The critical values, the intervals of increasing or decreasing and the maximum and minimum points of the f(x) is (-1.5, -16), x < -1.5 and x = -1.5 and for b (4,6) and (2,10), (2,4).
A) Critical values
We will find out the critical value by solving for f ' (x) = 0
therefore, taking the derivative of given function we get,
f ' (x) = 4(2x) + 12 = 0
= 8x + 12 = 0
therefore, 8x = -12
x = -12/8
x= -1.5
x = -1.5 is the only critical value in x-coordinate. Now to determine the y-coordinate, simply put the value of x in the function f(x) = 4x2 + 12x - 7
we get, f(-1.5) = 4(-1.5)2 + 12 (-1.5) - 7
= 4(2.25) - 18 - 7
= 9 - 25 = -16
therefore, the critical value of the function f(x) = 4x2 + 12x - 7 is (-1.5, -16)
f(x) =x3 - 9x2 + 24x - 10.
Intervals of increasing and decreasing function is i.e. f decreases for
x < -1.5.
Therefore, f has minimum value at x = -1.5.
B) Critical values
We will find out the critical value by solving for f ' (x) = 0
therefore, taking the derivative of given function we get,
f '(x) = 3x2 - 9(2x) + 24
= 3x2 - 18x + 24 = 0
therefore, 3 ( x2 - 6x + 8) = 0
i.e x2 - 6x + 8 = 0
(x-4) (x-2) = 0
So, x = 4 or x = 2 are the two critical values in x-coordinate. Now to determine the y-coordinate, simply put the values of x in the function f(x) =x3 - 9x2 + 24x - 10
we get, Substituting x = 4
f(4) = 43 - 9 (4)2 +24 (4) -10
= 64 - 144 + 96 - 10
= 6
Now, Substituting x = 2
f(2) = 23 - 9(2)2 + 24(2) - 10
= 8 - 36 + 48 - 10
= 10
Therefore, the critical values of the function f(x) =x3 - 9x2 + 24x - 10 are (4,6) and (2,10).
Intervals of increasing and decreasing functions is f decreases in (2,4).
therefore, f has minimum at x = 4 and maximum at x = 2.
Learn more about Critical values:
https://brainly.com/question/15970126
#SPJ4
Complete question:
For each function determine: i) the critical values ii) the intervals of increasing or decreasing iii) the maximum and minimum points.
a. f(x) = 4x²+12x–7 (3 marks)
b. F(x) = x°-9x²+24x-10 (3 marks)
consider a student loan of $15000 at a fixed APR of 12 % for 20 years
Therefore, the monthly payment for a student loan of $15,000 at a fixed APR of 12% for 20 years is $144.36.
What is interest?Interest is the cost of borrowing money or the return on investing money. When you borrow money, you usually have to pay back more than you borrowed, and the additional amount you pay is the interest. The interest rate is expressed as a percentage of the borrowed amount, and it can vary depending on factors such as the borrower's credit score, the term of the loan, and the lender's policies.
Given by the question.
Assuming the loan has a fixed interest rate of 12% per annum, the amount of interest charged each year will be:
12% of $15,000 = $1,800
The total interest charged over 20 years will be:
$1,800 x 20 = $36,000
The total amount to be repaid (principal + interest) will be:
$15,000 + $36,000 = $51,000
If the loan is being repaid in equal monthly installments over the 20-year term, the monthly payment can be calculated using the following formula:
M = P * (r[tex](1+r)^{n}[/tex]) / ([tex](1+r)^{n}[/tex]- 1)
Where:
M = Monthly payment
P = Principal amount (in this case, $15,000)
r = Monthly interest rate (12% per annum / 12 months = 1% per month)
n = Total number of payments (20 years x 12 months per year = 240)
Plugging in the values:
M = $15,000 * (0.01[tex](1+0.01)^{240}[/tex]) / ([tex](1+0.01)^{240}[/tex] - 1)
M = $144.36
To learn more about percentage:
https://brainly.com/question/29306119
#SPJ1
spinner is divided into seven equal sections numbered 1 through 7 If the spinner is spun twice, what is the theoretical probability that it lands on 2 and then an odd number?
A) 1/49
B) 4/49
C) 1/7
D) 4/7
Answer:
B is correct
Step-by-step explanation:
If it is spun twice then the probability of it landing on 2 and then an odd number is:
Pr(2,1) or Pr(2,3) or Pr(2,5) or Pr(2,7)
1/49 * 4
4/49
2 bags of dog food. How many days will 3/4 last?
Answer:
3/4 of a bag of dog food will last 3 days.
Increase £16470.45 by 3.5%
Give your answer rounded to 2 DP
Step-by-step explanation:
"increase" means to take the original 100% and put an additional 3.5% of these 100% on top of it.
so, we have to calculate
100% + 3.5% of £16470.45
100% of £16470.45 = £16470.45 × 100/100
3.5% of £16470.45 = £16470.45 × 3.5/100
the sum is therefore
£16470.45 × (100/100 + 3.5/100) =
= £16470.45 × (1 + 0.035) = £16470.45 × 1.035 =
= £17,046.91575 ≈ £17,046.92
please help with finding the answer
The answer of the given question based on the transformation from its parent function the explanation part is given below and The equation of the function is y = -2(x+3)².
What is Function?In mathematics, function is relation between set of inputs and set of possible outputs with property that each input is related to exactly one output. It is rule that assigns to each input value exactly one output value. Functions can be represented in various ways, like algebraic expressions, graphs, tables, and words. They are used to model relationships between variables, to describe how one quantity depends on another, and to make predictions about future values. Functions are important concept in many fields of mathematics, as well as in science, engineering, economics, and other areas where quantitative analysis is used.
a. The graph appears to be a reflection of the parent function f(x) = x² over the x-axis followed by a vertical stretch by a factor of 2 and a horizontal shift to the left by 3 units.
b. The equation of the function is y = -2(x+3)².
To know more about Variable visit:
https://brainly.com/question/2466865
#SPJ1
can someone help me? please
evalute the following function h(x)=3x2+ax-1 for h(3) and find the value for a.
Answer:
Step-by-step explanation:
[tex]h(3)=3\times 3^2+3a-1 \rightarrow h(3)=26+3a[/tex]
But we cannot find [tex]a[/tex] unless we are told what [tex]h(3)[/tex] equals.
A firm is a monopoly for the good it produces. Its average cost function is AC = 9+(3/10)q+30/q, where q is the quantity produced. The demand equation for its good is given by q = 40 - (4/3)p where p is the price.
(a) Find expressions, in terms of q, for the total revenue.
(b) What is the equation for the Total cost?
(c) Find the expression for profit. (d) Find the total output and revenue at the break even point.
(e) Find the profit when 20 units are produced.
(f) Find the profit when 7 units are produced.
(g) Find the output required to obtain a profit of RM100.
The answer of the given question is (a) TR = p(40 - (4/3)p), or TR = 40p - (4/3)p² , (b) TC = 9q + (3/10)q² + 30 , (c) π = 40p - (4/3)p² - 9q - (3/10)q² - 30 , (d) TR ≈ 342.67 , (e) the profit when 20 units are produced is approximately RM188.27 , (f) the profit when 7 units are produced is approximately -RM24.44, indicating a loss , (g) the output required to obtain a profit of RM100 is approximately 8.78 units.
What is Equation?An equation is mathematical statement that asserts yhe equality of two expressions. It typically consists of variables, constants, and mathematical operations like addition, subtraction, multiplication, and division, among others. Equations are often used to solve problems, to model real-world phenomena, and to describe mathematical relationships.
(a) The total revenue is given by TR = p x q. Substituting the demand equation q = 40 - (4/3)p, we get TR = p(40 - (4/3)p), or TR = 40p - (4/3)p².
(b) The total cost is given by TC = q x AC. Substituting the given average cost function, we get TC = 9q + (3/10)q² + 30.
(c) The profit is given by π = TR - TC. Substituting the expressions we found in parts (a) and (b), we get π = 40p - (4/3)p² - 9q - (3/10)q² - 30.
(d) At the break even point, the firm earns zero profit, so we set π = 0 and solve for q. Substituting the expression we found in part (a) for p, we get:
0 = 40p - (4/3)p² - 9q - (3/10)q² - 30
0 = 40(40/3 - (3/4)q) - (4/3)(40/3 - (3/4)q)² - 9q - (3/10)q² - 30
0 = 533.33 - 51.25q - 0.22q^2
Solving for q using the quadratic formula, we get:
q = (51.25 ± sqrt(51.25² - 4(-0.22)(533.33))) / 2(-0.22)
q ≈ 22.75 or q ≈ 206.58
We reject the solution q ≈ 206.58 because it is outside the relevant range of output, which is between 0 and 40. Therefore, the total output at the break even point is approximately 22.75 units. To find the total revenue at the break even point, we substitute q = 22.75 into the demand equation from part (a) and get:
p = (40/3) - (3/4)q
p ≈ 15.08
TR = p x q
TR ≈ 342.67
(e) To find the profit when 20 units are produced, we substitute q = 20 into the expression for profit we found in part (c) and get:
π = 40p - (4/3)p² - 9q - (3/10)q² - 30
π ≈ 188.27
Therefore, the profit when 20 units are produced is approximately RM188.27.
(f) To find the profit when 7 units are produced, we substitute q = 7 into the expression for profit we found in part (c) and get:
π = 40p - (4/3)p² - 9q - (3/10)q² - 30
π ≈ -24.44
Therefore, the profit when 7 units are produced is approximately -RM24.44, indicating a loss.
(g) To find the output required to obtain a profit of RM100, we set the profit equation equal to 100 and solve for q:
Profit = TR - TC
100 = pq - ACq
100 = (40-(4/3)p)*q - (9+(3/10)q+30/q)*q
100 = (40-(4/3)p - 9q - 3q²/10)
Multiplying by 10 and rearranging terms, we get a quadratic equation in q:
3q² + 91q - 310 = 0
Solving for q using the quadratic formula, we get:
q = (-91 ± sqrt(91² - 43(-310)))/(2*3)
q ≈ 8.78 or q ≈ -29.44
Since the quantity produced cannot be negative, the output required to obtain a profit of RM100 is approximately 8.78 units.
To know more about Expression visit:
https://brainly.com/question/1859113
#SPJ1
PLEASE HELP FAST!!
Find the slope of a line perpendicular to the line whose equation is
4x−6y=−24. Fully simplify your answer.
Answer: -3/2
Step-by-step explanation:
FIrst rearrange the equation in y = mx + b form.
4x - 6y = -24
-6y = -4x - 24
y = 2/3x + 4
If the line is perpendicular, the slope must be the negative reciprocal of the current line.
The negative reciprocal of 2/3 is -3/2.
Let f(x) = x? - 6x + 8 and g (x) = x - 5.
Find (f + g) (x) and (f - g) (x) .
Find the missing length indicated
The value of x is 5
Define the term Similar triangles?Triangles with the same shape but different sizes are said to be similar triangles. To be more specific, two triangles are comparable if their respective sides are proportionate and their corresponding angles are congruent.
Two triangles are similar if corresponding angles are congruent and corresponding sides are proportional.
from the below figure, both the triangles are similar, ∆ABC ≈ ∆EFB
By using Thales's theorem, the ratio of the sides of triangles are;
BE/EA = BF/FC
15/30 = x/10
x = 5
Therefore the value of x is 5
To know more about triangle, visit:
https://brainly.in/question/17424774
#SPJ1
The ratio of triangle sides can be calculated using Thales' theory, and it is the value of x is 5
Define the term Similar triangles?Similar triangles are those with the same shape but varying sizes. To be more precise, two triangles are comparable if their matching angles and respective sides are congruent.
If matching sides are proportional and corresponding angles are congruent, two triangles are similar.
Both triangles in the following figure are comparable ∆ABC ≈ ∆EFB
The ratio of triangle sides can be calculated using Thales' theory, and it is;
BE/EA = BF/FC
15/30 = x/10
x = 5
Therefore the value of x is 5
To know more about triangle, visit:
https://brainly.com/question/1058720
#SPJ1
How many proper subsets are in {2,4,6,8...100}
Answer:
159 proper subsets.
Step-by-step explanation:
Given a set {2, 4, 6, 8...100}, how many proper subsets are there?
First, find how many subsets there are in 2 - 10:
That's 16.
Then because there are 10 10s in 100, multiply by 10:
16 x 10 = 160
Finally, because it says proper subsets, subtract by 1:
160 - 1 = 159 proper subsets.
Therefore, there are 159 proper subsets in {2, 4, 6, 8...100}
TRUE/FALSE. Let B.C be ordered bases for R" and & the standard basis for R". Suppose T:R" Ris a linear transformation. If Ic.B = Tç, e then B = E = C.
Let B.C be ordered bases for R" and & the standard basis for R". Suppose T:R" R is a linear transformation. If Ic.B = Tç, e then B = E = C.
The above statement is True.
In mathematics, and more specifically in linear algebra, a linear map (also called a linear map, a linear transformation, a vector space homomorphism, or in some cases a linear function) is a map between two vector spaces V → W, which performs the conservation of operations on vectors. Addition and scalar multiplication. The same names and definitions are also used for the more general case of modules over rings; see the homomorphism of modules.
A linear map is called a linear isomorphism if it is a bijection. In the case V=W, the linear map is called linear automorphism. Sometimes the term linear operator refers to this case, but the term "linear operator" can have different meanings for different conventions: for example, it can be used to emphasize that V and W are real vector spaces (not necessarily that V = W, where V is the space of functions, which is a common convention in functional analysis.
Sometimes the term linear function has the same meaning as linear map, but not in analysis.
Learn more about Linear Transformation:
https://brainly.com/question/30822858
#SPJ4
(a) Show that if λ is an eigenvalue of A, then λ is an eigenvalue of [tex]A^{T}[/tex]. Show with an example that the eigenvectors of A and [tex]A^{T}[/tex] are not the same.
(b) Show that if λ is an eigenvalue of A, and A is invertible, then λ^-1 is an eigenvalue of A^-1.
If λ is an eigenvalue of A, then λ is an eigenvalue of [tex]A^T[/tex]. Show with an example that the eigenvectors of A and [tex]A^T[/tex] are not the same.
What are eigenvalues and eigenvectors?The equation Av = λv, where v is a non-zero vector, is satisfied by an eigenvector v and an eigenvalue given a square matrix A. In other words, the eigenvector v is multiplied by the matrix A to produce a scalar multiple of v. Due to their role in illuminating the behaviour of linear transformations and differential equation systems, eigenvectors play a crucial role in many branches of mathematics and science. When the eigenvector v is multiplied by A, the eigenvalue indicates how much it is scaled.
The eigenvalue and eigenvector states that, let v be a non-zero eigenvector of A corresponding to the eigenvalue λ.
Then, we have:
Av = λv
Taking transpose on both sides we have:
[tex]v^T A^T = \lambda v^T[/tex]
The above equations thus relates transpose of vector and transpose of A to λ.
Now, consider a matrix:
[tex]\left[\begin{array}{cc}1&2\\3&4\\\end{array}\right][/tex]
Now, the eigen values of this matrix are λ1 = -0.37 and λ2 = 5.37.
The eigenvectors are:
[tex]v1 = [-0.8246, 0.5658]^T\\v2 = [-0.4159, -0.9094]^T[/tex]
Now, for transpose of A:
[tex]A^T=\left[\begin{array}{cc}1&3\\2&4\\\end{array}\right][/tex]
The eigen vectors are:
[tex]u1 = [-0.7071, -0.7071]^T\\u2 = [0.8944, -0.4472]^T[/tex]
Hence, we see that, if λ is an eigenvalue of A, then λ is an eigenvalue of [tex]A^T[/tex]. Show with an example that the eigenvectors of A and [tex]A^T[/tex] are not the same.
Learn more about eigenvalues here:
https://brainly.com/question/29749542
#SPJ1
State if the triangles in each pair are similar
Answer:
They are similar
Step-by-step explanation:
It's because 27/18 = 12/8
27/18 = 1.5
12/8 = 1.5
Bria is a customer who would like to display her collection of soap carvings on top of her bookcase. The collection needs an area of 300 square inches. What should b equal for the top of the bookcase to have the correct area? Round your answer to the nearest tenth of an inch. (1 point)
help me pls D;
The length of the top of the bookcase is 20 inches, the width should be 15 inches to have the correct area.
How to find the dimensions of rectangle?Since the area of the soap carvings is 300 square inches, we want the top of the bookcase to have the same area. Let's assume the length of the top of the bookcase is "l" and the width is "b". Then we have:
Area of top of bookcase = lb
We want this area to be equal to 300 square inches. Therefore, we can write:
lb = 300
We are solving for "b", so we can rearrange this equation to solve for "b":
b = 300/l
Since we don't know the value of "l", we can't solve for "b" exactly. However, we can approximate it by assuming a value for "l". Let's say we assume that "l" is 20 inches. Then we can calculate "b" as follows:
b = 300/20 = 15
So if the length of the top of the bookcase is 20 inches, the width should be 15 inches to have the correct area.
To know more about Rectangle visit:
brainly.com/question/29123947
#SPJ1
if the area to the left of x in a normal distribution is 0.123, what is the area to the right of x? [1 point]
The area to the right of x is 0.877.
In a normal distribution, the entire area under the curve is identical to 1. The area to the left of a specific value of x represents the possibility of observing a value largely lesser than or same tox.
However, we're capable to discover the area to the right of x with the aid of abating the left area from 1, If the place to the left of x is given.
In this case, the area to the left of x is 0.123. thus, the place to the right of x is
1-0.123 = 0.877
Thus, the area is 0.877 to the right of x.
Learn more about Normal Distribution:-
https://brainly.com/question/23418254
#SPJ4
Which construction is shown in the diagram below?
Answer:
Step-by-step explanation:
i think it B
Question 13 (2 points)
Suppose you flip a coin and then roll a die. You record your result. What is the
probability you flip heads or roll a 3?
1/2
3/4
7/12
1
Step-by-step explanation:
a probability is always the ratio
desired cases / totally possible cases
we have 2 possible cases for the coin and 6 possible cases for the die.
so, we have 2×6 = 12 combined possible cases :
heads, 1
heads, 2
heads, 3
heads, 4
heads, 5
heads, 6
tails, 1
tails, 2
tails, 3
tails, 4
tails, 5
tails, 6
out of these 12 cases, which ones (how many) are desired ?
all first 6 plus (tails, 3) = 7 cases
so, the correct probability is
7/12
formally that is calculated :
1/2 × 6/6 + 1/2 × 1/6 = 6/12 + 1/12 = 7/12
the probability to get heads combined with the probability to roll anything on the die, plus the probability to get tails combined with the probability to roll 3.
Orlando skip the rope 125 times in 45 seconds write this as a unit rate
Answer:
g h hh h
Step-by-step explanation:
PLEASE HELPPPPP 30 POINTSSSS!
Answer:
the answer will be 117
Step-by-step explanation:
you need to multiply
A candy store owner used a cylindrical wooden log as a bench in their store. The height
of that log was 2
feet. The diameter of its base was 1.25
feet. If it costs $7.20
per square foot to paint that log at every side, how much approximately will it cost the
store owner? The total surface area of the right circular cylinder is 2nrh+2rr2
, where, r
is the radius of the base of the cylinder and, h
is the height of the cylinder
Answer:
Step-by-step explanation:
its 60
PLEASE HELP
The linear function f(x) = 0.9× + 79 represents the average test score in your math class, where x is the number of the test taken. The linear function g(x) represents the average test score in your science class, where x is the number of the test taken.
The required answers are 80.8, 79,and g(42) > f(42).
How to find average of equation?Part A:
To determine the test average for the math class after completing test 2, we need to evaluate the function f(x) at x=2. That is,
[tex]$$f(2) = 0.9(2) + 79 = 80.8$$[/tex]
Therefore, the test average for the math class after completing test 2 is 80.8.
Part B:
To determine the test average for the science class after completing test 2, we need to find the equation of the linear function g(x) that passes through the given points (1,78) and (2,79). The slope of the line passing through these points is
[tex]$m=\frac{y_2-y_1}{x_2-x_1}=\frac{79-78}{2-1}=1$$[/tex]
We can use the point-slope form of a line to find the equation of the line passing through the point (1,78) with slope m=1. That is,
[tex]$$y-78 = 1(x-1)$$[/tex]
Simplifying, we get
y = x + 77
Therefore, the test average for the science class after completing test 2 is
g(2) = 2 + 77 = 79
Part C:
To determine which class had a higher average after completing test 42, we need to evaluate f(42) and g(42) and compare the results. We have
[tex]$$f(42) = 0.9(42) + 79 = 117.8$$[/tex]
To find (42), we need to extend the linear function g(x) beyond the given data points by assuming that the function is linear and continues with the same slope m=1. That is,
g(x) = x + 77
for all [tex]$x\geq 1$[/tex]. Therefore,
[tex]$$g(42) = 42 + 77 = 119$$[/tex]
Since g(42) > f(42), we conclude that the science class had a higher average after completing test 42.
To know more Equation visit:
brainly.com/question/28243079
#SPJ1
your friend claims the geometric mean of 4 and 9 is 6, and then labels the triangle, as shown. is your friend correct? explain your reasoning.
The correct option is -C: No, 6 is the geometric mean of 4 and 9, however if the altitude is 6, then the hypotenuse is the geometric mean of the two segments.
Explain about the geometric mean?An average technique multiplies several values and determines the number's root is known as the geometric mean. You locate the nth root for their product for a collection of n numbers. This descriptive statistic can be used to sum up your data.
Mean Geometric The square root of the product of two numbers is the geometric mean amongst them. The geometric mean of two positive numbers an as well as b is the positive number x as in percentage Cross multiplication results in x² = ab,.
For the given question.
geometric mean of a and b :
From the drawn diagram.
a = 4
b = 9
x = √ab
x = √9*4
x = 6
geometric mean: 6
Applying the altitude rule:
h² = x.y
6² = 9*4
36 = 36
Thus, the geometric mean calculated by friend is correct but the marking on the diagram is wrong.
Know more about the geometric mean
https://brainly.com/question/3336179
#SPJ1
dy If x = a sin 2t, y = a(cos 2t + log tan t), then find dx
Step-by-step explanation:
We have:
x = a sin 2t
Differentiating with respect to t, we get:
dx/dt = 2a cos 2t
Next, we have:
y = a(cos 2t + log tan t)
Differentiating with respect to t, we get:
dy/dt = -2a sin 2t + (1/tan t)(1/ln 10)
Using the identity:
sin^2 t + cos^2 t = 1
We have:
sin 2t = 2sin t cos t
And:
cos 2t = cos^2 t - sin^2 t
cos 2t = 2cos^2 t - 1
Using these identities, we can rewrite dx/dt and dy/dt in terms of x and y:
dx/dt = 2a sqrt(1 - x^2/a^2)
dy/dt = -2a sqrt(1 - x^2/a^2) + (1/ln 10)(y - a cos 2t)
Therefore, we have:
dx/dy = dx/dt ÷ dy/dt
Substituting the expressions for dx/dt and dy/dt, we get:
dx/dy = (2a sqrt(1 - x^2/a^2)) / (-2a sqrt(1 - x^2/a^2) + (1/ln 10)(y - a cos 2t))
Simplifying, we get:
dx/dy = (-2 sqrt(1 - x^2/a^2)) / (2 sqrt(1 - x^2/a^2) - (1/ln 10)(y - a cos 2t))
A company has a fixed cost of $1277 each day to run their factory and a variable cost of $1.93 for each widget they produce. How many widgets can they produce for $2127?
The company can produce approximately 425 widgets for $2127.
What is cost function ?
The key concept used here is the concept of cost functions, which is an important concept in economics and business. A cost function is a mathematical function that expresses the total cost of production as a function of the level of output produced. In this case, the cost function is a linear function of the form C = a + bx, where C is the total cost, a is the fixed cost, b is the variable cost per unit, and x is the level of output.
Finding the number of widgets the company can produce given a fixed cost and a variable cost per widget :
To solve this problem, we can set up an equation that relates the total cost to the number of widgets produced.
Let x be the number of widgets produced.
The total cost C is given by:
C = fixed cost + variable cost
C = 1277 + 1.93x
We want to find the number of widgets produced for a total cost of $2127. So we can set up an equation:
2127 = 1277 + 1.93x
Subtracting 1277 from both sides gives:
850 = 1.93x
Dividing both sides by 1.93 gives:
x ≈ 439.9
Since we can't produce a fractional number of widgets, we need to round down to the nearest integer. Therefore, the company can produce approximately 425 widgets for $2127.
To know more about cost visit :
brainly.com/question/14083670
#SPJ1
solve please and thank you it’ll help a lot. 15 points.
Parallelogram (Opposite sides have the same length). Parallelogram (Area is one-half the base times the height). Parallelogram (Opposite sides are parallel). Parallelogram (Angles can be right angles)
What is the assertion of the parallelogram?According to the parallelogram law, the sum of the squares of a parallelogram's four sides is equal to the sum of the squares of its two diagonals. It is essential for the parallelogram to have equal opposite sides in Euclidean geometry.
Are a parallelogram's opposing sides parallel?A parallelogram is a particular sort of polygon. It is a quadrilateral in which the opposite side pairs are parallel to one another. There are six crucial parallelogram characteristics to be aware of: Congruent sides are those when AB = DC.
To know more about Parallelogram visit:-
https://brainly.com/question/29147156
#SPJ1
in the right triangle round to your nearest tenth. 18 15 X help please
The value οf the given angle x = 39.8 degree
What is Trigοnοmetric Functiοns?Trigοnοmetry uses six fundamental trigοnοmetric οperatiοns. Trigοnοmetric ratiοs describe these οperatiοns. The sine functiοn, cοsine functiοn, secant functiοn, cο-secant functiοn, tangent functiοn, and cο-tangent functiοn are the six fundamental trigοnοmetric functiοns.
The ratiο οf sides οf a right-angled triangle is the basis fοr trigοnοmetric functiοns and identities. Using trigοnοmetric fοrmulas, the sine, cοsine, tangent, secant, and cοtangent values are calculated fοr the perpendicular side, hypοtenuse, and base οf a right triangle.
In the figure tanx = p/h
[tex]x = tan^{-1(15/18)}[/tex]
x = 39.8
Hence the value οf the given angle x = 39.8 degree
Learn mοre about Trigonometric Functions, by the following link.
brainly.com/question/24349828
#SPJ1
What is the solution for those?
And if you can please add the explanations
The required simplified forms are 3x - 1, 6x , 2x² - 10x , a + 2b , 15x - 8 , x² + 2x + 6 , x² - y² , 6x² - 22x.
What is Equation?the definition of an equation is a mathematical statement that demonstrates that two mathematical expressions are equal. For instance, the equation 3x + 5 = 14 consists of the two expressions 3x + 5 and 14, which are separated by the 'equal' symbol.
According to question:Simplified forms of the equation are
[tex]$c: 3(x-2)+5=3x-6+5=3x-1$[/tex]
[tex]$f: 2x(3-x)+x^2=6x-x^2+x^2=6x$[/tex]
[tex]$i: 7x^2-5x(x+2)=7x^2-5x^2-10x=2x^2-10x$[/tex]
[tex]$c: 2a-(a-2b)=2a-a+2b=a+2b$[/tex]
f: [tex]$3x-4(2-3x)=3x-8+12x=15x-8$[/tex]
[tex]$x(x+4)-2(x-3)=x^2+4x-2x+6=x^2+2x+6$[/tex]
[tex]$x(x+y)-y(x+y)=(x-y)(x+y)=x^2-y^2$[/tex]
[tex]$o: 4x(x-3)-2x(5-x)=4x^2-12x-10x+2x^2=6x^2-22x$[/tex]
To know more Equation visit:
brainly.com/question/28243079
#SPJ1
What is the end behavior of the polynomial function?
Answer: D. As x → -∞, y → -∞.
Step-by-step explanation:
The graph shows the function approaching negative infinity on the x-axis (left side). When the x-axis is decreasing, the y-axis is also decreasing towards negative infinity.
Someone plezzz help me
Neither anushka nor lukas are correct as both of their calculations are wrong.
How are linear equations solved?Basic arithmetic operations like addition, subtraction, multiplication, and division are used to isolate the variable on one side of a linear equation and solve it. The objective is to make the equation as simple as possible until the variable can be identified and its value calculated. In order to solve a linear equation, you must first combine like terms to simplify the expressions on both sides of the problem.
Then, you can use inverse operations to get rid of constants and coefficients. The value of the variable can be ascertained by solving for it once it has been isolated. By looking at the coefficients and constants of the equation, it can be established if the equation has no solution or infinite solutions. In various disciplines, such as science, engineering, and finance, linear equations are used to represent connections between variables.
2/5b + 1 = -11
2/5b = -12
b= -12 x 5/2
b = -30
Learn more about linear equation here:
brainly.com/question/11897796
#SPJ1