-statistics is [tex]t = 1.522[/tex]
The p-value is [tex]p-value = 0.066[/tex]
Now from the given data we can see that
[tex]p-value < \alpha[/tex]
Generally when this is the case , we fail to reject the null hypothesis
So
Neal's decision is to fail to reject the null hypothesis (p 0.066). There is no sufficient evidence to prove the claim that the average electricity consumption of all Ledee household is greater than , 854.28 kWh
Suppose the following data show the prices of 4 cars with similar characteristics that sold at a recent auction (in thousands of dollars): 6.6, 5, 10.7, 7.3. Calculate the standard deviation of the sample of selling prices. (please express your answer using 2 decimal places)
Answer: 2.40
Step-by-step explanation:
Given: The prices of 4 cars with similar characteristics that sold at a recent auction (in thousands of dollars): 6.6, 5, 10.7, 7.3.
Let x: 6.6, 5, 10.7, 7.3.
n= 4
Mean : [tex]\overline{x}=\dfrac{\sum x}{n}[/tex]
[tex]\Rightarrow\ \overline{x}=\dfrac{6.6+5+10.7+7.3}{4}\\\\=\dfrac{29.6}{4}\\\\=7.4[/tex]
Now , standard deviation = [tex]\sqrt{\dfrac{\sum(x-\overline{x})^2}{n-1}}[/tex]
[tex]=\sqrt{\dfrac{(6.6-7.4)^2+( 5-7.4)^2+( 10.7-7.4)^2+( 7.3-7.4)^2}{4-1}}\\\\=\sqrt{\dfrac{0.64+5.76+10.89+0.01}{3}}\\\\=\sqrt{\dfrac{17.3}{3}}\approx2.40[/tex]
Hence, the standard deviation of the sample of selling prices = 2.40
Simplify 10 - [14 = (3 + 4) · 2]+3
Answer:
There is a typo near the equal sign.
There can be two different answers if we think that = sign as + or -.
First way: Making = as +
=> 10 - [14 + (3+4) x 2] +3
=> 10 - [14 + 7 x 2] + 3
=> 10 - [14 + 14] + 3
=> 10 - 28 + 3
=> 10 + 3 - 28
=> 13 - 28
=> -15
=> So, -15 is the answer if we consider "=" sign as "+" sign.
Second way: Making = as -
=> 10 - [14 - (3+4) x 2] + 3
=> 10 - [14 - 7 x 2] + 3
=> 10 - [14 - 14] + 3
=> 10 - 0 + 3
=> 10 + 3
=> 13
=> So, 13 is the answer if we consider "=" sign as "-" sign.
i need help will rate you branliest
Answer:
D. the bottom one is the answer, because hyperbola is two curves that curve infinitely
The formula for the area of a square is s2, where s is the side length of the square. What is the area of a square with a side length of 6 centimeters? Do not include units in your answer.
Answer:
36
step by step
given length=6
so area of square is given by s2 i.e 6^2
=6×6
=36 (Ans)
Which is the graph of g(x) = (0.5)x + 3 – 4?
Answer:
Graph (A)
Step-by-step explanation:
Given question is incomplete; find the question in the attachment.
Given function is g(x) = [tex](0.5)^{x+3}-4[/tex]
Parent function of the given function is,
f(x) = [tex](0.5)^{x}[/tex]
When the function 'f' is shifted by 3 units left over the x-axis, translated function will be,
h(x) = f(x+3) = [tex](0.5)^{x+3}[/tex]
When h(x) is shifted 4 units down, translated function will be,
g(x) = h(x) - 4
g(x) = [tex](0.5)^{x+3}-4[/tex]
g(x) has a y-intercept as (-4).
From the given graphs, Graph A shows the y-intercept as (-4).
Therefore, Graph A will be the answer.
Answer:
The Answer A is correct
Step-by-step explanation:
I took the edg2020 test
If you have a piece of glass that is 12in X 12in - how many square feet is it?
Answer:
1 square foot is the answer
Answer:
1 ft^2
Step-by-step explanation:
We know 12 inches = 1 ft
12 inches by 12 inches
1 ft by 1 ft
The area is 1 * 1 = 1 ft^2
Evaluate 2/3 + 1/3 + 1/6 + … THIS IS CONTINUOUS. It is NOT as simple as 2/3 + 1/3 + 1/6.
[tex]a=\dfrac{2}{3}\\r=\dfrac{1}{2}[/tex]
The sum exists if [tex]|r|<1[/tex]
[tex]\left|\dfrac{1}{2}\right|<1[/tex] therefore the sum exists
[tex]\displaystyle\\\sum_{k=0}^{\infty}ar^k=\dfrac{a}{1-r}[/tex]
[tex]\dfrac{2}{3}+\dfrac{1}{3}+\dfrac{1}{6}+\ldots=\dfrac{\dfrac{2}{3}}{1-\dfrac{1}{2}}=\dfrac{\dfrac{2}{3}}{\dfrac{1}{2}}=\dfrac{2}{3}\cdot 2=\dfrac{4}{3}[/tex]
If you invest $ 30 , 700 with an annual interest rate of 8.9 % , compounded daily, how much would you have at the end of 4 years?
Answer: $43,823.37
Step-by-step explanation:
Formula to calculate the accumulated amount earned on principal (P) at rate of interest (r) compounded daily after t years :
[tex]A=P(1+\dfrac{r}{365})^{365t}[/tex]
As per given , we have
P= $ 30,700
r= 8.9 % = 0.089
t= 4 years
[tex]A=30700(1+\dfrac{0.089}{365})^{365(4)}\\\\=30700(1+0.0002438)^{365(4)}\\\\=30700(1.0002438)^{1460}\\\\=30700(1.42747138525)\\\\=43823.3715272\approx43823.37[/tex]
Hence, the amount at the end of 4 years would be $43,823.37 .
The expression $16x^2-106x-105$ can be written as $(8x + a)(2x + b),$ where $a$ and $b$ are integers. What is $a + 2b$?
Answer:
-23
Step-by-step explanation:
16x² - 106x - 105
factoring X
14 x -120 = -1680
14 - 120 = -106
16x² + 14x - 120x - 105
(16x² + 14x) -(120x - 105)
factor out 2 and -15 to get the same expression (8x + 7)
2x(8x + 7) - 15(8x + 7)
(8x + 7)(2x - 15)
a = 7
b = -15
a + 2b
7 + (-15 x 2)
7 + (-30)
= -23
[PLEASE HELP] Consider this function, f(x) = 2X - 6.
Match each transformation of f (x) with its descriptions..
Answer:
Find answer below
Step-by-step explanation:
f(x)=2x-6
Domain of 2x-6: {solution:-∞<x<∞, interval notation: -∞, ∞}
Range of 2x-6: {solution:-∞<f(x)<∞, interval notation: -∞, ∞}
Parity of 2x-6: Neither even nor odd
Axis interception points of 2x-6: x intercepts : (3, 0) y intercepts (0, -6)
inverse of 2x-6: x/2+6/2
slope of 2x-6: m=2
Plotting : y=2x-6
the principal p is borrowed at a simple interest rate r for a period of time t. find the loan's future value g P = 700, r = 8.25, t = 3 months
Answer:
Hey there!
Simple interest formula: I=PRT
I=700(8.25)(0.25)
I=1443.75
Hope this helps :)
Answer:
Step-by-step explanation:
I = PRT
I = 700(0.0825)(1/4) = 14.44
Because the interest is usually in percentage and it's impossible to have 825% as your interest rate. So the actual interest rate has to be 0.0825.
The formula above calculated the interest, if you want the total, you will need to add 700 to that number.
[img id="5156824"][/img]Here's a small quick example of the formula that should help.
2. A 10 Mg truck hauls a 20 Mg trailer. If the unit starts from rest on a level road with a
tractive force of 20 kN between the driving wheels of the truck and the road, calculate the
acceleration of the unit and the tension in the horizontal draw-bar.
Drawbar
20 Mg Trailer
10 Mg Truck
a=0.667 m/s2
T= 13.3 KN
Oro
W
Answer:
The acceleration on the unit is 0.667 m/s^2
The tension on the draw-bar is 13.34 kN
Step-by-step explanation:
The mass of the truck = 10 Mg = 10 x 10^3 kg
The mass of the trailer = 20 Mg = 20 x 10^3 kg
Tractive force from the truck = 20 kN = 20 x 10^3 N
The total mass of the unit = 10 Mg + 20 Mg = 30 Mg = 30 x 10^3 kg
The tractive force on the unit will produce an acceleration that is given as
F = ma
where
F is the tractive = 20 x 10^3 N
m is the mass of the unit = 30 x 10^3 kg
a is the acceleration of the unit = ?
substituting into the equation
20 x 10^3 = 30 x 10^3 x a
a = (20 x 10^3)/(30 x 10^3) = 0.667 m/s^2
the tension on the draw-bar T is gotten from considering only the mass that is pulled by the draw-bar which is 20 Mg
The acceleration on the unit = 0.667 m/s^2
The drawn mass = 20 Mg = 20 x 10^3 kg
The tension on the draw bar = ma = 20 x 10^3 x 0.667 = 13340 N
= 13.34 kN
The acceleration is 0.00067m/s^2, while the tension on the horizontal bar is 13.4 N
The given parameters are:
[tex]\mathbf{m = 10Mg}[/tex] -- mass of the truck
[tex]\mathbf{M = 20Mg}[/tex] -- mass of the trailer
[tex]\mathbf{F_T = 20kN}[/tex] --- tractive force
Start by calculating the total mass
[tex]\mathbf{M_T = m + M}[/tex]
So, we have:
[tex]\mathbf{M_T = 10Mg + 20Mg}[/tex]
[tex]\mathbf{M_T = 30Mg}[/tex]
Convert to kilograms
[tex]\mathbf{M_T = 30 \times 10^3kg}[/tex]
[tex]\mathbf{M_T = 30000 kg}[/tex]
Force is calculated as:
[tex]\mathbf{F =ma}[/tex]
So, we have:
[tex]\mathbf{20kN =30000kg \times a}[/tex]
Divide both sides by 30000
[tex]\mathbf{a = 0.00067ms^{-2}}[/tex]
The tension on the horizontal bar (i.e. the 20 Mg trailer) is:
[tex]\mathbf{T=ma}[/tex]
So, we have:
[tex]\mathbf{T=20Mg \times 0.00067ms^{-2}}[/tex]
Rewrite as:
[tex]\mathbf{T=20 \times 10^3 kg \times 0.00067m/s}[/tex]
[tex]\mathbf{T=13.4N}[/tex]
Hence, the acceleration is 0.00067m/s^2, while the tension on the horizontal bar is 13.4 N
Read more about force and acceleration at:
https://brainly.com/question/20511022
Could someone help me pls! And could you explain if possible? Thanks you
Answer:
3%
Step-by-step explanation:
1. Set up the equation
6(0.18) + 12x = 18(0.08)
2. Simplify
1.08 + 12x = 1.44
3. Solve
12x = 0.36
x = 0.03
0.03 = 3%
Rhombus J K L M is shown. The length of J K is 2 x + 4 and the length of J M is 3 x. What is the length of a side of rhombus JKLM? 4 units 8 units 12 units 16 units
Answer:
12 units
Step-by-step explanation:
Since all of the sides of a rhombus are congruent, JK = JM which means:
2x + 4 = 3x
-x = -4
x = 4 so 3x = 3 * 4 = 12
Please answer this correctly without making mistakes
Step-by-step explanation:
Option A and B are the correct answer because it equal to 688.5 and 688.05
Answer:
it is 1377/2 and 688 1/17 thats the answer
Step-by-step explanation:
BRAINLEST , If y varies inversely with the square of x, and y = 26 when x = 4, find y when x = 2.
Answer:
Question 18: B. 104
Question 19: [tex] x = \frac{3}{2} [/tex]
Step-by-step Explanation:
Question 18:
Step 1: express the inverse relationship with an equation
[tex] y = \frac{k}{x^2} [/tex] ,
where k is constant
y = 26 when x = 4,
Constant, k, = [tex] y*x^2 = k [/tex]
[tex] k = 26*4^2 = 416 [/tex]
The equation would be [tex] y*x^2 = 416 [/tex]
Step 2: use the equation to find y when X = 2.
[tex] y*x^2 = 416 [/tex]
[tex] y*2^2 = 416 [/tex]
[tex] y*4 = 416 [/tex]
Divide both sides by 4
[tex] \frac{y*4}{4} = \frac{416}{4} [/tex]
[tex] y = 104 [/tex]
Question 19:
[tex] \frac{x}{3} = \frac{x + 2}{7} [/tex]
Cross multiply
[tex] x(7) = 3(x + 2) [/tex]
[tex] 7x = 3x + 6 [/tex]
Subtract 3x from both sides
[tex] 7x - 3x = 3x + 6 - 3x [/tex]
[tex] 4x = 6 [/tex]
Divide both sides by 4
[tex] \frac{4x}{4} = \frac{6}{4} [/tex]
[tex] x = \frac{3}{2} [/tex]
Answer: D.) 52
Explanation: I guessed and got it right lol
Help Quick Please. Will give brainliest.
Answer:
72[tex]\sqrt{3}[/tex] units²
Step-by-step explanation:
The area (A) of the triangle is calculated as
A = [tex]\frac{1}{2}[/tex] bh ( b is the base and h the perpendicular height )
Here b = ST = a = 12 and h = RS
To calculate RS use the tangent ratio in the right triangle and the exact value
tan60° = [tex]\sqrt{3}[/tex] , thus
tan60° = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{RS}{ST}[/tex] = [tex]\frac{RS}{12}[/tex] = [tex]\sqrt{3}[/tex] ( multiply both sides by 12 )
RS = 12[tex]\sqrt{3}[/tex]
Thus
A = [tex]\frac{1}{2}[/tex] × 12 × 12[tex]\sqrt{3}[/tex] = 6 × 12[tex]\sqrt{3}[/tex] = 72[tex]\sqrt{3}[/tex] units²
Lynn estimates roof jon 1500,bo estimates 2400. What's the ratio to lynn to bo
Answer:
5:8
Step-by-step explanation:
If I understand your question correctly, we have 1500/2400=15/24=5/8, so we have Lynn:Bo is 5:8, however, in the future please be more clear.
What is "estimates roof jon"? And, instead of saying "ratio to lynn to bo" say "What is the ratio of the estimates?" or whatever you're asking. If this answer is wrong, you only have yourself to blame.
which expression is equivalent to(x²y)³?
Answer:
x^6 y^3
Step-by-step explanation:
(x²y)³
We know that (ab) ^c = a^c * b^c
(x²y)³ = x^2 ^3 * y^3
We know that a^b^c = a^(b*c)
(x²y)³ = x^2 ^3 * y^3 = x^( 2*3) y^3 = x^6 y^3
What is the value of this expression when x = -6 and y = — 1/2? 4(x^2+3) -2y A. -131 B. -35 C. 57 1/2 D. 157
Answer:
D
Step-by-step explanation:
[tex]4(x^2+3)-2y\\\\=4((-6)^2+3)-2(\frac{-1}{2} )\\\\=4(36+3)+1\\\\=4(39)+1\\\\=156+1\\\\=157[/tex]
The value of the expression 4(x² + 3) - 2y is 157, when x = -6 and y = -1/2.
What is an algebraic expression?An algebraic expression is consists of variables, numbers with various mathematical operations,
The given expression is,
4(x² + 3) - 2y
Substitute x = -6 and y = -1/2 to find the value of expression,
= 4 ((-6)² + 3) - 2(-1/2)
= 4 (36 + 3) + 1
= 4 x 39 + 1
= 156 + 1
= 157
The required value of the expression is 157.
To know more about Algebraic expression on:
https://brainly.com/question/19245500
#SPJ2
which operation should you perform first when evaluating the expression 3²+ 2
Answer:
You should calculate 3² first.
Step-by-step explanation:
In PEMDAS, E (which stands for exponents) comes before A (which stands for addition) so therefore you should calculate 3² first.
Explanation:
The acronym PEMDAS helps determine the order of operations
P = parenthesis
E = exponents
M = multiplication
D = division
A = addition
S = subtraction
With the expression [tex]3^2+2[/tex] we have two operations going on here: exponents and addition.
Since exponents comes before addition (E comes before A in PEMDAS), this means we evaluate [tex]3^2[/tex] first, then add later.
Question
Consider this expression.
4/2² - 6²
Type the correct answer in the box. Use numerals instead of words. For help, see this worked example e.
When a =
-5 and b = 3, the value of the expression is
Submit
Answer:
16
Step-by-step explanation:
4 * sqrt( a^2 - b^2)
Let a = -5 and b =3
4 * sqrt( (-5)^2 - 3^2)
Do the squaring first
4 * sqrt( 25 - 9)
Subtract inside the square root
4 * sqrt( 16)
Take the square root
4 * 4
Multiply 16
Answer:
[tex]\Large \boxed{16}[/tex]
Step-by-step explanation:
[tex]4\sqrt{a^2-b^2 }[/tex]
[tex]\sf Plug \ in \ the \ values \ for \ a \ and \ b.[/tex]
[tex]4\sqrt{-5^2-3^2 }[/tex]
[tex]4\sqrt{25-9 }[/tex]
[tex]4\sqrt{16}[/tex]
[tex]4 \times 4=16[/tex]
how to find the roots of a quadratic equation -10x^2 + 0x +250
Answer:
Step-by-step explanation:
The first thing you want to do is to factor in any quadratic equation.
So, -10(x^2-25)
Now, we see this is a special case, whenever we see a equation in this case, x^2 - b^2, we factor it to this (x+b)(x-b)
So, -10(x+5)(x-5)
x = -5 and x = 5
The U.S. National Whitewater Center in Charlotte uses a pump station to provide the flow of water necessary to operate the rapids. The pump station contains 7 pumps, each with a capacity to deliver 80,000 gallons per minute (gpm). The water channels and ponds in the facility contain 13 million gallons of water. If the pump station is operating 5 pumps simultaneously, assuming ideal conditions how long will it take to completely pump the volume of the system through the pump station
Answer:
t = 32,5 minutes
Step-by-step explanation:
Volume to fill = 13000000 Gal
5 pumps delivering 80000 gal/min
5 * 80000 = 400000 gal/min
If we divide the total volume by the amount of water delivered for the 5 pumps, we get the required time to fill the volume, then
t = 13000000/ 400000
t = 32,5 minutes
Identify the decimals labeled with the letters A, B, and C on the scale below. Letter A represents the decimal Letter B represents the decimal Letter C represents the decimal
[tex]10[/tex] divisions between $15.59$ and $15.6$ so each division is $\frac{15.60-15.59}{10}=0.001$
A is 5 division from $15.59$, so, A is $15.59+5\times 0.001=15.595$
similarly, C is 4 division behind $15.59$ so it is $15.590-4\times0.001=15.586$
and B is $15.601$
The amounts of nicotine in a certain brand of cigarette are normally distributed with a mean of 0.966 grams and a standard deviation of 0.315 grams. Find the probability of randomly selecting a cigarette with 0.305 grams of nicotine or less.
Answer:
The probability is [tex]P(X \le 0.305 ) = 0.01795[/tex]
Step-by-step explanation:
From the question we are told that
The population mean is [tex]\mu = 0.966 \ grams[/tex]
The standard deviation is [tex]\sigma = 0.315 \ grams[/tex]
Given that the amounts of nicotine in a certain brand of cigarette are normally distributed
Then the probability of randomly selecting a cigarette with 0.305 grams of nicotine or less is mathematically represented as
[tex]P(X \le 0.305 ) = 1 - P(X > 0.305) = 1 - P(\frac{X - \mu }{\sigma } > \frac{0.305 - \mu }{\sigma } )[/tex]
Generally
[tex]\frac{X - \mu }{\sigma } = Z (The \ standardized \ value \ of X )[/tex]
So
[tex]P(X \le 0.305 ) = 1 - P(X > 0.305) = 1 - P(Z > \frac{0.305 - 0.966 }{0.315} )[/tex]
[tex]P(X \le 0.305 ) = 1 - P(X > 0.305) = 1 - P(Z >-2.0984 )[/tex]
From the z-table(reference calculator dot net ) value of [tex]P(Z >-2.0984 ) =0.98205[/tex]
So
[tex]P(X \le 0.305 ) = 1 - P(X > 0.305) = 1 - 0.98205[/tex]
=> [tex]P(X \le 0.305 ) = 1 - P(X > 0.305) = 0.01795[/tex]
=> [tex]P(X \le 0.305 ) = 0.01795[/tex]