Answer:
because gravity pulled us in the land if there is no gravitational force there will not be field force too
Explanation:
hope it's will help you
when an apple falls towards the earth the earth moves up to meet the apple. Is it true? If yes, why is the earth motion not noticeable ?
Answer:
Yes, this is true.
-- While the apple is falling, the same gravitational force acts on both the apple and the Earth.
-- The mass of the apple is somewhere in the neighborhood of 1/4 kg.
-- The mass of the Earth is about 5.972 x 10²⁴ kg.
-- Since the Earth has roughly 2.389 x 10²⁶ times as much mass as the apple has, the apple has roughly 2.389 x 10²⁶ greater acceleration than the Earth has, and moves roughly 2.389 x 10²⁶ times as far down as the Earth moves up, before they smack together.
-- That's why you don't notice the Earth's motion.
-- Also, you're standing on the Earth, moving up with it, toward the apple. Maybe it would be different if you were sitting on the apple, riding it down to the ground, and you were able to notice the motion of the ground coming up to meet you at a speed that's 0.00000000000000000000000000419 of YOUR speed.
Answer From Gauth Math
A position of a particle moving on an x axis is given by x=7•4 + 9•2t - 2•1 t^3, with x in meters and t in seconds. what is its velocity at t=3•5s? is the velocity,or is it Continuously changing?
Answer:
The velocity at that time would be [tex](-67.975\; \rm s)[/tex]. The velocity of this particle is continuously changing.
Explanation:
Differentiate the expression for position [tex]x[/tex] with respect to time [tex]t[/tex] to find an expression for velocity.
[tex]\begin{aligned}v(t) &= \frac{d}{dt}[x(t)] \\ &= \frac{d}{dt} \left[ 7.4 + 9.2\, t - 2.1\, t^{3}\right]\\ &= 9.2 - 6.3\, t^{2}\end{aligned}[/tex].
Hence, at [tex]t = 3.5\; \rm s[/tex], velocity would be [tex]v(3.5) = 9.2 - 6.3 \times (3.5)^{2} = -67.975\; \rm m[/tex].
Since velocity [tex]v(t)[/tex] changes with time [tex]t[/tex], the velocity of this particle is continuously changing.
How many meters are in 10 miles?
Answer:
Explanation:
16093.4
When 24.0 V is applied to a
capacitor, it stores 3.92 x 10-4 J of
energy. What is the capacitance?
[?] x 10!? E
[tex]\boxed{\sf E=QV^2}[/tex]
[tex]\\ \sf\longmapsto Q=\dfrac{E}{V^2}[/tex]
[tex]\\ \sf\longmapsto Q=\dfrac{3.92\times 10^{-4}}{24^2}[/tex]
[tex]\\ \sf\longmapsto Q=\dfrac{3.92\times 10^{-4}}{576}[/tex]
[tex]\\ \sf\longmapsto Q=0.006\times 10^{-4}C[/tex]
[tex]\\ \sf\longmapsto Q=6\times 10^{-1}C[/tex]
[tex]\\ \sf\longmapsto Q=0.6C[/tex]
Now
[tex]\boxed{\sf Q=CV}[/tex]
[tex]\\ \sf\longmapsto C=\dfrac{Q}{V}[/tex]
[tex]\\ \sf\longmapsto C=\dfrac{0.6}{24}[/tex]
[tex]\\ \sf\longmapsto C=0.025F[/tex]
Note:-
SI unit of charge is Coulomb(C)SI unitvof Capacitance is Farad(F)The moon Phobos orbits Mars
(mass = 6.42 x 1023 kg) at
a distance
of 9.38 x 106 m. What is its period of
orbit?
[?]s
Answer:
Explanation:
We are basically needing to solve for the time in the equation d = rt, where d is the distance around Mars (aka the circumference), r is the velocity, and t is time. We need to find the circumference and the velocity. We will begin with the velocity.
Because the gravitational attraction between Phobos and Mars provides the centripetal acceleration necessary to keep Phobos in its (sort of) circular path, the equation we use for this is:
[tex]F_g=F_c[/tex] which says that Force supplied by gravity is equal to the centripetal force. Expanding that:
[tex]\frac{Gm_{Phobos}m_{Mars}}{r^2}=\frac{m_{Phobos}v^2}{r}[/tex]
When we move that around mathematically to solve for the velocity value, what we end up with is:
[tex]v=\sqrt{\frac{Gm_{Mars}}{r}[/tex] and filling in:
[tex]v=\sqrt{\frac{(6.67*10^{-11})(6.42*10^{23})}{9.38*10^6} }[/tex] and we get that
v = 2100 m/s
Now for the circumference:
C = 2πr and
C = 2(3.1415)(9.38 × 10⁶) so
C = 5.9 × 10⁷
Putting that all together in the C = vT equation:
5.9 × 10⁷ = 2100T so
T = 2.8 × 10⁴ sec or 7.8 hours
If the wave is detected 12.5 minutes after the earthquake, estimate the distance from the detector to the site of the quake
Answer:
Remember the relation:
Speed*Time = Distance.
We can estimate that the speed at which an earthquake "moves", in the surface, is:
S = 6km/s (this is a low estimation actually)
Then if the wave is detected 12.5 minutes after the earthquake, we know that it traveled for 12.5 minutes before reaching the detector.
So we know the speed of the wave and the time it took to reach the detector, then we can use the equation:
Speed*Time = Distance.
to find the distance.
First, we should write the time in seconds
we know that:
1 min = 60 s
then:
12.5 min = 12.5*(60 s) = 750 s
Then, the wave traveled with a speed of 6 km/s for 750 seconds until it reached the detector, then the distance that it traveled is:
(6km/s)*750s = 4500 km
The distance between the detector and the site of the quake is around 4500 km.
in what condition does a body float
Answer:
if buoyant force is equal is equal to the weight of body then our body float. if density of our body is less than density of liqiud then our body float in water.
A scientist measures the light from a distant star
at 525 nm. The constant for Wien's
displacement law is 2.9 x 10-3 m K. What is the
approximate temperature of the star in Kelvins?
A) 1500 K
B) 180,000 K
C) 1.5 K
D) 5500 K
The approximate temperature of the star as determined is D) 5500 K.
The Wien's displacement law relates the maximum wavelength of a body to its absolute temperature. Wien's displacement law states that:
λ = [tex]\frac{b}{T}[/tex]
where λ is the maximum wavelength of the body, b is the constant of proportionality and T is the absolute temperature.
Thus from the given question, λ = 525 nm (525 x [tex]10^{-9}[/tex]), and b = 2.9 x [tex]10^{-3}[/tex] mK.
So that,
525 x [tex]10^{-9}[/tex] = [tex]\frac{2.9*10^{-3} }{T}[/tex]
Make T the subject of the formula to have;
T = [tex]\frac{2.9*10^{-3} }{525*10^{-9} }[/tex]
= 5523.81
T = 5523.81 K
T ≅ 5500.00 K
The approximate temperature of the star in Kelvin is 5500 K.
For more clarifications, kindly visit: https://brainly.com/question/20038918
1. How much heat energy ( Q ) is required to heat 2.0 kg of copper from 30.0 oC to 80.0 oC?
Answer:
38500
Explanation:
I looked it up so it may be wrong
Como surgiu a capoeira?
HELP ME
Which two changes to the can opener would increase its mechanical efficiency?
A shorten the paddle so that they are closer in size to the axle that they turn
B grease the rotating wheel of the opener so that there is less breaks in between moving parts
C replaced it with a straight handle the act as levers with shorter pieces of metal
D sand the cutting surface of the metal piece so that it is perfectly smooth and sharp
Answer:
I THINK IT'S D....
HOPE SO
If the box of 500N is placed over the land of area of 2m²,what pressure is experted by the box on the land?
Answer:
250 Pa or N/m^2
Explanation:
Pressure(P)=F/A=500/2=250 Pa or N/m^2
A rocket blasts off. In 10.0 seconds it is at 10,000 ft, traveling at 3600 mph. Assuming the direction is up, calculate the acceleration.
Answer:
Explanation:
Givens
t = 10 seconds
vi = 0
vf = 3600 mph
a = ?
d = 10000 feet
Formula
a = (vf - vi)/t
Solution
vf = 3600 mph * 1 hr / 3600 seconds * 5280 feet / 1 mile = 5280 ft / sec
a = (5280 - 0)/10
a = 528 ft/sec^2
A sample of Radon-222 has a half-life of 3.82 days. After 11.46 days, there is 5 grams of Radon-222 remaining. How much Radon-222 was in the original sample?
30 grams
2 grams
15 grams
40 grams
At the end of an investigation, you must__________ ____________. Your results may or may not support your hypothesis.
Answer:
could and largejsjisj and we look like they can get to
A man stands still on a moving walkway that is going at a speed of 0.2 m/s to
the west. What is the velocity of the man according to a stationary observer?
A. 0.2 m/s north
B. 0.2 m/s west
C. 0.2 m/s South
D. 0.2 m/s east
When,a man stands still on a moving walkway that is going at a speed of 0.2 m/s to the west,then the velocity of the man according to a stationary observer would be 0.2 m/s west,Therefore, the correct answer would be option B.
What is Velocity?The total displacement covered by any object per unit of time is known as velocity. The velocity of an object is depend on the magnitude as well as the direction of the object.
the mathematical expression for velocity is given by
velocity = total displacement /time
The speed and velocity of the object are very different from each other because speed does not depend upon the direction of the moving object but velocity depends on the magnitude of speed as well as the direction of the moving object.
As per given in the problem a man stands still on a moving walkway that is going at a speed of 0.2 m/s to the west therefore from the perspective of a stationary observer the velocity of man would be 0.2 m/s towards West.
Hence the correct options for the problem would be option B.
Learn more about Velocity from here
brainly.com/question/18084516
#SPJ2
the weight of a body is 420 newton.calculate it's mass
Answer:
42g
Explanation:
the mass of a body is given by
m=weight/gravity
=420/10
=42
I hope this helps
HELP!!
A particular electric car is supplied with 300 kJ of chemical energy by the battery. Of this, a total of 70.5 kJ of energy is wasted as heat.
Calculate the overall efficiency of the electric car.
[tex]\\ \sf\longmapsto 300-70.5=229.5kJ[/tex]
We know
[tex]\boxed{\sf Efficiency=\dfrac{Used\:Energy}{Supplied\:Energy}\times 100}[/tex]
[tex]\\ \sf\longmapsto Efficiency=\dfrac{229.5}{300}\times 100[/tex]
[tex]\\ \sf\longmapsto Efficiency=\dfrac{229.5}{3}[/tex]
[tex]\\ \sf\longmapsto Efficiency=76.5\%[/tex]
Which is an example of current electricity?
Answer:
D
Explanation:
i just did it trust me
An astronaut on Pluto attaches a small brass ball to a 1.00-m length of string and makes a simple pendulum. She times 10 complete swings in a time of 257 seconds. From this measurement she calculates the acceleration due to gravity on Pluto. What is her result
Answer:
The acceleration due to gravity at Pluto is 0.0597 m/s^2.
Explanation:
Length, L = 1 m
10 oscillations in 257 seconds
Time period, T = 257/10 = 25.7 s
Let the acceleration due to gravity is g.
Use the formula of time period of simple pendulum
[tex]T = 2\pi\sqrt{\frac{L}{g}}\\\\25.7 = 2 \times 31.4\sqrt{\frac{1}{g}}\\\\g = 0.0597 m/s^2[/tex]
b. The role of the moon is greater than that of the sun in the occurrence of tides. ???
Our sun is 27 million times larger than our moon. Based on its mass, the sun's gravitational attraction to the Earth is more than 177 times greater than that of the moon to the Earth. If tidal forces were based solely on comparative masses, the sun should have a tide-generating force that is 27 million times greater than that of the moon. However, the sun is 390 times further from the Earth than is the moon. Thus, its tide-generating force is reduced by 3903, or about 59 million times less than the moon. Because of these conditions, the sun’s tide-generating force is about half that of the moon.
In a simple machine the energy input is 120J if the efficiency of the machine is 80% calculate the energy output
Answer:
E_O = 96J
Explanation:
E_O = E_I*(%e/100%)
E_O = 120J*(80%/100%)
E_O = 96J
Momentum is a quantity that we say is typically _______________ in collisions.
A. Conserved
B. Lost
C. Disappeared
D. Gained
Momentum is a quantity that we can say is typically conserved in collisions.
Momentum is the quantity that that we see typically conserve in the collision,therefore the correct answer is the option A
It is the type of collision in which the total momentum as well as the kinetic energy on the system is conserved .The momentum before the collision is equal to the momentum after the collision in other words one can say in the elastic collision momentum of the quantity is conserved.
In the inelastic collision the momentum is conserved but the kinetic energy of the quantity is not conserved.
Momentum of a quantity is conserved irrespective of the type of collision whether it will be elastic collision or inelastic collision the momentum of the quantity will always be conserved.
Hence,we can say that momentum is the quantity that is conserved in collision,The correct answer for the given problem is option A.
Learn more about the collision and from here
https://brainly.com/question/2356330
#SPJ2
Define electric current and drift velocity.
Answer:
Current- the flow of free charges, such as electrons and ions
Drift velocity- the average speed at which these charges move
Answer:
An electric current is the stream of changed particals, such as electrons & ions, moving through an electrical conductor.
The average velocity attained bycharged partical ,such as electrons,in a material due to electric fields
TUOI 7. A stone dropped from a window reaches the ground in 1.5 seconds. Calculate the height of the window above the ground
The height of the window above the ground is 11.025m
The first step is to write out the parameters given in the question
U(initial velocity)= 0
Time= 1.5 seconds
Acceleration due to gravity= 9.8
Therefore the height of the window can be calculated as follows
S= ut + 1/2gt²
= 0(1.5) + 1/2(9.8)(1.5²)
= 0 + 1/2(9.8)(2.25)
= 1/2(22.05)
= 0.5×22.05
= 11.025
Hence the height of the window above the ground is 11.025m
Click on the link below to learn more
https://brainly.com/question/11853995?referrer=searchResults
The energy required to change the state of a substance was determined to be E(H).
If the mass of the substance was DOUBLED, the value of E(H) will
(A) be halved
(B) be doubled
(C) be quadrupled
(D) remain constant
Answer:
ccccccccc or bbbbbbb or aaaaaaaa or ddddddd
what will happen to the gravitational force between two bodies if the distance between them is halved keeping their masses constant ?..
what is the relation between centre of gravity and stability
Explanation:
tilting it will raise the height of its center of gravity.
what is volum?Write its SI unit.write the si unit mass and length.
Explanation:
Volume is the quantity of three-dimensional space enclosed by a closed surface
The si unit of mass is kilogram (kg) and the si unit of length is metre(m)
I need help asap please
Answer:
I dont know answer Sorry For that thank u