We can conclude that Maya's experimental probabilities fluctuate around the theoretical probability, but over a larger number of trials, the experimental probabilities should converge towards the theoretical probability.
What is probability?
Probability is simply how likely something is to happen. Whenever we're unsure about the outcome of an event, we can talk about the probabilities of certain outcomes—how likely they are. The analysis of events governed by probability is called statistics.
The theoretical probability of rolling a 5 on a fair die is 1/6, which means that if the die is rolled many times, we would expect to see a 5 about 1/6 of the time.
For the first 100 trials, Maya rolled a 5 on 25 of those trials. The experimental probability of rolling a 5 in this case is:
experimental probability = number of 5's rolled / number of trials
experimental probability = 25/100
experimental probability = 0.25
So, in the first 100 trials, Maya's experimental probability of rolling a 5 was 0.25.
For the first 200 trials, Maya rolled a 5 on 30 of those trials. The experimental probability of rolling a 5 in this case is:
experimental probability = number of 5's rolled / number of trials
experimental probability = 30/200
experimental probability = 0.15
So, in the first 200 trials, Maya's experimental probability of rolling a 5 was 0.15.
Comparing these experimental probabilities to the theoretical probability, we see that after 100 trials, Maya's experimental probability of rolling a 5 (0.25) is higher than the theoretical probability (1/6 ≈ 0.167). This suggests that Maya's sample of 100 trials was somewhat biased in favor of rolling a 5.
On the other hand, after 200 trials, Maya's experimental probability of rolling a 5 (0.15) is lower than the theoretical probability (1/6 ≈ 0.167). This suggests that Maya's sample of 200 trials was somewhat biased against rolling a 5.
Overall, we can conclude that Maya's experimental probabilities fluctuate around the theoretical probability, but over a larger number of trials, the experimental probabilities should converge towards the theoretical probability. This is known as the law of large numbers, which states that as the number of trials or observations increases, the experimental probability will tend to approach the theoretical probability.
Learn more about probability on:
https://brainly.com/question/13604758
#SPJ1
We might say that Maya's experimental probabilities oscillate about the theoretical probability, but after more trials, the experimental probabilities ought to converge to the theoretical probability.
What is probability?
Simply put, probability is the likelihood that something will occur. When we don't know how an event will turn out, we can discuss the likelihood or likelihood of several outcomes. Statistics is the study of events that follow a probability distribution.
A fair die has a theoretical probability of rolling a 5 of 1/6, therefore if the die is rolled several times, we can anticipate seeing a 5 roughly 1/6 of the time.
For the first 100 trials, Maya rolled a 5 on 25 of those trials. The experimental probability of rolling a 5 in this case is:
experimental probability = number of 5's rolled / number of trials
experimental probability = 25/100
experimental probability = 0.25
So, in the first 100 trials, Maya's experimental probability of rolling a 5 was 0.25.
For the first 200 trials, Maya rolled a 5 on 30 of those trials. The experimental probability of rolling a 5 in this case is:
experimental probability = number of 5's rolled / number of trials
experimental probability = 30/200
experimental probability = 0.15
So, in the first 200 trials, Maya's experimental probability of rolling a 5 was 0.15.
Comparing these experimental probabilities to the theoretical probability, we see that after 100 trials, Maya's experimental probability of rolling a 5 (0.25) is higher than the theoretical probability (1/6 ≈ 0.167). This suggests that Maya's sample of 100 trials was somewhat biased in favor of rolling a 5.
On the other hand, after 200 trials, Maya's experimental probability of rolling a 5 (0.15) is lower than the theoretical probability (1/6 ≈ 0.167). This suggests that Maya's sample of 200 trials was somewhat biased against rolling a 5.
Overall, we can conclude that Maya's experimental probabilities fluctuate around the theoretical probability, but over a larger number of trials, the experimental probabilities should converge towards the theoretical probability. This is known as the law of large numbers, which states that as the number of trials or observations increases, the experimental probability will tend to approach the theoretical probability.
Learn more about probability on:
https://brainly.com/question/13604758
#SPJ1
Which of the following random variables can be approximated to discrete distribution and continuous distribution? a. b. C. d. The wages of academician and non-academician workers in UPSI. The time taken to submit online quiz answer's document. The prices of SAMSUM mobile phones displayed at a phone shop The number of pumps at Shell petrol stations in Perak. [2 marks] 10% chance of contamination by a particular
10% chance of contamination by a particular: It's not clear what random variable is being referred to here, but if it's the probability of contamination.
What is Distribution?In general terms, a distribution refers to the way something is divided or spread out. In the context of statistics and probability theory, a distribution is a mathematical function that describes the likelihood of different possible outcomes or values that a variable can take.
There are various types of distributions, but some of the most commonly used ones include:
Normal distribution: also known as the Gaussian distribution, it is a continuous probability distribution that is symmetrical around the mean, with most of the data falling within one standard deviation of the mean.
Binomial distribution: this is a discrete probability distribution that describes the likelihood of a certain number of successes in a fixed number of trials.
Poisson distribution: another discrete probability distribution that describes the likelihood of a certain number of events occurring in a fixed interval of time or space.
Exponential distribution: a continuous probability distribution that describes the time between events occurring at a constant rate.
Distributions are essential in statistical analysis as they can help to understand and analyze data, make predictions, and draw conclusions about a population based on a sample of data.
Given by the question.
a. The wages of academician and non-academician workers in UPSI: This random variable can be approximated to a continuous distribution as wages can take on any numerical value within a range. However, it's worth noting that in practice, there may be discrete intervals or categories of wages, in which case a discrete distribution may be more appropriate.
b. The time taken to submit online quiz answer's document: This random variable can also be approximated to a continuous distribution as it can take on any numerical value within a range.
c. The prices of SAMSUNG mobile phones displayed at a phone shop: This random variable can be approximated to a continuous distribution as prices can take on any numerical value within a range.
d. The number of pumps at Shell petrol stations in Perak: This random variable can be approximated to a discrete distribution since the number of pumps can only take on integer values.
To learn more about function:
https://brainly.com/question/21145944
#SPJ1
Use the shell method to set up and evaluate the integral that gives the volume of the solid generated by revolving the plane region about the y-axis.
Answer:
[tex]\dfrac{4096\pi}{5}\approx 2573.593\; \sf (3\;d.p.)[/tex]
Step-by-step explanation:
The shell method is a calculus technique used to find the volume of a solid revolution by decomposing the solid into cylindrical shells. The volume of each cylindrical shell is the product of the surface area of the cylinder and the thickness of the cylindrical wall. The total volume of the solid is found by integrating the volumes of all the shells over a certain interval.
The volume of the solid formed by revolving a region, R, around a vertical axis, bounded by x = a and x = b, is given by:
[tex]\displaystyle 2\pi \int^b_ar(x)h(x)\;\text{d}x[/tex]
where:
r(x) is the distance from the axis of rotation to x.h(x) is the height of the solid at x (the height of the shell).[tex]\hrulefill[/tex]
We want to find the volume of the solid formed by rotating the region bounded by y = 0, y = √x, x = 0 and x = 16 about the y-axis.
As the axis of rotation is the y-axis, r(x) = x.
Therefore, in this case:
[tex]r(x)=x[/tex]
[tex]h(x)=\sqrt{x}[/tex]
[tex]a=0[/tex]
[tex]b=16[/tex]
Set up the integral:
[tex]\displaystyle 2\pi \int^{16}_0x\sqrt{x}\;\text{d}x[/tex]
Rewrite the square root of x as x to the power of 1/2:
[tex]\displaystyle 2\pi \int^{16}_0x \cdot x^{\frac{1}{2}}\;\text{d}x[/tex]
[tex]\textsf{Apply the exponent rule:} \quad a^b \cdot a^c=a^{b+c}[/tex]
[tex]\displaystyle 2\pi \int^{16}_0x^{\frac{3}{2}}\;\text{d}x[/tex]
Integrate using the power rule (increase the power by 1, then divide by the new power):
[tex]\begin{aligned}\displaystyle 2\pi \int^{16}_0x^{\frac{3}{2}}\;\text{d}x&=2\pi \left[\dfrac{2}{5}x^{\frac{5}{2}}\right]^{16}_0\\\\&=2\pi \left[\dfrac{2}{5}(16)^{\frac{5}{2}}-\dfrac{2}{5}(0)^{\frac{5}{2}}\right]\\\\&=2 \pi \cdot \dfrac{2}{5}(16)^{\frac{5}{2}}\\\\&=\dfrac{4\pi}{5}\cdot 1024\\\\&=\dfrac{4096\pi}{5}\\\\&\approx 2573.593\; \sf (3\;d.p.)\end{aligned}[/tex]
Therefore, the volume of the solid is exactly 4096π/5 or approximately 2573.593 (3 d.p.).
[tex]\hrulefill[/tex]
[tex]\boxed{\begin{minipage}{4 cm}\underline{Power Rule of Integration}\\\\$\displaystyle \int x^n\:\text{d}x=\dfrac{x^{n+1}}{n+1}(+\;\text{C})$\\\end{minipage}}[/tex]
For the graph, find the average rate of change on the intervals given
See attached picture
The average rate of change on the intervals [0, 3], [3, 5], [5, 7], and [7, 9] are 2, -1.5, 1, and -1.5, respectively.
What is the average rate in math?It expresses how much the function changed per unit on average during that time period. It is computed by taking the slope of the straight line connecting the interval's endpoints on the function's graph.
To calculate the average rate of change for the intervals shown in the graph, we must first determine the slope of the line connecting the endpoints of each interval.
0-3 interval:
Because the interval's endpoints are (0, 1) and (3, 7), the slope of the line connecting them is:
slope = (y change) / (x change) = (7 - 1) / (3 - 0) = 2
pauses [3, 5]:
Because the interval's endpoints are (3, 7) and (5, 4), the slope of the line connecting them is:
slope = (y change) / (x change) = (4 - 7) / (5 - 3) = -1.5
[5–7] Interval:
Because the interval's endpoints are (5, 4) and (7, 6), the slope of the line connecting them is:
slope = (y change) / (x change) = (6 - 4) / (7 - 5) = 1
Interval 7 and 9:
Because the interval's endpoints are (7, 6) and (9, 3), the slope of the line connecting them is:
slope = (y change) / (x change) = (3 - 6) / (9 - 7) = -1.5
As a result, the average rate of change on the intervals [0, 3], [3, 5], [5, 7], and [7, 9] is 2, -1.5, 1, and -1.5.
To know more about Average Rate visit:
https://brainly.com/question/23715190
#SPJ1
Assume that the readings at freezing on a batch of thermometers are normally distributed with a mean of 0°C and a standard deviation of 1.00°C. A single thermometer is randomly selected and tested. Find the probability of obtaining a reading less than 0.35°C.
Round your answer to 4 decimal places
The probability of obtaining a reading less than 0.35° C is approximately 35%.
What exactly is probability, and what is its formula?Accοrding tο the prοbability fοrmula, the likelihοοd οf an event οccurring is equal tο the ratiο οf the number οf favοurable οutcοmes tο the tοtal number οf οutcοmes. Prοbability οf an event οccurring P(E) = The number οf favοurable οutcοmes divided by the tοtal number οf οutcοmes.
The readings at freezing οn a set οf thermοmeters are nοrmally distributed, with a mean (x) οf 0°C and a standard deviatiοn (μ) οf 1.00°C. We want tο knοw hοw likely it is that we will get a reading that is less than 0.35°C.
To solve this problem, we must use the z-score formula to standardise the value:
[tex]$Z = \frac{x - \mu}{\sigma}[/tex]
Z = standard score
x = observed value
[tex]\mu[/tex] = mean of the sample
[tex]\sigma[/tex] = standard deviation of the sample
Here
x = 0.35° C
[tex]\mu[/tex] = 0° C
[tex]\sigma[/tex] = 1.00°C
Using the values on the formula:
[tex]$Z = \frac{0.35 - 0}{1}[/tex]
Z = 0.35
The probability of obtaining a reading less than 0.35° C is approximately 35%.
To know more about probability visit:
brainly.com/question/30719832
#SPJ1
If A = [ 1 2 4 0 5 6 ] and B= [ 7 3 2 5 1 9] find C= A+B and D=A-B
Step 1: Arrange the arrays so that A and B are in the same order: A = [ 1 2 4 0 5 6 ], B = [ 7 3 2 5 1 9]
Step 2: To find C = A+B, add each element of A and B together.
C = [1+7, 2+3, 4+2, 0+5, 5+1, 6+9]
C = [8, 5, 6, 5, 6, 15]
Step 3: To find D = A-B, subtract each element of B from A.
D = [1-7, 2-3, 4-2, 0-5, 5-1, 6-9]
D = [-6, -1, 2, -5, 4, -3]
Jenny took the car, the bus, and the train to get home in time.
What form of punctuation is missing?
O A. No punctuation is missing.
OB.
A period
OC.
A comma
OD. A semicolon
Last three times I have tried to take a picture of my question. Nothing comes up that resembles any of it. I don’t know what’s wrong with this app but it’s not helping.
According to the question. A. No punctuation is missing.
What is punctuation ?Punctuation is the use of symbols to indicate the structure and organization of written language. It is used to help make the meaning of sentences clearer and to make them easier to read and understand. Punctuation marks can also be used to indicate pauses in speech, to create emphasis, and to indicate the speaker’s attitude. There are many different types of punctuation marks, each with its own purpose. The most commonly used punctuation marks are the period, comma, question mark, exclamation mark, quotation marks, and the apostrophe.
Quotation marks are used to enclose quoted material, while the apostrophe is used to indicate possession or to replace missing letters in a word or phrase. By using punctuation correctly, writers can ensure that their messages are correctly understood by their readers.
To learn more about punctuation
https://brainly.com/question/30321693
#SPJ1
Create a trigonometric function that models the ocean tide..
Explain why you chose your function type. Show work for any values not already outlined above.
Answer:
One possible function that models the ocean tide is:
h(t) = A sin(ωt + φ) + B
where:
h(t) represents the height of the tide (in meters) at time t (in hours)
A is the amplitude of the tide (in meters)
ω is the angular frequency of the tide (in radians per hour)
φ is the phase shift of the tide (in radians)
B is the mean sea level (in meters)
This function is a sinusoidal function, which is a common type of function used to model periodic phenomena. The sine function has a natural connection to circles and periodic motion, making it a good choice for modeling the regular rise and fall of ocean tides.
The amplitude A represents the maximum height of the tide above the mean sea level, while B represents the mean sea level. The angular frequency ω determines the rate at which the tide oscillates, with one full cycle (i.e., a high tide and a low tide) occurring every 12 hours. The phase shift φ determines the starting point of the tide cycle, with a value of zero indicating that the tide is at its highest point at time t=0.
To determine specific values for A, ω, φ, and B, we would need to gather data on the tide height at various times and locations. However, typical values for these parameters might be:
1. A = 2 meters (representing a relatively large tidal range)
2. ω = π/6 radians per hour (corresponding to a 12-hour period)
3. φ = 0 radians (assuming that high tide occurs at t=0)
4. B = 0 meters (assuming a mean sea level of zero)
Using these values, we can write the equation for the tide as:
h(t) = 2 sin(π/6 t)
We can evaluate this equation for various values of t to get the height of the tide at different times. For example, at t=0 (the start of the cycle), we have:
h(0) = 2 sin(0) = 0
indicating that the tide is at its lowest point. At t=6 (halfway through the cycle), we have:
h(6) = 2 sin(π/2) = 2
indicating that the tide is at its highest point. We can also graph the function to visualize the rise and fall of the tide over time:
Tide Graph
Overall, this function provides a simple and effective way to model the ocean tide using trigonometric functions.
(please mark my answer as brainliest)
Which of the following pairs of sample size n and population proportion p would produce the greatest standard deviation for the sampling distribution of a sample proportion p?
Therefore , the solution of the given problem of standard deviation comes out to be option C with n = 1,000 and p near to 1/2 is the right response.
What does standard deviation actually mean?Statistics uses variance as a way to quantify difference. The image of the result is used to compute the average deviation between the collected data and the mean. Contrary to many other valid measures of variability, it includes those pieces of data on their own by comparing each number to the mean. Variations may be caused by willful mistakes, irrational expectations, or shifting economic or business conditions.
Here,
The following algorithm determines the standard deviation of the sampling distribution of a sample proportion p:
=> √((p*(1-p))/n)
where n is the sample size, and p is the population percentage.
For the sampling distribution of a sample proportion p,
the pair of sample number n and population proportion p that would result in the highest standard deviation is:
=>n =1,000, and p is almost half.
Because p=1/2
yields the highest possible value of the expression (p*(1-p)), a bigger sample size will result in a smaller standard deviation.
The standard deviations will be lower for the other choices, which have smaller sample sizes or extreme values of p.
Therefore, (C) with n = 1,000 and p near to 1/2 is the right response.
To know more about standard deviation visit :-
brainly.com/question/13673183
#SPJ1
Linda deposits $50,000 into an account that pays 6% interest per year, compounded annually. Bob deposits $50,000 into an account that also pays 6% per year. But it is simple interest. Find the interest Linda and Bob earn during each of the first three years. Then decide who earns more interest for each year. Assume there are no withdrawals and no additional deposits. Year First Second Third Interest Linda earns (Interest compounded annually) Interest Bob earns (Simple interest) Who earns more interest? Linda earns more. Bob earns more. They earn the same amount. Linda earns more. Bob earns more. They earn the same amount. Linda earns more. Bob earns more. They earn the same amount.
Answer:
Step-by-step explanation:
To calculate the interest earned by Linda for the first year, we can use the formula:
A = P(1 + r/n)^(nt)
Where A is the amount after t years, P is the principal amount, r is the annual interest rate, n is the number of times the interest is compounded per year, and t is the time in years.
For the first year, we have:
A = $50,000(1 + 0.06/1)^(1*1) = $53,000
So, the interest earned by Linda for the first year is:
Interest = $53,000 - $50,000 = $3,000
For the second year, we can use the same formula with t = 2:
A = $50,000(1 + 0.06/1)^(1*2) = $56,180
Interest = $56,180 - $53,000 = $3,180
For the third year, we can use the same formula with t = 3:
A = $50,000(1 + 0.06/1)^(1*3) = $59,468.80
Interest = $59,468.80 - $56,180 = $3,288.80
Now, to calculate the interest earned by Bob for each of the first three years, we can use the formula:
Interest = Prt
Where P is the principal amount, r is the annual interest rate, and t is the time in years.
For the first year, we have:
Interest = $50,0000.061 = $3,000
For the second year, we have:
Interest = $50,0000.061 = $3,000
For the third year, we have:
Interest = $50,0000.061 = $3,000
As we can see, Linda earns more interest than Bob for each year, as her interest is compounded annually, while Bob's interest is simple interest. Therefore, the answer is:
Linda earns more.
Answer:
Linda earns $9550.8 interest and bob earns $9000 interest
Step-by-step explanation:
Linda takes compound interest: C.I. = Principal (1 + Rate)Time − Principal
interest= 50,000(1+6/100)³
=59550.8 - 50000
Linda earns $9550.8 interest in 3 years.
bob takes simple interest: S.I = prt/100
interest = 50,000*6*3/100
Bob earns $9000 in 3 years.
thus, Linda earns more interest than bob.
Assume that the readings at freezing on a batch of thermometers are normally distributed with a mean of 0°C and a standard deviation of 1.00°C. A single thermometer is randomly selected and tested. Find the probability of obtaining a reading between 0°C and 1.08°C. Round your answer to 4 decimal places
Answer: We are given that the readings at freezing on a batch of thermometers are normally distributed with a mean of 0°C and a standard deviation of 1.00°C.
To find the probability of obtaining a reading between 0°C and 1.08°C, we need to calculate the z-scores for these values using the formula:
z = (x - mu) / sigma
where x is the value we are interested in, mu is the mean, and sigma is the standard deviation.
For x = 0°C, we have:
z1 = (0 - 0) / 1.00 = 0
For x = 1.08°C, we have:
z2 = (1.08 - 0) / 1.00 = 1.08
Using a standard normal table or a calculator, we can find the probability of obtaining a z-score between 0 and 1.08.
Using a standard normal table or a calculator, we find that the probability of obtaining a z-score between 0 and 1.08 is 0.3583.
Therefore, the probability of obtaining a reading between 0°C and 1.08°C is 0.3583, rounded to 4 decimal places.
Step-by-step explanation:
Solve please geometry, solve for x
Answer: The answer is D
Step-by-step explanation:
Pythagorean theorem: a²+b²=c²
x²+x²=14²
2x²=196
Evaluate...
x=7√2
Mr. Roy captures 15 snapping turtles near some wetland by his house. He marks them with a “math is cool” label and releases them back into the wild. 6 months later, he captures another 15 snapping turtles – 4 of which were marked. Estimate the population of snapping turtles in the area to the nearest whole number. Show your work.
Answer: 56
Step-by-step explanation:
One possible method to estimate the population of snapping turtles in the area is by using the mark and recapture method, also known as the Lincoln-Petersen index.
According to this method, the population size can be estimated by dividing the number of marked individuals in the second sample by the proportion of marked individuals in the combined sample. In other words:
Estimated population size = (Number of individuals in sample 1 × Number of individuals in sample 2) / Number of marked individuals in sample 2
Using the information provided in the problem, we can fill in the formula as follows:
Estimated population size = (15 × 15) / 4
Estimated population size = 56.25
Rounding to the nearest whole number, we get an estimated population size of 56 snapping turtles in the area.
find the value of the derivative (if it exists) at
each indicated extremum
Answer:
The value of the derivative at (-2/3, 2√3/3) is zero.
Step-by-step explanation:
Given function:
[tex]f(x)=-3x\sqrt{x+1}[/tex]
To differentiate the given function, use the product rule and the chain rule of differentiation.
[tex]\boxed{\begin{minipage}{5.4 cm}\underline{Product Rule of Differentiation}\\\\If $y=uv$ then:\\\\$\dfrac{\text{d}y}{\text{d}x}=u\dfrac{\text{d}v}{\text{d}x}+v\dfrac{\text{d}u}{\text{d}x}$\\\end{minipage}}[/tex]
[tex]\boxed{\begin{minipage}{7 cm}\underline{Differentiating $[f(x)]^n$}\\\\If $y=[f(x)]^n$, then $\dfrac{\text{d}y}{\text{d}x}=n[f(x)]^{n-1} f'(x)$\\\end{minipage}}[/tex]
[tex]\begin{aligned}\textsf{Let}\;u &= -3x& \implies \dfrac{\text{d}u}{\text{d}{x}} &= -3\\\\\textsf{Let}\;v &= \sqrt{x+1}& \implies \dfrac{\text{d}v}{\text{d}{x}} &=\dfrac{1}{2} \cdot (x+1)^{-\frac{1}{2}}\cdot 1=\dfrac{1}{2\sqrt{x+1}}\end{aligned}[/tex]
Apply the product rule:
[tex]\implies f'(x) =u\dfrac{\text{d}v}{\text{d}x}+v\dfrac{\text{d}u}{\text{d}x}[/tex]
[tex]\implies f'(x)=-3x \cdot \dfrac{1}{2\sqrt{x+1}}+\sqrt{x+1}\cdot -3[/tex]
[tex]\implies f'(x)=- \dfrac{3x}{2\sqrt{x+1}}-3\sqrt{x+1}[/tex]
Simplify:
[tex]\implies f'(x)=- \dfrac{3x}{2\sqrt{x+1}}-\dfrac{3\sqrt{x+1} \cdot 2\sqrt{x+1}}{2\sqrt{x+1}}[/tex]
[tex]\implies f'(x)=- \dfrac{3x}{2\sqrt{x+1}}-\dfrac{6(x+1)}{2\sqrt{x+1}}[/tex]
[tex]\implies f'(x)=- \dfrac{3x+6(x+1)}{2\sqrt{x+1}}[/tex]
[tex]\implies f'(x)=- \dfrac{9x+6}{2\sqrt{x+1}}[/tex]
An extremum is a point where a function has a maximum or minimum value.
From inspection of the given graph, the maximum point of the function is (-2/3, 2√3/3).
To determine the value of the derivative at the maximum point, substitute x = -2/3 into the differentiated function.
[tex]\begin{aligned}\implies f'\left(-\dfrac{2}{3}\right)&=- \dfrac{9\left(-\dfrac{2}{3}\right)+6}{2\sqrt{\left(-\dfrac{2}{3}\right)+1}}\\\\&=-\dfrac{0}{2\sqrt{\dfrac{1}{3}}}\\\\&=0 \end{aligned}[/tex]
Therefore, the value of the derivative at (-2/3, 2√3/3) is zero.
A mountain is 13,318 ft above sea level and the valley is 390 ft below sea level What is the difference in elevation between the mountain and the valley
Answer: 13,708 ft
Step-by-step explanation:
To find the difference in elevation between the mountain and the valley, we need to subtract the elevation of the valley from the elevation of the mountain:
13,318 ft (mountain) - (-390 ft) (valley) = 13,318 ft + 390 ft = 13,708 ft
Therefore, the difference in elevation between the mountain and the valley is 13,708 ft.
Answer: The difference is 13,708 ft.
Given that a mountain is 13,318 feet above sea level. So the elevation of the mountain is [tex]= +13,318 \ \text{ft}[/tex].
Given that a valley is 390 feet below sea level.
So the elevation of the valley is [tex]= -390 \ \text{ft}[/tex].
So the difference between them is [tex]= 13,318 - (-390) = 13,318 + 390 = 13,708 \ \text{ft}.[/tex]
Learn more: https://brainly.com/question/20521181
3. Each sample of water from a river has a 10% chance of contamination by a particular heavy metal. Find the probability that in 18 independent samples taken from the same river, only two samples were contaminated. [3 marks]
The probability that, out of 18 independent samples received from one river, just two were contaminated is 0.8438.
Explain about the independent samples?Randomly chosen samples are known as independent samples since their results are independent of other observations' values. The premise that sampling are independent underlies many statistical analysis.When each trial possesses the same probability of achieving a given value, the number of trials or observations is represented using the binomial distribution.In the following 18 samples to be evaluated,
Let X = the number of samples that now the pollutant is present in.
Thus, with p = 0.10 and n = 18, X is a binomial random variable.
Using the binomial theorem:
[tex](^{n} _{r} ) p^{x} q^{n-x}[/tex]
p = 0.10
q = 1 - 0.10 = 0.9
n = 18
The likelihood that only two samples out of 18 obtained in different ways from the same river were polluted
P(x = 2) = [tex](^{18} _{2} ) (0.1)^{2} (0.9)^{18-2}[/tex]
= [tex](^{18} _{2} ) (0.1)^{2} (0.9)^{16}[/tex]
= 153 x 0.01 x 0.1853
= 0.8438
Thus, the probability that, out of 18 separate samples received from one river, just two were contaminated is 0.8438.
Know more about the independent samples
https://brainly.com/question/12184795
#SPJ1
Uri paid a landscaping company to mow his lawn. The company charged $74 for the service plus
5% tax. After tax, Uri also included a 10% tip with his payment. How much did he pay in all?
Uri paid a total of $85.47 for the landscaping service including tax and tip.
What is tax?Taxes are compulsory payments made by a government organisation, whether local, regional, or federal, to people or businesses. Tax revenues are used to fund a variety of government initiatives, such as Social Security and Medicare as well as public infrastructure and services like roads and schools. Taxes are borne by whoever bears the cost of the tax in economics, whether this is the entity being taxed, such as a business, or the final users of the items produced by the firm. Taxes should be taken into consideration from an accounting standpoint, including payroll taxes, federal and state income taxes, and sales taxes.
Given that company charged $74 for the service plus 5% tax.
The tax is 5%, that is:
Tax = 5% of $74 = 0.05 x $74 = $3.70
Cost after tax = $74 + $3.70 = $77.70
Now, tip is 10%:
Tip = 10% of $77.70 = 0.10 x $77.70 = $7.77
Total cost = $77.70 + $7.77 = $85.47
Hence, Uri paid a total of $85.47 for the landscaping service including tax and tip.
Learn more about tax here:
https://brainly.com/question/16423331
#SPJ1
Which expression represents the distance
between point G and point H?
|-12|16| |-12|+|-9|
1-9|-|-6|
|-12|+|6|
-15
H(-9,6)
G(-9,-12)
15+y
0
-15-
15
Answer:
Step-by-step explanation:
2
T/F. Star clusters with lots of bright, blue stars of spectral type O and B are generally younger than clusters that don't have any such stars.
The given statement "Star clusters with lots of bright, blue stars of spectral type O and B are generally younger than clusters that don't have any such stars." is True. The reason for this is that O and B stars are short-lived and burn through their fuel quickly.
The reason for this is that O and B stars burn through their fuel quickly, causing them to exhaust their nuclear fuel and end their lives in a relatively short period, typically within a few tens of millions of years.
On the other hand, stars of lower mass and cooler temperatures, like G and K type stars like our sun, have longer lifetimes and take billions of years to exhaust their nuclear fuel.
Therefore, clusters without any bright, blue stars are likely to have evolved for longer periods, allowing these short-lived stars to have already expired.
To know more about Star clusters:
https://brainly.com/question/30899528
#SPJ4
I need your help to buy a door for my house. I have a scale drawing for the door I want but I am not sure of the true size. In the scale drawing the length is 4 in and the width as 7in. The scale for the door is 1 in = 1.5 ft. What are the actual measurements of the door?
Answer:
According to the scale, 1 inch on the drawing represents 1.5 feet in real life. So, to find the actual length of the door, we need to multiply the length on the drawing by the scale factor:
4 inches x 1.5 feet/inch = 6 feet
Similarly, to find the actual width of the door, we need to multiply the width on the drawing by the scale factor:
7 inches x 1.5 feet/inch = 10.5 feet
Therefore, the actual measurements of the door are 6 feet by 10.5 feet.
Find x, if √x +2y^2 = 15 and √4x - 4y^2=6
pls help very soon
Answer:
We have two equations:
√x +2y^2 = 15 ----(1)
√4x - 4y^2=6 ----(2)
Let's solve for x:
From (1), we have:
√x = 15 - 2y^2
Squaring both sides, we get:
x = (15 - 2y^2)^2
Expanding, we get:
x = 225 - 60y^2 + 4y^4
From (2), we have:
√4x = 6 + 4y^2
Squaring both sides, we get:
4x = (6 + 4y^2)^2
Expanding, we get:
4x = 36 + 48y^2 + 16y^4
Substituting the expression for x from equation (1), we get:
4(225 - 60y^2 + 4y^4) = 36 + 48y^2 + 16y^4
Simplifying, we get:
900 - 240y^2 + 16y^4 = 9 + 12y^2 + 4y^4
Rearranging, we get:
12y^2 - 12y^4 = 891
Dividing both sides by 12y^2, we get:
1 - y^2 = 74.25/(y^2)
Multiplying both sides by y^2, we get:
y^2 - y^4 = 74.25
Let z = y^2. Substituting, we get:
z - z^2 = 74.25
Rearranging, we get:
z^2 - z + 74.25 = 0
Using the quadratic formula, we get:
z = (1 ± √(1 - 4(1)(74.25))) / 2
z = (1 ± √(-295)) / 2
Since the square root of a negative number is not real, there are no real solutions for z, which means there are no real solutions for y and x.
Therefore, the answer is "no solution".
The roots of a quadratic equation a x +b x +c =0 are (2+i √2)/3 and (2−i √2)/3 . Find the values of b and c if a = −1.
[tex]\begin{cases} x=\frac{2+i\sqrt{2}}{3}\implies 3x=2+i\sqrt{2}\implies 3x-2-i\sqrt{2}=0\\\\ x=\frac{2-i\sqrt{2}}{3}\implies 3x=2-i\sqrt{2}\implies 3x-2+i\sqrt{2}=0 \end{cases} \\\\\\ \stackrel{ \textit{original polynomial} }{a(3x-2-i\sqrt{2})(3x-2+i\sqrt{2})=\stackrel{ 0 }{y}} \\\\[-0.35em] ~\dotfill[/tex]
[tex]\stackrel{ \textit{difference of squares} }{[(3x-2)-(i\sqrt{2})][(3x-2)+(i\sqrt{2})]}\implies (3x-2)^2-(i\sqrt{2})^2 \\\\\\ (9x^2-12x+4)-(2i^2)\implies 9x^2-12x+4-(2(-1)) \\\\\\ 9x^2-12x+4+2\implies 9x^2-12x+6 \\\\[-0.35em] ~\dotfill\\\\ a(9x^2-12x+6)=y\hspace{5em}\stackrel{\textit{now let's make}}{a=-\frac{1}{9}} \\\\\\ -\cfrac{1}{9}(9x^2-12x+6)=y\implies \boxed{-x^2+\cfrac{4}{3}x-\cfrac{2}{3}=y}[/tex]
A line passes through points (5,3) and (-5,-2). Another line passes through points (-6,4) and (2,-4). Find the coordinates (ordered pairs) of the intersection of the two lines.
Step 1: Find the slope of each line
Step 2: Find the y-intercept of each line
Step 3: Write each line in slope-intercept form (y = mx + b)
Step 4: Solve for the system. Find the point of intersection for the system
Please help I will mark brainliest!!!
The point of intersection of the two lines is (-3.4, -1.2).
How to find the slope of each line?Step 1: The slope of a line passing through two points (x1,y1) and (x2,y2) can be found using the formula:
m = (y2-y1)/(x2-x1)
Using this formula, we can find the slope of the first line:
m1 = (−2−3)/(-5 -5) = −5/(-10) = 1/2
And the slope of the second line:
m2 = (−4−4)/(2 -(-6)) = -8/4 = -2
Step 2: Find the y-intercept of each line
The y-intercept of a line in slope-intercept form (y = mx + b) is the value of y when x=0. We can use one of the two given points on each line to find the y-intercept:
For the first line passing through points (5,3) and (−5,−2):
y = mx + b
3 = (1/2)(5) + b
b = 3 - 5/2
b = 1/2
So the first line can be written as y = 1/2x + 1/2
For the second line passing through points (−6,4) and (2,−4):
y = mx + b
4 = (-2)(−6) + b
b = 4 - 12
b = -8
So the second line can be written as y = -2x - 8
Step 3: Each line in slope-intercept form (y = mx + b):
First line: y = 1/2x + 1/2
Second line: y = -2x - 8
Step 4: To find the point of intersection of the two lines, we need to solve the system of equations. We can solve for x by setting the two right-hand sides equal to each other:
1/2x + 1/2 = -2x - 8
(x + 1)/2 = -2x - 8
x + 1 = -4x - 16
5x = -16 - 1
5x = -17
x = -17/5
x = -3.4
Now that we know x, we can find y by substituting x=10 into one of the two equations:
y = -2x - 8
y = -2(-3.4) - 8
y = - 1.2
Thus, the point of intersection of the two lines is (-3.4, -1.2).
Learn more about equation of a line on:
https://brainly.com/question/18831322
#SPJ1
ONQ is a sector of a circle with centre O and radius 13 cm. A is the point on ON and B is the point on OQ such that AOB is an equilateral triangle of side 9 cm. Calculate the area of the shaded region as a percentage of the area of the sector ONQ. Give your answer correct to 1 decimal place.
The area of the shaded region as a percentage of the area of the sector ONQ= 60.3%
What is an equilateral triangle?The shape of an equilateral triangle is an equilateral triangle.
The word "Equilateral" is formed by combining two words. H. "Equi" means equal, "lateral" means side.
Equilateral triangles are also called regular polygons or equilateral triangles because all sides are equal.
In geometry, an equilateral triangle is a triangle with all sides of equal length.
Three sides are equal, so three angles on the same side are equal. Therefore, it is also called an equilateral triangle with each angle of 60 degrees.
Like other types of triangles, equilateral triangles have formulas for area, perimeter, and height.
According to our question-
AB=OA=BO= 9CM
ONQ-AOB/ONQ*100
PUTTING VALUES
60.3%
Hence, The area of the shaded region as a percentage of the area of the sector ONQ= 60.3%
learn more about equilateral triangle click here:
https://brainly.com/question/17264112
#SPJ1
Samir bought three pounds of strawberries for $12.00. What is the price, in dollars
per ounce of strawberries?
1 pound = 16 ounces
Before you try that problem, answer the question below.
How many ounces of strawberries did Samir buy?
Is the function represented by the following table linear, quadratic or exponential?
The function represented by the table is linear, as it has a constant rate of change and is represented by a straight line.
What is function in mathematics?Function in mathematics is a relation between two sets, where one set is the input and the other set is the output. Functions are an important tool in mathematics and can be used to describe and model real-world phenomena. Functions take inputs, manipulate them and produce outputs. They can be used to represent relationships between two or more variables, or to represent a complex process. Functions allow us to break down complex problems into smaller, more manageable pieces and to study how changes in one variable affect other variables.
The function represented by the table is linear. It can be determined by the fact that the y-values change by the same amount every time the x-values increase by one unit. In this case, the y-values decrease by 2 each time the x-values increase by one unit. This is an example of a linear function.
Linear functions have the shape of a straight line and are characterized by having a constant rate of change. The constant rate of change is represented by the slope of the line, which in this case is -2. This means that for every one unit increase in the x-values, the y-values decrease by two.
A quadratic function is the opposite of a linear function, as it has a rate of change that is not constant. Quadratic functions are characterized by their parabolic shape and their rate of change increases as x-values increase. Exponential functions are characterized by their curved shape and increase exponentially as x-values increase.
In conclusion, the function represented by the table is linear, as it has a constant rate of change and is represented by a straight line.
To know more about function click-
https://brainly.com/question/25841119
#SPJ1
100 POINTS + BRAINLIEST PLS BE FAST!!
i) Find the mean, median, and mode of the frequency table as follows:
Mean = 6.6Median = 8Mode = 3.ii) The average that justifies the teacher's statement congratulating the class that 'over three quarters were above average' is the average mark of 10, which is 5.
What are the mean, median, and mode?The mean refers to the average or the quotient of the total values divided by the number of items.
The median is the middle value in the data, which occurs with marks 8 for the 13th and 14th students.
The mode is the value that occurs most frequently, which is 3 which occurs 6 times.
Frequency Table:
Mark Frequency Cumulative Frequency
3 6 18 (0 + 3 x 6)
4 3 30 (18 + 4 x 3)
5 1 35 (30 + 5 x 1)
6 2 47 (35 + 6 x 2)
7 0 47 (47 + 7 x 0)
8 5 87 (47 + 8 x 5)
9 5 132 (87 + 9 x 5)
10 4 172 (132 + 10 x 4)
Mean = 6.6 (172/26)
Median = 8
Mode = 3
Learn more about the mean, median, and mode at https://brainly.com/question/452652.
#SPJ1
se spherical coordinates to evaluate the triple integral where is the region bounded by the spheres and .
The value of the triple integral[tex]\int \int\int _{E } \frac{e^{-(x^2+y^2+z^2)}}{\sqrt{(x^2+y^2+z^2}}\sqrt{dV}[/tex] by using spherical coordinates [tex]2\pi(e^{-1}-e^{-9})[/tex].
Given that the triple integral is-
[tex]\int \int\int _{E } \frac{e^{-(x^2+y^2+z^2)}}{\sqrt{(x^2+y^2+z^2}}\sqrt{dV}[/tex]
E is the region bounded by the spheres which are,
[tex]x^2+y^2+z^2=1\\\\x^2+y^2+z^2=9[/tex]
In spherical coordinates we have,
x = r cosθ sin ∅
y = r sinθ sin∅
z = r cos∅
dV = r²sin∅ dr dθ d∅
E contains two spheres of radius 1 and 3 () respectively, the bounds will be like this,
1 ≤ r ≤ 3
0 ≤ θ ≤ 2π
0 ≤ ∅ ≤ π
Then
[tex]\int \int\int _{E } \frac{e^{-(x^2+y^2+z^2)}}{\sqrt{(x^2+y^2+z^2}}\sqrt{dV}[/tex]
[tex]\int\int\int _{E} \frac{e^{-r^2}}{r}r^2Sin\phi drd\phi d\theta\\\\2\pi \int_{0}^{\pi} \int_1^3 re^{-r^2} dr d\phi\\\\2\pi \int_1^3 re^{-r^2} dr\\\\2\pi(e^{-1}-e^{-9})[/tex]
The complete question is-
Use spherical coordinates to evaluate the triple integral ∭ee−(x2 y2 z2)x2 y2 z2−−−−−−−−−−√dv, where e is the region bounded by the spheres x2 y2 z2=1 and x2 y2 z2=9.
learn more about triple integral,
https://brainly.com/question/30404807
#SPJ4
Really need help asap !
The value of h(x) using exponents are as follows:
For -1, the value of h(x)=1/10
For 0, the value of h(x) = 1
For 1, the value of h(x) = 10
For 2, the value of h(x) = 100
For 3, the value of h(x) = 1000
What are exponents?The exponent of a number tells us how many times the original value has been multiplied by itself. For instance, 2×2×2×2 can be expressed as [tex]2^{4}[/tex] the result of 4 times multiplying 2 by itself. Thus, 4 is referred to as the "exponent" or "power," while 2 is referred to as the "base."
Generally speaking, [tex]x^{n}[/tex] denotes that x has been multiplied by itself n times. Here x is the base and n is the power.
Now here, as we put the value of x in the equation, h(x) we can get the value of h(x) for each value of x.
So,
For -1, the value of h(x)=1/10
For 0, the value of h(x) = 1
For 1, the value of h(x) = 10
For 2, the value of h(x) = 100
For 3, the value of h(x) = 1000
To know more about exponents, visit:
https://brainly.com/question/30066987
#SPJ1
In a certain region of space the electric potential is given by V=+Ax2y−Bxy2, where A = 5.00 V/m3 and B = 8.00 V/m3.1) Calculate the magnitude of the electric field at the point in the region that has cordinates x = 1.10 m, y = 0.400 m, and z = 0.2)Calculate the direction angle of the electric field at the point in the region that has cordinates x = 1.10 m, y = 0.400 m, and z = 0.( measured counterclockwise from the positive x axis in the xy plane)
The direction angle of the electric field at the point (x = 1.10 m, y = 0.400 m, z = 0) is approximately 74.5 degrees clockwise from the positive x-axis in the xy plane.
To calculate the electric field at the point (x = 1.10 m, y = 0.400 m, z = 0), we need to take the negative gradient of the electric potential V:
E = -∇V
where ∇ is the del operator, which is given by:
∇ = i(∂/∂x) + j(∂/∂y) + k(∂/∂z)
and i, j, k are the unit vectors in the x, y, and z directions, respectively.
To calculate the magnitude of the electric field at the point, we first need to find the partial derivatives of V with respect to x and y:
∂V/∂x = 2Axy - By^2
∂V/∂y = Ax^2 - 2Bxy
Substituting the values of A, B, x, and y, we get:
∂V/∂x = 2(5.00 V/m^3)(1.10 m)(0.400 m) - (8.00 V/m^3)(0.400 m)^2 = 0.44 V/m
∂V/∂y = (5.00 V/m^3)(1.10 m)^2 - 2(8.00 V/m^3)(1.10 m)(0.400 m) = -1.64 V/m
Next, we can calculate the magnitude of the electric field:
E = -∇V = -i(∂V/∂x) - j(∂V/∂y) - k(∂V/∂z)
= -i(0.44 V/m) + j(1.64 V/m) + 0k
= (0.44 i - 1.64 j) V/m
The magnitude of the electric field is given by:
|E| = sqrt((0.44 V/m)^2 + (-1.64 V/m)^2) = 1.70 V/m
Therefore, the magnitude of the electric field at the point (x = 1.10 m, y = 0.400 m, z = 0) is 1.70 V/m.
To calculate the direction angle of the electric field, we need to find the angle that the electric field vector makes with the positive x-axis in the xy plane.
The angle can be found using the arctan function:
θ = arctan(Ey/Ex)
Substituting the values of Ex and Ey, we get:
θ = arctan(-1.64 V/m / 0.44 V/m) = -1.30 radians
The negative sign indicates that the direction angle is measured counter clockwise from the negative x-axis, which is equivalent to measuring clockwise from the positive x-axis.
Converting to degrees, we get:
θ = -1.30 radians * (180 degrees / pi radians) = -74.5 degrees
Therefore, the direction angle is approximately 74.5 degrees clockwise in the xy plane.
To know more about electric field:
https://brainly.com/question/14768728
#SPJ4
(b) a dy integral that represents the surface area of the solid formed when c is rotated about the (x or y)-axis
The surface area of the surface generated by rotating the curve y = x² about the y-axis, and we found that the surface area is approximately 54.33 square units.
In this case, the curve we want to rotate is y = x², and we want to rotate it about the y-axis. To use the formula above, we need to express the equation of the curve in terms of x. Therefore, we need to rewrite y = x² as x = √y.
Next, we need to find the derivative of x = √y with respect to y, which is:
dx/dy = 1/2√y
Substituting this into the formula for the surface area, we get:
Surface Area = 2π ∫[0,4] √y √(1+(1/2√y)²) dy
Simplifying the expression inside the square root, we get:
Surface Area = 2π ∫[0,4] √(y+(1/4)) dy
We can evaluate this integral using the power rule of integration, which gives:
Surface Area = 2π [2/3(y+(1/4))^(3/2)]₀⁴
Simplifying further, we get:
Surface Area = 2π [2/3(17/4)^(3/2)]
Surface Area ≈ 54.33 square units
Therefore, the surface area of the surface generated by rotating the curve y = x² about the y-axis is approximately 54.33 square units.
To know more about surface area here
https://brainly.com/question/27784309
#SPJ4
Complete Question:
How do you find the area of the surface generated by rotating the curve about the y-axis y = x^2 , 0 ≤ x ≤ 2 ?