Based on the exponential decay equation, the number of employees for the company that has been decreasing yearly by 5%, will in 10 years be approximately 515.
What is exponential decay equation?The exponential decay equation or function gives the value in t years that has a constant ratio of decrease.
Exponential decay equation is one of the two exponential functions. The other is the exponential growth equation.
The annual decrease in the number of employees = 5%
The current number of employees in the company = 860
The expected time = 10 years.
The exponential decay equation is as follows, y = 860 x 0.95^10.
y = 860 x 0.95^10 = 515
Learn more about exponential functions at https://brainly.com/question/30127596
#SPJ1
What is result of following operation(4623. 56)10+ (110011. 11)2whare (110011. 11(2 mean that 110011. 11as a number express in base 2
The given numbers are in decimal and binary system and the final result of the given operation is [tex](4675.31)_{10}[/tex].
A binary integer (base-2) is converted to an equivalent decimal number using the binary to decimal conversion formula. (base-10). In mathematics, integers are expressed using a number system. It is a method to display numerical data. The four various numeral systems are as follows:
System of Binary Numbers (Base-2)
system of octal numbers (Base-8)
System of Decimal Numbers (Base-10)
System of Hexadecimal Numbers (Base-16).
We are the two numbers:-
[tex](4623.56)_{10} , (110011.11)_{2}[/tex]
these are in decimal and binary system respectively.
now, we will express them in same system ( here we choose decimal system).
[tex](110011.11)_{2} = (2^{5} + 2^{4} + 0 + 0 + 2^{1} + 2^{0} + 2^{-1} + 2^{-2} )_{10} \\= (2^{5}+2^{4}+0*2^{4}+0*2^{3}+2^{1}+2^{0}+2^{-1}+2^{-2})_{10} \\= (32+16+2+1+0.5+0.25)_{10} \\= (51.75)_{10}[/tex]
Now, addition is done below:-
4623.56+51.75= 4675.31.
hence, the final result of the given operation= [tex](4675.31)_{10}[/tex]
To know more about binary system go through:-
https://brainly.com/question/16612919
#SPJ4
Im a trapezoid measuring 8cm, 10cm, 16 cm and 10cm on its sides. What is my Perimeter? 1-5 po lhat
Answer:
See Below.
Step-by-step explanation:
To find the perimeter of a trapezoid, you simply add up the lengths of all four sides.
In this case, the trapezoid has sides of 8 cm, 10 cm, 16 cm, and 10 cm.
Perimeter = 8 cm + 10 cm + 16 cm + 10 cm
Perimeter = 44 cm
Therefore, the perimeter of the trapezoid is 44 cm.
Hi. Please help me convert this non-linear to linear form y=mx+c. The answer is square root of y= 6/p x - 2/q .
Thank you so much.
Answer: To convert the given equation, √y = (6/p)x - (2/q), into the linear form y = mx + c, we can use the following steps:
Square both sides of the equation to eliminate the square root:
√y = (6/p)x - (2/q)
√y^2 = (6/p)x - (2/q)^2
Simplifying the right-hand side, we get:
y = (36/p^2)x - (4/q) + 4/q^2
Rearrange the equation to the form y = mx + c:
y = (36/p^2)x + (4/q^2 - 4/q)
So the linear form of the given non-linear equation is y = (36/p^2)x + (4/q^2 - 4/q).
Step-by-step explanation:
*CORRECT AND FASTEST ANSWER GETS BRAINLIEST!!!*
A greengrocer buys fruit and vegetables from the market and sells them at a 25% mark up. On one particular moring her fruit and vegetables cost her €500. If she sells all of her produce, find:
A) her profit
B) her total income
Answer: Below :)
Step-by-step explanation:
A) To find the profit, we first need to calculate the cost of the produce plus the 25% markup.
The markup is 25% of the cost, which is 0.25 * 500 = €125.
So the total cost of the produce plus markup is €500 + €125 = €625.
Now, if the greengrocer sells all the produce, the total revenue will be 100% plus the 25% markup, which is 125% of the original cost.
125% of €500 is 1.25 * 500 = €625, which is the same as the cost plus markup.
Therefore, the profit is the markup, which is €125.
B) To find the total income, we add the profit to the total cost:
Total income = €500 + €125 = €625
Answer:
A) €125
B) €625
Use the table you created to play the "Two Spinner
Game" below.
For this game, we say the spinners "match" if they
land on the same color (e.g., both red, or both blue).
How do you win? Once again, that's your choice:
(1) If the spinners MATCH, you win.
(2) If the spinners DO NOT MATCH, you win.
Which game would you be more likely to win?
Therefore, you would be more likely to win the game by choosing option (2) - winning if the spinners do not match.
What is probability?Probability is a measure of the likelihood or chance of an event occurring. It is expressed as a number between 0 and 1, where 0 indicates that the event is impossible, and 1 indicates that the event is certain. The probability of an event is calculated by dividing the number of favorable outcomes by the total number of possible outcomes. Probability is used in many areas of mathematics, science, engineering, finance, and other fields to model and analyze uncertain situations. It helps to make predictions, to assess risks and opportunities, and to make informed decisions based on available information. Probability theory provides a foundation for statistical inference, which is used to draw conclusions from data and to test hypotheses about the underlying population.
Here,
In the "Two Spinner Game", there are two possible outcomes for each spin - a match or a non-match. The probability of the spinners matching is the probability of both spinners landing on the same color. Let's say that there are 3 red sections, 3 blue sections, and 2 green sections on each spinner.
The probability of the first spinner landing on red is 3/8, and the probability of the second spinner landing on red is also 3/8. Therefore, the probability of both spinners landing on red (a match) is (3/8) x (3/8) = 9/64.
Similarly, the probability of both spinners landing on blue (another match) is (3/8) x (3/8) = 9/64, and the probability of both spinners landing on green (a match) is (2/8) x (2/8) = 4/64.
The probability of the spinners not matching is the probability of them landing on different colors. There are 3 different pairs of colors that are not a match: red-blue, red-green, and blue-green. The probability of each of these pairs is (3/8) x (3/8) = 9/64.
So, there are 6 possible outcomes, and the probability of winning by a match is 9/64 + 9/64 + 4/64 = 22/64, or about 34.4%. The probability of winning by a non-match is 3 x 9/64 = 27/64, or about 42.2%.
To know more about probability,
https://brainly.com/question/30034780
#SPJ1
Find an expression that is equivalent to (a - b) ^ 3
An expression equivalent to (a - b)³ is a³ - 3a²b + 3ab² - b³.
What other expressions are the same as 2 5?The fractions 4/10, 6/15, 8/20, etc. are identical to 2/5. In the reduced form, equivalent fractions have the same value. Explanation: When writing equivalent fractions, the numerator and denominator should be multiplied or divided by the same number.
One way to expand (a - b)³ is to use the binomial formula:
(a - b)³ = C(3,0) * a³ * (-b)^0 + C(3,1) * a² * (-b) + C(3,2) * a * (-b)² + C(3,3) * a * (-b)³
where C(n,k) denotes the number of ways there are to select k objects from a set of n objects, and "n choose k" is the binomial coefficient.
Simplifying the above expression, we get:
(a-b)³ = a³-3a²b+3ab²-b³.
To know more about expression visit:-
https://brainly.com/question/14083225
#SPJ1
B=6,c=7.5 what is A in Pythagorean therom
Answer: 4.5
Step-by-step explanation:
A^2 +B^2 =C^2
A^2 + 6^2 =7.5^2
A^2 + 36= 56.25
A^2= 20.25
A= square root of 20.25
A= 4.5
4. Assume that 4 years from now you will need $1,000. Your bank compounds interest
at an 8% annual rate. A. How much must you deposit 1 year from now to have a balance of $1,000 at
Year 4?
b. If you want to make equal payments at the end of Years 1 through 4 to
accumulate the $1,000, how large must each of the 4 payments be?
c. If your father were to offer either to make the payments calculated in part b
($221. 92) or to give you a lump sum of $750 one year from now, which would
you choose?
d. If you will have only $750 at the end of Year 1, what interest rate, compounded
annually, would you have to earn to have the necessary $1,000 at Year 4?
e. Suppose you can deposit only $186. 29 each at the end of Years 1 through 4, but
you still need $1,000 at the end of Year 4. What interest rate, with annual
A. deposit $735.03 one year from now. B. $210.48 for each of the four years. C. choose the lump sum of $750 from your father. D. Interest rate of 7.4% compounded annually. E. Interest rate of 12%.
a. To have a balance of $1,000 four years from now, you need to calculate the present value of this amount. Using the compound interest formula, we can calculate that you need to deposit $735.03 one year from now to have a balance of $1,000 four years from now.
b. If you want to make equal payments at Years 1 through 4 to accumulate the $1,000, you can use the annuity formula to calculate the required payments. The formula gives us a payment of $210.48 for each of the four years.
c. If your father were to offer either to make the payments calculated in part b or to give you a lump sum of $750 one year from now, you can compare the present value of both options. The present value of the four payments of $210.48 each, using an 8% annual interest rate, is $682.96. Therefore, you would choose the lump sum of $750 from your father.
d. If you have only $750 one year from now, you can use the compound interest formula to calculate the interest rate you need to earn to have $1,000 four years from now. Using the formula, we get an interest rate of 7.4% compounded annually.
e. If you can only deposit $186.29 each at Years 1 through 4, you can use the compound interest formula to calculate the interest rate you need to earn to have $1,000 four years from now. Using the formula, we get an interest rate of 12% compounded annually.
Learn more about compound interest here: brainly.com/question/14295570
#SPJ4
Complete question:
Assume that 4 years from now you will need $1,000. Your bank compounds interest at an 8% annual rate.
a. How much must you deposit 1 year from now to have a balance of $1,000 4 years from now?
b. If you want to make equal payments at Years 1 through 4 to accumulate the $1,000, how much each of the 4 payments be?
c. If your father were to offer either to make the payments calculated in part b or to give you a lump sum of $750 1 year from now, which would you choose?
d. If you have only $750 1 year from now, what interest rate, compounded annually, would you have to earn to have the necessary $1,000 4 years from now? 7.4%
e. Suppose you can deposit only $186.29 each at Years 1 through 4, but you still need $1,000 at Year 4. What interest rate, with annual compounding, must you seek out to achieve your goal?
a
49⁰
Find the measure of a.
127⁰
72⁰
Answer:
112°
Step-by-step explanation:
Finding the unknown angle in a quadrilateral:
Sum of all angles of a quadrilateral = 360
a + 49 + 72 + 127 = 360
a + 248 = 360
a = 360 - 248
a = 112°
In a distribution of 387 values with a mean of 72, at least 344 fall within the interval 64-80. Approximately what percentage of values should fall in the interval 56-88? Use Chebyshev’s theorem. Round your k and s values to one decimal place and final answer to two decimal places.
The required percentage of values that should fall in the interval 56-88 is approximately 74.37%.
Chebyshev’s Theorem:Chebyshev's Theorem states that, for any given data set, the proportion (or percentage) of data points that lie within k standard deviations of the mean must be at least (1 - 1/k2), where k is a positive constant greater than 1.Calculation:Given,Mean (μ) = 72N (Total number of values) = 387Interval (x) = 64-80 and 56-88Minimum values (n) = 344Minimum percentage (p) = (344 / 387) x 100 = 88.85%From the given data we have,1. Calculate the variance of the distribution,Variance = σ2 = [(n × s2 ) / (n-1)]σ2 = [(344 × 42) / 386]σ2 = 18.732. Calculate the standard deviation of the distribution,σ = √(18.73)σ = 4.33. Calculate k = (|x - μ|) / σ for the given interval 56-88,Here, x1 = 56, x2 = 88, k1 = |56-72| / 4.33 = 3.7, k2 = |88-72| / 4.33 = 3.7Thus, k = 3.74. Calculate the minimum percentage of values within the interval 56-88 using Chebyshev's Theorem,p = [1 - (1/k2)] x 100p = [1 - (1/3.7)2] x 100p = 74.37% (approximately)Therefore, the required percentage of values that should fall in the interval 56-88 is approximately 74.37%.
Learn more about Percentage
brainly.com/question/2155156
#SPJ11
Use substitution to solve -4x + y = 3, 5x - 2y = -9
Using the substitution method, the solution of the system of equations -4x + y = 3 and 5x - 2y = -9 is (x, y) = (1, 7)
We can solve this system of equations using the substitution method by solving for one variable in terms of the other in one equation, and then substituting that expression into the other equation. Here's how:
-4x + y = 3 (Equation 1)
5x - 2y = -9 (Equation 2)
Solving Equation 1 for y, we get:
y = 4x + 3
Now, we substitute this expression for y into Equation 2 and solve for x:
5x - 2(4x + 3) = -9
5x - 8x - 6 = -9
-3x = -3
x = 1
We have found the value of x to be 1. Now, we substitute this value back into Equation 1 to find the value of y:
-4(1) + y = 3
y = 7
Therefore, the solution to the system of equations is (x, y) = (1, 7)
Learn more about substitution method here
brainly.com/question/14619835
#SPJ4
A certain population is strongly skewed to the left. We want to estimate its mean, so we will collect a sample. Which should be true if we use a large sample rather than a small one?
I. The distribution of our sample data will be closer to normal.
II. The sampling model of the sample means will be closer to normal.
III. The variability of the sample means will be greater.
A. I and II only
B. I only
C. III only
D. II and III only
E. II only
A. I and II only true if we use a large sample rather than a small one
sampling model
Define sampling modelA sampling model is a statistical model used to describe the behavior of a sample statistic. In other words, it is a model that describes the distribution of a particular sample statistic, such as the mean or standard deviation, as it is repeatedly sampled from a population.
When a sample is drawn from a population that is strongly skewed to the left, a small sample may not accurately represent the true population mean. However, if a large sample is taken, the sample mean is more likely to be normally distributed, due to the central limit theorem. This means that both statement I and II are true.
Statement III is false because as the sample size increases, the variability of the sample means actually decreases. This is because larger samples tend to have less sampling error and are more representative of the population as a whole.
to know more about statistics, visit;
https://brainly.com/question/29093686
#SPJ1
The radius of a circle is 8 meters. What is the circle's circumference?
Use 3.14 for л.
Answer:
circumference=50.24
Step-by-step explanation:
c=2x3.14xr
c=2x3.14x(8)
c=50.24
find the length of the cord pt.3
According to the circle theorem, we can find the length of the cord, x = 4 units.
Define circle theorem?Geometrical assertions known as "circle theorems" set forward significant conclusions pertaining to circles. These theorems provide significant information regarding several aspects of a circle.
A circle's chord is a line segment that hits the circle twice on its edge, separating it into two equal pieces. The circle is divided into two equal pieces by the longest chord of the circle, which runs through its centre.
Here in the given circle,
As per the intersecting chords theorem,
AB × CB= BE × BD
⇒ 6 × 6 = 9× x
⇒ x = 36/9=4
Therefore, the length of the chord, x = 4 units.
To know more about circle theorem, visit:
https://brainly.com/question/19906313
#SPJ1
What is the value of x in the equation 1/4(4 + x) = 4/3
The value of x in the equation 1/4(4 + x) = 4/3 is x = 4/3.
Multiply both sides of the equation by 4 to eliminate the fraction on the left-hand side:
1/4(4 + x) = 4/3
4 * 1/4(4 + x) = 4 * 4/3
Simplifying:
4 + x = 16/3
Subtract 4 from both sides of the equation:
4 + x - 4 = 16/3 - 4
Simplifying:
x = 16/3 - 12/3
x = 4/3
A fraction is a mathematical concept used to represent a part of a whole or a ratio between two quantities. It is typically written in the form of a numerator (top number) over a denominator (bottom number), separated by a horizontal line. For example, the fraction 1/2 represents one out of two equal parts, or half of a whole. Similarly, the fraction 3/4 represents three out of four equal parts, or three-quarters of a whole.
Fractions are an essential part of mathematics and are used in a wide range of applications, including measurements, cooking, and financial calculations. They can be added, subtracted, multiplied, and divided just like whole numbers, but they require a bit more care in their manipulation due to their unique structure.
To learn more about Fraction visit here:
brainly.com/question/10354322
#SPJ4
two people standing at different locations are looking at a tall building. person a angle of elevation to the building is 35 degrees. person b angle of elevation is 77 degrees. the building is 8 miles away from person b. how far away is person a from the building?
Therefore, Person A is approximately 95.17 miles away from the building.
To find out how far person A is from the building, we'll need to use trigonometry. The diagram below shows the situation.
Given that Person A's angle of elevation to the building is 35 degrees, we'll let angle BAC be 35 degrees.
Similarly, since Person B's angle of elevation is 77 degrees, we'll let angle ABC be 77 degrees. We'll also let AB be x, the distance from Person A to the building, and BC be 8 miles, the distance from Person B to the building.
First, we'll use the tangent function to find the height of the building. In triangle ABC, tan(77) = height/8. Solving for the height, we get:
height = 8tan(77) ≈ 61.23 miles.
Next, we'll use the tangent function again to find x. In triangle ABC, tan(35) = height/x + 8. Solving for x, we get:
x = (height)/(tan(35)) - 8
≈ 103.17 miles - 8
≈ 95.17 miles.
for such more questions on elevation
https://brainly.com/question/25748640
#SPJ11
Elena and Jada were racing on their bikes. Elena started 15 meters ahead of Jada. Elena biked at a rate of 20 meters per second. Jada biked at a rate of 22 meters per second. Let x represent time in seconds and y represent distance in meters. After how many seconds will Jada pass Elena?
Jada overtakes Elena after 7.5 seconds.
The set of equations that best captures the scenario is =y=15+20x.
Let's establish a coordinate system with Elena's starting point as the origin. Elena's separation from the origin at time x is given by: y=15+20x
y1 = 15 + 20x
Jada's distance from the origin at time x is determined similarly by:
y2 = 22x
Finding the moment x at which Jada overtakes Elena and their distances from the origin are equal is our goal.
y1 = y2
With the formulas for y1 and y2 substituted, we obtain:
15 + 20x = 22x
When we simplify this equation, we obtain:
2x = 15
x = 7.5
Jada therefore overtakes Elena after 7.5 seconds.
To know more about set of equations, click the below link
https://brainly.com/question/90105
#SPJ4
An urn contains eight green balls and six red balls. Four balls are randomly selected from the urn in succession, with replacement. That is, after each draw the selected ball is returned. What is the probability that all four balls drawn are red. Round your answer to three decimal places
The probability of drawing four red balls in succession, with replacement, is 0.04 or 4%.
Since we are replacing the ball after each draw, the probability of drawing a red ball remains the same for each draw. The probability of drawing a red ball on any given draw is:
P(Red) = Number of Red Balls / Total Number of Balls
P(Red) = 6 / (8 + 6)
P(Red) = 0.4286
So, the probability of drawing four red balls in a row is the product of the probability of drawing a red ball four times in a row:
P(4 Red Balls) = P(Red) * P(Red) * P(Red) * P(Red)
P(4 Red Balls) = 0.4286 * 0.4286 * 0.4286 * 0.4286
P(4 Red Balls) = 0.04 or 4%
To know more about probability here
https://brainly.com/question/11234923
#SPJ4
Triangle lmn will be dilated with respect to the origin by a scale factor of 1/2
what are the new coordinates of L’M’N’
The triangle LMN, with vertices L(6, −8), M(4, −4), and N(−12, 2), dilated with respect to the origin by a scale factor of 1/2, results in triangle L'M'N', with vertices L'(3, -4), M'(2, -2), and N'(-6, 1)
To dilate a triangle with respect to the origin, we need to multiply the coordinates of each vertex by the scale factor. In this case, the scale factor is 1/2, so we multiply each coordinate by 1/2.
The coordinates of L' are obtained by multiplying the coordinates of L by 1/2:
L'((1/2)6, (1/2)(-8)) = (3, -4)
The coordinates of M' are obtained by multiplying the coordinates of M by 1/2:
M'((1/2)4, (1/2)(-4)) = (2, -2)
The coordinates of N' are obtained by multiplying the coordinates of N by scale factor 1/2:
N'((1/2)×(-12), (1/2)×2) = (-6, 1)
Learn more about dilation here
brainly.com/question/26155897
#SPJ4
The given question is incomplete, the complete question is:
Triangle LMN with vertices L(6, −8), M(4, −4), and N(−12, 2) is dilated with respect to origin by a scale factor of 2 to obtain triangle L′M′N′. What are the new coordinates of L′M′N′ ?
48 identical looking bags of lettuce were delivered to Circle J grocers. Unfortunately, 12 of these bags of lettuce are contaminated with listeria. Joe, from Joes Cafe randomly selects 4 bags of the lettuce for his cafe. Let X equal the number of the selected packets which are contaminated with listeria. a. How many possible ways are there to select the 4 out of 48 packets (order does not matter) without replacement? b. What is the probability thatX=0
c. What is the probability thatX=4? d. What is the probability thatx>2? e. What is the expected value ofX? f. What is the standard deviation ofX? g. What is the probability that X is smaller than its expected value?
h. What is the probability thatX=5?
Probability that X = 5:Since, Joe selects only 4 bags of lettuce. X can't be 5.P(X=5) = 0Hence, the probability that X = 0 is 0.3164 and the probability that X = 5 is 0.
The given problem can be solved using the concept of binomial distribution.
In the given question, there are 48 bags of lettuce out of which 12 bags are contaminated with listeria.
Joe selects 4 bags of lettuce. X is the random variable which represents the number of contaminated bags of lettuce selected by Joe. X can take values from 0 to 4. (as Joe selects only 4 bags).
Part A)Number of ways to select 4 bags of lettuce out of 48:This can be solved using the concept of combinations. The formula to calculate the number of combinations is[tex]:nCr = n! / r!(n-r)![/tex]Here, n = 48 and r = 4.
Number of ways = 48C4 = 194,580
Part B)Probability that X = 0:This can be calculated using the formula for the binomial distribution :
[tex]P(X = r) = nCr * p^r * q^(n-r)[/tex]
Here, p = probability of selecting contaminated bag = 12/48 = 0.25q = probability of selecting non-contaminated bag = 1-0.25 = 0.75Also, n = 4 and r = [tex]0P(X=0) = 4C0 * 0.25^0 * 0.75^4= 0.3164[/tex]
for such more questions on probability
https://brainly.com/question/13604758
#SPJ11
Suppose f is a continuous function defined on a rectangle R=[a,b]X[c,d]. What is the geometric interpretation of the double integral over R of f(X,y) if f(X,y)>0
If f(x,y) > 0 and is a continuous function defined over a rectangle R=[a,b]x[c,d], then the double integral over R of f(x,y) can be interpreted as the volume of a solid that lies in the first octant and under the graph of the function f(x,y) over the region R.
The geometric interpretation of the double integral over R of f(x,y) if f(x,y) > 0, where f is a continuous function defined on a rectangle R = [a,b] × [c,d] is given as follows:
The double integral of f(x,y) over R, if f(x,y) > 0, gives the volume under the graph of the function f(x,y) over the region R in the first octant.
Consider a point P (x, y, z) on the graph of f(x, y) that is over the region R, and let us say that z = f(x,y). If f(x,y) > 0, then P is in the first octant (i.e. all its coordinates are positive).
As a result, the volume of the solid that lies under the graph of f(x,y) over the region R in the first octant can be found by integrating the function f(x,y) over the rectangle R in the xy-plane, which yields the double integral.
The following formula represents the double integral over R of f(x,y) if f(x,y) > 0:
∬Rf(x,y)dydx
The geometric interpretation of the double integral over R of f(x,y) if f(x,y) > 0 is given by the volume of the solid that lies under the graph of the function f(x,y) over the region R in the first octant.
To know more about the "continuous function": https://brainly.com/question/30089593
#SPJ11
The average between 3. 15 and x is 40 what is x?
The value of x that makes the average between 3.15 and x equal to 40 is 76.85.
In this problem, we are given two numbers, 3.15 and x, and told that the average between them is 40. We can set up an equation to solve for x as follows:
(3.15 + x) / 2 = 40
To find the average between 3.15 and x, we add the two numbers together and divide by 2, which gives us the equation above.
To solve for x, we can start by multiplying both sides of the equation by 2:
3.15 + x = 80
Next, we can subtract 3.15 from both sides of the equation:
x = 76.85
To know more about average here
https://brainly.com/question/16956746
#SPJ4
Ryan buys some jumpers to sell on a stall. He spends £190 buying 80 jumpers. He sells 50% of the jumpers for £12 each. He then puts the rest of the jumpers on a Buy one get one half price offer. He manages to sell half the remaining jumpers using this offer. How much profit does Ryan make?
Ryan makes a profit of £240. the total sales now amount to £600. By subtracting the cost of the jumpers, i.e. £190, from the total sales, we calculate that Ryan makes a profit of £240.
Ryan spends £190 to buy 80 jumpers. He sells 50% of the jumpers, i.e. 40 jumpers, at £12 each. This brings the total sales to £480. Then, he puts the remaining 40 jumpers on a Buy one get one half price offer. He sells 20 of the remaining jumpers using this offer. Therefore, the total sales now amount to £600. By subtracting the cost of the jumpers, i.e. £190, from the total sales, we calculate that Ryan makes a profit of £240.
Learn more about amount here
https://brainly.com/question/8082054
#SPJ1
Mrs Smith walks a half a mile a day after work. She works five days a week. How many yards will she have walked for the week by Friday morning?
The distance Mrs. Smith covers is 3520 yards during the duration of the week by Friday morning.
One week has seven days in total.
Mrs. Smith walks half a mile each day after work, she walks a total of
0.5 miles/ day × 7 days/ week = 3.5 miles/ week
Now, if we calculate the distance on Friday morning, she must have walked four times till Friday morning since she has to walk after her work.
Therefore,
0.5 miles/ day × 4 days = 2 miles
To convert miles to yards, we can use the fact that there are 1760 yards in one mile:
2 miles/week × 1760 yards/mile = 3520 yards/week
Therefore, by Friday morning, Mrs. Smith will have walked 3520 yards.
To learn more about the distance at
https://brainly.com/question/26264531
#SPJ4
I NEED YOUR HELP ASAP!!
To create a modified box plot for a data set, determine the outliers of the data set and the smallest and largest numbers in the data set that are not outliers. Next, determine the median of the first half of the data set, the median of the entire data set, and the median of the second half of the data set.
What are the values that are needed to create a modified box plot for this data set?
19, 15, 22, 35, 16, 22, 4, 22, 24, 16, 17, 21
Enter your answers in the blanks in order from least to greatest.
Smallest number in the data set that is not an outlier is 15, Median of the first half is 17, Median of the entire data set is 20.5. Median of the second half is 22. Largest number in the data set that is not an outlier is 35.
Give a short note on Median?
In statistics, the median is a measure of central tendency that represents the middle value in a dataset. To find the median, the data must first be sorted in ascending or descending order. If the dataset contains an odd number of values, the median is the middle value. If the dataset contains an even number of values, the median is the average of the two middle values.
The median is a useful measure of central tendency in datasets that are skewed or have outliers, as it is less sensitive to extreme values than the mean. It is also useful in datasets with non-numeric values, such as rankings or survey responses.
To create a modified box plot, we need the following values:
The smallest number in the data set that is not an outlier: 15
The median of the first half of the data set: 17
The median of the entire data set: 20.5
The median of the second half of the data set: 22
The largest number in the data set that is not an outlier: 35
So the values needed to create a modified box plot for this data set are: 15, 17, 20.5, 22, 35.
In a regular pentagon PQRST. PR intersects QS
at O. Calculate angle ROS.
Answer: 72°
Step-by-step explanation:
To find the interior angle of this shape, use the formula 180(n-2)/n, where n is the amount of sides. Plugging 5 in for the interior angle of a pentagon, you get 180(3)/5, or 108°.
Using the statement that PR intersects QS, we can see that triangle QOR is isosceles (to get this, look at triangle PQR, and note that because it has 2 equal side lengths, and its last length is not equivalent to the other 2 sides, it is isosceles). Solving for angle PRQ, we know one angle is 108°, and the other two are equal. The total angle in a triangle is 180°, so (180°-108°)/2 = 36° (angles QPR and PRQ).
Since the angle of R = 108°, we can find angle PRS as 108° - 36°, or 72°. Since triangles PQR and QRS are similar (share the same angles and side lengths), we can see that angle RQS and RSQ are both 36°.
Since ORS is a triangle, its angle total is 180°. Since we know the angles ORS and OSR (respectively) already as 72° and 36°, we can subtract these angles to find angle ROS. 180°-72°-36° = 72°
the nutty professor sells cashews for $7.70 per pound and brazil nuts for $4.80 per pound. how much of each type should be used to make a 27 pound mixture that sells for $6.41 per pound?
The amount that each type would be 11.87 lbs of cashews and 15.13 lbs of brazil nuts
1. First, find the total cost of 27 lbs of the mixture: 27 lbs x $6.41/lb = $171.07.
2. Next, find the cost of cashews and brazil nuts in the mixture. Cashews cost $7.70/lb and brazil nuts cost $4.80/lb.
3. Subtract the cost of the brazil nuts from the total cost of the mixture: $171.07 - (27 lbs x $4.80/lb) = $105.27.
4. Divide the cost of the cashews ($105.27) by the cost of one pound of cashews ($7.70): $105.27/$7.70 = 13.66 lbs.
5. Subtract the number of pounds of cashews (13.66) from the total pounds of the mixture (27) to find the number of pounds of brazil nuts: 27 - 13.66 = 15.13 lbs.
6. Therefore, the mixture should contain 11.87 lbs of cashews and 15.13 lbs of brazil nuts.
See more about total cost at: https://brainly.com/question/5168855
#SPJ11
The equation y = 8x represents the
relationship between the amount of
time Shanay takes to weave thread
into fabric and the number of rows.
How long will it take Shanay to weave
72 rows of fabric at this constant rate?
Write a quadratic function in standard form to represent the data in the table.
Ordered pairs arranged in a table. From left to right the pairs are: 2, 3, and 4, 1, and 6, 3, and 8, 9, and 10, 19.
y = x2 − x +
Martina made $60 for 5 hours of work. At the same rate, how many hours would she have to work to make $204 ?
Answer:
WELL 17
Step-by-step explanation:
60 DIVED BY 5 IS 12
SO 12 DIVIDED BY 204 IS 17 SOOOOOO 17 IS THE ANS