Answer:
D) 60 degree
Step-by-step explanation:
Let's connect the remaining diagonal, which forms a triangle containing angle x.
As a property of regular hexagon, all diagonals are equal.
=> The formed triangle is a regular triangle and it has three equal angles, which are 60 degrees.
y - 4= -2(x + 3)
Complete the missing value in
the solution to the equation.
(-3, _ )
Answer:
4
Step-by-step explanation:
i distributed the -2 to what's in the parentheses. that equal 0. I then moved the 4 to the zero so that it becomes positive. I just assumed that you were ask for Y
Step-by-step explanation:
y-4=-2(x+3)....eq(1)
y- 4= -2x-6
y=-2x-2...eq(2)
subtituting equation 2 in equation 1
(-2x-2)-4=-2x-6
-2x-6=-2x-6
=0
x power 8 + x power 4 + 1
factorize
Answer:
[tex]1(x {}^{8} + x {}^{4} + 1)[/tex]
Step-by-step explanation:
[tex]x {}^{8} + {x}^{4} + 1 =1( x {}^{8} + x {}^{2} + 1)[/tex]
Hope this helps ;) ❤❤❤
Let me know if there is an error in my answer.
The grade appeal process at a university requires that a jury be structured by selecting individuals randomly from a pool of students and faculty. (a) What is the probability of selecting a jury of all students? (b) What is the probability of selecting a jury of all faculty? (c) What is the probability of selecting a jury of students and faculty
Correct question is ;
The grade appeal process at a university requires that a jury be structured by selecting eight individuals randomly from a pool of nine students and eleven faculty. (a) What is the probability of selecting a jury of all students? (b) What is the probability of selecting a jury of all faculty? (c) What is the probability of selecting a jury of six students and two faculty?
Answer:
A) 7.144 × 10^(-5)
B) 0.00131
C) 0.0367
Step-by-step explanation:
We are given;
Number of students = 9
Number of faculty members = 11
A) Now, the number of ways we can select eight students from 9 =
C(9, 8) = 9!/(8! × 1!) = 9
Also, number of ways of selecting 8 individuals out of the total of 20 = C(20,8) = 20!/(8! × 12!) = 125970
Thus, probability of selecting a jury of all students = 9/125970 = 7.144 × 10^(-5)
B) P(selecting a jury of all faculty) = (number of ways to choose 8 faculty out of 11 faculty)/(Total number of ways to choose 8 individuals out of 20 individuals) = [C(11,8)]/[C(20,8)] = (11!/(8! × 3!))/125970 = 0.00131
C) P(selecting a jury of six students and two faculty) = ((number of ways to choose 6 students out of 9 students) × (number of ways to choose 2 faculty out of 11 faculty))/(Total number of ways to choose 8 individuals out of 20 individuals) = [(C(9,6) × C(11,2)]/125970
This gives;
(84 × 55)/125970 = 0.0367
algebra and trigonometry difference
Answer:
Algebra deals with knowing the value of unknown variables and functional relationships, while trigonometry touches on triangles, sides and angles and the relationship between them.
Algebra is more on polynomial equations, x and y while trigonometry more on sine, cosine, tangent, and degrees.
Trigonometry is much more complicated than algebra but algebra has its uses in our daily lives, be it calculating distance from point to another or determining the volume of milk in a milk container.
Step-by-step explanation:
Answer:
Although both Algebra II and Trigonometry involve solving mathematical problems, Algebra II focuses on solving equations and inequalities while Trigonometry is the study of triangles and how sides are connected to angles.
hope this answer helps u
pls mark as brainliest .-.
Use the model to show to help find the sum 0.34 plus 0.49
Answer/Step-by-step explanation:
The idea to use in solving this problem using the model, is to express the number of shaded boxes in fraction form.
Thus, the blue red shaded boxes has 34 boxes shaded out of 100 boxes. This represents [tex] \frac{34}{100} [/tex]. This will give us 0.34.
The other shaded boxes represents [tex] \frac{49}{100} = 0.49 [/tex].
Using the model, we can solve 0.34 + 0.49.
Add both fractions together.
[tex] \frac{34}{100} + \frac{49}{100} = \frac{34+49}{100} [/tex]
[tex] \frac{83}{100} = 0.83 [/tex]
If 2( a^2 +b^2 ) = ( a+b)^2 , then
a. a+b =0
b. a =b
c. 2a =b
d. ab =0
Answer:
the answer is a=b
Step-by-step explanation:
Fill in the blanks and explain the pattern
0,1,1,2,3,5,__,__,21,34,55
Answer:
8,13
Step-by-step explanation:
Look at the pattern :
0,1,1,2,3,5,...,...,21,34,55.
As you see the number in the pattern was made by the sum of 2 numbers behind it. Then, the blanks must be filled by :
3 + 5 = 88 + 5 = 13So, the blanks must be filled by 8 and 13
Answer:
In the two blanks would be 8, 13.
The pattern is practically the Fibonacci Code.
Step-by-step explanation:
The Fibonacci Code is a mathematical sequencing in which you start with two numbers and add them together to make the third number, then you add the third number and the second number together. Practically you keep adding each new sum and the number before it in the sequence to find the next new sum.
After 55 in this pattern, the pattern would go 89, 144, 233, 377, 610, 987,...
I need help please, m bda =
And m bca =
Step-by-step explanation:
Exterior angle BOA = 250°
Interior angle BOA = 360°- 250° = 110°
Now,
(A) BDA = interior angle BOA / 2 = 55°( Property of circles)
(B) From the figure, we observe that AOBC is a cyclic quadrilateral (i.e. sum of opposite angles is 180°).
Therefore, BCA + BOA = 180°
BCA = 180° - 110° = 70°
When comparing more than two treatment means, why should you use an analysis of variance instead of using several t tests?
Answer:
Because it increases the risk of Type 1 error
Step-by-step explanation:
ANOVA is the analysis of the variance .
When comparing more than two treatment means we use ANOVA because a t test increases the risk of type 1 error .
For example if we wish to compare 4 population means there will be 4C2 = 6 separate pairs and to test the null hypothesis that all four population means are equal would require six two sample t test. Similarly to test 10 population mean would require 45 separate two sample t test.
This has two disadvantages .
First the procedure is too lengthy and tediuos.
Second the overall level of significance greatly increases as the number of t- tests increases.
The analysis of the variance compares two different estimates of variance using the F distributionto determine whether the population means are equal.
Use DeMoivre's Theorem to find the indicated power of the complex number. Write the answer in rectangular form.
2(cos20∘+isin20∘))3=__________
Answer:
After solving the power:
[tex]\bold{2(cos60^\circ+isin60^\circ)}[/tex]
Rectangular form:
[tex]\bold{1+i\sqrt3}[/tex]
Step-by-step explanation:
Given the complex number:
[tex]2(cos20^\circ+isin20^\circ)^3[/tex]
To find:
The indicated power by using De Moivre's theorem.
The complex number in rectangular form.
Rectangular form of a complex number is given as [tex]a+ib[/tex] where a and b are real numbers.
Solution:
First of all, let us have a look at the De Moivre's theorem:
[tex](cos\theta+isin\theta )^n=cos(n\theta)+isin(n\theta )[/tex]
First of all, let us solve:
[tex](cos20^\circ+isin20^\circ)^3[/tex]
Let us apply the De Moivre's Theorem:
Here, n = 3
[tex](cos20^\circ+isin20^\circ)^3 = cos(3 \times 20)^\circ+isin(3 \times 20)^\circ\\\Rightarrow cos60^\circ+isin60^\circ[/tex]
Now, the given complex number becomes:
[tex]2(cos60^\circ+isin60^\circ)[/tex]
Let us put the values of [tex]cos60^\circ = \frac{1}{2}[/tex] and [tex]sin60^\circ = \frac{\sqrt3}{2}[/tex]
[tex]2(\dfrac{1}{2}+i\dfrac{\sqrt3}2)\\\Rightarrow (2 \times \dfrac{1}{2}+i\dfrac{\sqrt3}2\times 2)\\\Rightarrow \bold{1 +i\sqrt3 }[/tex]
So, the rectangular form of the given complex number is:
[tex]\bold{1+i\sqrt3}[/tex]
Allied Corporation is trying to sell its new machines to Ajax. Allied claims that the machine will pay for itself since the time it takes to produce the product using the new machine is significantly less than the production time using the old machine. To test the claim, independent random samples were taken from both machines. You are given the following results.
New Machine Old Machine
Sample Mean 25 23
Sample Variance 27 7.56
Sample Size 45 36
As the statistical advisor to Ajax, would you recommend purchasing Allied's machine? Explain.
Answer:
z(s) is in the acceptance region. We accept H₀ we did not find a significantly difference in the performance of the two machines therefore we suggest not to buy a new machine
Step-by-step explanation:
We must evaluate the differences of the means of the two machines, to do so, we will assume a CI of 95%, and as the interest is to find out if the new machine has better performance ( machine has a bigger efficiency or the new machine produces more units per unit of time than the old one) the test will be a one tail-test (to the left).
New machine
Sample mean x₁ = 25
Sample variance s₁ = 27
Sample size n₁ = 45
Old machine
Sample mean x₂ = 23
Sample variance s₂ = 7,56
Sample size n₂ = 36
Test Hypothesis:
Null hypothesis H₀ x₂ - x₁ = d = 0
Alternative hypothesis Hₐ x₂ - x₁ < 0
CI = 90 % ⇒ α = 10 % α = 0,1 z(c) = - 1,28
To calculate z(s)
z(s) = ( x₂ - x₁ ) / √s₁² / n₁ + s₂² / n₂
s₁ = 27 ⇒ s₁² = 729
n₁ = 45 ⇒ s₁² / n₁ = 16,2
s₂ = 7,56 ⇒ s₂² = 57,15
n₂ = 36 ⇒ s₂² / n₂ = 1,5876
√s₁² / n₁ + s₂² / n₂ = √ 16,2 + 1.5876 = 4,2175
z(s) = (23 - 25 )/4,2175
z(s) = - 0,4742
Comparing z(s) and z(c)
|z(s)| < | z(c)|
z(s) is in the acceptance region. We accept H₀ we did not find a significantly difference in the performance of the two machines therefore we suggest not to buy a new machine
The very hight dispersion of values s₁ = 27 is evidence of frecuent values quite far from the mean
George's height is 1.75 meters and Martha's height is 160 centimeters. How much taller is George than Martha in millimeters?
George should be 150 mm taller than Martha.
Calculation of the height in millimeters:
Since George's height is 1.75 meters and Martha's height is 160 centimeters.
So here we convert the meters to mm
So,
[tex]= 1.75\times 100\\\[/tex]
= 1750 mm
Now 160 cm to mm
So,
[tex]= 160\times 10[/tex]
= 1,600 mm
So, the difference should be
= 1,750 - 1,600
= 150 mm
Therefore, George should be 150 mm taller than Martha.
Learn more about height here: https://brainly.com/question/15810288
A researcher at the University of Washington medical school believes that energy drink consumption may increase heart rate. Suppose it is known that heart rate (in beats per minute) is normally distributed with an average of 70 bpm for adults. A random sample of 25 adults was selected and it was found that their average heartbeat was 73 bpm after energy drink consumption, with a standard deviation of 7 bpm. In order to test belief at the 10% significance level, determine P-value for the test.
Answer:
Step-by-step explanation:
Given that:
mean μ = 70
sample size = 25
sample mean = 73
standard deviation = 7
level of significance = 0.10
The null hypothesis and the alternative hypothesis can be computed as follows:
[tex]\mathtt{H_o : \mu = 70} \\ \\ \mathtt{H_1 : \mu > 70 }[/tex]
The z score for this statistics can be calculated by using the formula:
[tex]z = \dfrac{X- \mu}{\dfrac{\sigma}{\sqrt{n}}}[/tex]
[tex]z = \dfrac{73- 70}{\dfrac{7}{\sqrt{25}}}[/tex]
[tex]z = \dfrac{3}{\dfrac{7}{5}}[/tex]
[tex]z = \dfrac{3 \times 5}{{7}{}}[/tex]
z = 2.143
At level of significance of 0.10
degree of freedom = n -1
degree of freedom = 25 - 1
degree of freedom = 24
The p - value from the z score at level of significance of 0.10 and degree of freedom of 24 is:
P - value = 1 - (Z < 2.143)
P - value = 1 - 0.9839
P - value = 0.0161
Decision Rule: since P value is lesser than the level of significance, we reject the null hypothesis.
Conclusion: We conclude that energy drink consumption increases heart rate.
Find the product of the roots of the equation
xl-5x - 36 = 0
Answer:
Step-by-step explanation:
Hello, I assume that you mean
[tex]x^2-5x-36[/tex]
The product is -36.
[tex]x_1 \text{ and } x_2 \text{ are the two roots, we can write}\\\\(x-x_1)(x-x_2)=x^2-(x_1+x_2)x+x_1\cdot x_2[/tex]
So in this example, it means that the sum is 5 and the product is -36.
Thank you
What is the probability that a student who has no chores has a curfew ?
Answer:
15/22
Step-by-step explanation:
Of the 66 students who have no chores, 45 have a curfew. So the probability is 45/66 = 15/22.
State whether each ratio forms a proportion.
1) 6:3, 18:9 2) 3:4, 30:40 3) 14/18,28/36 4) 2/5,5/2
Answer: Please Give Me Brainliest, Thank You!
#1, #2, #3 do, but #4 doesn't
Step-by-step explanation:
#1
18/9=2
6/3=2
#2
30/3=10
40/4=10
#3
28/14=2
36/18=2
The letters x and y represent rectangular coordinates. Write the given equation using polar coordinates (r,θ) . Select the correct equation in polar coordinates below.
x2+y2−4x=0
a. r=4 sinθ
b. r=4 cosθ
c. r cos2θ=4 sinθ
d. r sin2θ=4 cosθ
Answer:
B. r = 4cosθStep-by-step explanation:
Given the expression in rectangular coordinate as x²+y²−4x=0, in order to write the given expression in polar coordinates, we need to write the value of x and y as a function of (r, θ).
x = rcosθ and y = rsinθ.
Substituting the value of x and y in their polar form into the given expression we have;
x²+y²−4x=0
( rcosθ)²+( rsinθ)²-4( rcosθ) = 0
Expand the expressions in parenthesis
r²cos²θ+r²sin²θ-4rcosθ = 0
r²(cos²θ+sin²θ)-4rcosθ = 0
From trigonometry identity, cos²θ+sin²θ =1
The resulting equation becomes;
r²(1)-4rcosθ = 0
r²-4rcosθ = 0
Add 4rcosθ to both sides of the equation
r²-4rcosθ+4rcosθ = 0+4rcosθ
r² = 4rcosθ
Dividing both sides by r
r²/r = 4rcosθ/r
r = 4cosθ
Hence the correct equation in polar coordinates is r = 4cosθ
how many solutions are there to this non-linear systems/graph a. one solution,b.two solutions,c.no solutions
Choose the inequality that represents the following graph.
Answer:
option a
Step-by-step explanation:
give person above brainliest :)
1 rabbit saw 9 elephants while going to the river. Every elephant saw 3 monkeys going to the river. Each monkey had 1 tortoise in each hand.
How many animals were going to the river?
Answer:
91 animals
Step-by-step explanation:
Because every elephant saw 3 monkeys, there were 9 * 3 = 27 monkeys and because every monkey had 1 tortoise in each hand and we know that monkeys have 2 hands, there were 27 * 2 = 54 tortoises. To find the total number of animals that were going to the river, we can calculate 1 + 9 + 27 + 54 = 91 animals.
Answer:
10
Step-by-step explanation:
Only the rabbit and the 3 monkeys are described as going to the river. The tortoises seem to be going to the river by virtue of being taken there by the monkeys. Those on the path to the river were ...
1 rabbit
3 monkeys
6 tortoises
A total of 10 animals.
What is the rise over run for the slope -11/9
Answer: 11 down and 9 right
Step-by-step explanation:
Slope IS rise over run where the top number of the fraction (numerator) determines the vertical distance --> positive is up, negative is down
and the bottom number of the fraction (denominator) determines the horizontal distance --> positive is right, negative is left.
Given slope = -11/9
the numerator is -11 so the "rise" is DOWN 11 units
the denominator is 9 so the "run" is RIGHT 9 units
1. The mean performance score on a physical fitness test for Division I student athletes is 947 with a population standard deviation of 205. Select a random sample of 64 of these students. Hint: we have a sample so use the standard error. What is the probability the mean of the sample is below 900
Answer:
0.033316
Step-by-step explanation:
We use the z score formula to solve for this question.
Since we are given the number of samples in the question, our z score formula is given as:
z = (x-μ)/ S.E
where x is the raw score
μ is the sample mean
S.E is the Standard error.
x is the raw score = 900
μ is the sample mean = Population mean = 947
Standard error =
This is calculated as Population standard deviation/ √No of samples
= 205/√64.
= 205/8
= 25.625
We proceed to calculate the z score
z = (x-μ)/ S.E
z = 900 - 947/25.625
= -1.83415
Using the z score table for normal distribution,
P(x≤ z) = P(z ≤ -1.83) = P(x ≤ 900)
P(x<900) = 0.033316
Therefore, the probability the mean of the sample is below 900 is 0.033316
The average salary of all assembly-line employees at a certain car manufacturer is $42,000 is it a sample or population
Answer:
Population parameters
Step-by-step explanation:
Population parameters usually find from the average values, in a simple way we can say that finding the average value comes in the Population Parameters.
In the given question, car manufacturing companies provide sample of average.
So, given scenario is a type of "Population parameters".
How hot does it get in Death Valley? The following data are taken from a study conducted by the National Park System, of which Death Valley is a unit. The ground temperatures (°F) were taken from May to November in the vicinity of Furnace Creek. Compute the mean, median, and mode for these ground temperatures. (Enter your answers to one decimal place.) 147 153 170 172 185 181 182 185 181 170 181 167 153 145
Answer:
Mean: 169.4
Median: 171
Mode: 181
Step-by-step explanation:
I first sorted the numbers by value, least to greatest.
145 147 153 153 167 170 170 172 181 181 181 182 185 185
We can see that 181 occurs the most, 3 times, so it's the mode.
The median of this set will be the middle number(s).
When we take away 6 numbers from both sides we are left with 170 and 172, and the mean of these two numbers is 171. So the median is 171.
We can add all the numbers and divide by 14 to get the mean.
[tex]147+153+170+172+185+181+182+185+181+170+181+167+153+145=2372\\\\2372\div14\approx169.4[/tex]
Hope this helped!
A researcher measures daily driving distance from college and weekly cost of gas for a group of commuting college students. What kind of correlation is likely to be obtained for these two variables?
Answer:
There is a positive correlation between these two variables.
Step-by-step explanation:
Positive correlation is an association amid two variables in which both variables change in the same direction.
A positive correlation occurs when one variable declines as the other variable declines, or one variable escalates while the other escalates.
As the distance covered by the vehicle increases the amount of gas consumed also increases. Thus, the weekly cost of gas will also increase.
Thus, there is a positive correlation between these two variables.
A Markov chain has 3 possible states: A, B, and C. Every hour, it makes a transition to a different state. From state A, transitions to states B and C are equally likely. From state B, transitions to states A and C are equally likely. From state C, it always makes a transition to state A.
(a) If the initial distribution for states A, B, and C is P0 = ( 1/3 , 1/3 , 1/3 ), find the distribution of X2
(b) Find the steady state distribution by solving πP = π.
Answer:
A) distribution of x2 = ( 0.4167 0.25 0.3333 )
B) steady state distribution = [tex]\pi a \frac{4}{9} , \pi b \frac{2}{9} , \pi c \frac{3}{9}[/tex]
Step-by-step explanation:
Hello attached is the detailed solution for problems A and B
A) distribution states for A ,B, C:
Po = ( 1/3, 1/3, 1/3 ) we have to find the distribution of x2 as attached below
after solving the distribution
x 2 = ( 0.4167, 0.25, 0.3333 )
B ) finding the steady state distribution solving
[tex]\pi p = \pi[/tex]
below is the detailed solution and answers
The radius of a circle measures 5 inches A central angle of the circle measuring 12 radians cuts off a sector
What is the area of the sector?
Enter your answer as a simplified fraction in the box
area =
inches squared
Answer:
25/4 square inches
Step-by-step explanation:
The area of a sector of a circle is given by the formula ...
A = (1/2)r²θ
where r is the radius and θ is the central angle in radians.
For your sector, the area is ...
A = (1/2)(5 in)²(1/2) = 25/4 in²
(-1, 4) and (-2, 2).
Answer:
Slope : 2
slope-intercept: y = 2x + 6
Point-slope (as asked): y - 4 = 2 (times) (x + 1)
standered: 2x - y = -6
Step-by-step explanation:
Solve for x: 3(x + 1)= -2(x - 1) + 6.
Answer:
x=1
Step-by-step explanation:
3(x + 1)= -2(x - 1) + 6.
Distribute
3x+3 = -2x+2+6
Combine like terms
3x+3 = -2x+8
Add 2x to each side
3x+3+2x = 8
5x+3 = 8
Subtract 3 from each side
5x =5
Divide by 5
x =1
15+9=? (5+3) What number is missing from the expression?
Answer:
[tex] \boxed{ \boxed{ \bold{ \mathsf{3}}}}[/tex]Step-by-step explanation:
Let the missing number be 'x'
⇒[tex] \mathsf{15 + 9 = x(5 + 3)}[/tex]
Distribute x through the parentheses
⇒[tex] \mathsf{15 + 9 = 5x + 3x}[/tex]
Swap the sides of the equation
⇒[tex] \mathsf{5x + 3x = 15 + 9}[/tex]
Add the numbers
⇒[tex] \mathsf{5x + 3x = 24}[/tex]
Collect like terms
⇒[tex] \mathsf{8x = 24}[/tex]
Divide both sides of the equation by 8
⇒[tex] \mathsf{ \frac{8x}{8} = \frac{24}{8} }[/tex]
Calculate
⇒[tex] \mathsf{x = 3}[/tex]
Hope I helped!
Best regards!