Give examples of two variables that have a perfect positive linear correlation and two variables that have a perfect negative linear correlation.

Answers

Answer 1

Answer:

answer below

Step-by-step explanation:

1. price per gallon of gasoline and total cost of gasoline

2. distance from a door and height of a wheelchair ramp

perfect positive linear relationship:

this is a relation that exists between two variables. The pearson correlation is used to check this relationship and if the relationship is 1.0 then it is established that a positive linear relationship exists

negative linear relationship

this is a relationship between variables where the pearson correlation is less than 0. if the value is -1.0 then a negative linear relatioship exists.

price per gallon of gasoline and total cost of gasoline move in the same direction so it is positive.

distance from a door and height of a wheelchair ramp are negative because they do not move in the same direction.


Related Questions

The top speed of this coaster is
128 mph. What is the tallest peak
of this coaster?
** Hint... convert mph into m/s.*​

Answers

To convert miles per hour to meters per second divide by 2.237

128 miles per hour / 2.237 = 57.22 meters per second.

Using the first equation:

57.22 = sqrt(2 x 9.81 x h)

Remove the sqrt by raising both sides to the second power:

57.22^2 = (2 x 9.81 x h)

Simplify Both sides:

3274.1284 = 19.62h

Divide both sides by 19.62:

H = 3274.1284/ 19.62

H = 166.88 meters

what is the domain of f(x)=(1/4)^x

Answers

Answer:

B All real numbers

hope you wil understand

Answer:

[tex]\boxed{\sf B. \ All \ real \ numbers}[/tex]

Step-by-step explanation:

The domain is all possible values for x.

[tex]f(x)=(\frac{1}{4} )^x[/tex]

There are no restrictions on the value of x.

The domain is all real numbers.

PLS HELPPPPPPPPPPP :p 8*10^3 is how many times larger that 4*10^2?

Answers

Answer:

20 times.

Step-by-step explanation:

To find out how many times larger a number is than another number, simply divide the two numbers, with the larger number being in the numerator.

For example, how many times larger is 6 than 2? The answer would be 6/2 or 3 times larger.

So, divide 8*(10^3) and 4*(10^2):

[tex]\frac{8\times10^3}{4\times10^2}[/tex]

Expand the expressions. This is the same as saying:

[tex]\frac{8\times10\times10\times10}{4\times10\times10}[/tex]

We can cancel two of the 10s since they are in both the numerator and the denominator. Thus, only one 10 is left in the numerator:

[tex]\frac{8\times10}{4}[/tex]

Simplify:

[tex]=\frac{80}{4} =20[/tex]

Therefore, 8*(10^3) (or 8000) is 20 times larger than 4*(10^2) (or 400).

Answer:

20 times

Step-by-step explanation:

hey,

so lets solve 8*10^3  first

so we use the order of operations

P

= Parentheses first

E

= Exponents (ie Powers and Square Roots, etc.)

MD

= Multiplication and Division (left-to-right)

AS

= Addition and Subtraction (left-to-right)

so  after doing the exponents part 8*1000

we do the multiplication

=8000

SO THE FIRST NUMBER IS 8000

now lets solve 4*10^2

so we use the order of operations

P

= Parentheses first

E

= Exponents (ie Powers and Square Roots, etc.)

MD

= Multiplication and Division (left-to-right)

AS

= Addition and Subtraction (left-to-right)

so we do exponents first 4*100

then multiplication

=400

SO THE SECOND NUMBER IS 400

To find out how many times larger a number is than another number, simply divide the two numbers, with the larger number being in the numerator.

now we divide  8000 by 400

=20

so 8*10^3 is 20 times larger than  4*10^2

HOPE I HELPED

PLS MARK BRAINLIEST  

DESPERATELY TRYING TO LEVEL UP

✌ -ZYLYNN JADE ARDENNE

JUST A RANDOM GIRL WANTING TO HELP PEOPLE!

                    PEACE!

Find the perimeter of a rectangle that is 7 centimeters long and 7 centimeters wide

Answers

Answer:

28cm

Step-by-step explanation:

2L+2W=

14+14=28

(It’s a square)

Simplify to create an equivalent expression.
\qquad{7n-(4n-3)}7n−(4n−3)

Answers

Answer:

[tex]3n + 3[/tex]

[tex]3(n+1)[/tex]

Step-by-step explanation:

Given

[tex]7n - (4n - 3)[/tex]

Required

Simplify

To simplify the given expression, you start by opening  the bracket

[tex]7n - (4n - 3)[/tex]

[tex]7n - 4n + 3[/tex]

Next, you perform arithmetic operations on like terms

[tex]3n + 3[/tex]

The answer can be further simplified;

Factorize [tex]3n + 3[/tex]

[tex]3(n+1)[/tex]

Hence;

[tex]7n - (4n - 3)[/tex] when simplified is equivalent to [tex]3n + 3[/tex] or [tex]3(n+1)[/tex]

Answer:

3n+n

Step-by-step explanation:

A laboratory tested n = 98 chicken eggs and found that the mean amount of cholesterol was LaTeX: \bar{x}x ¯ = 86 milligrams with σ = 7 milligrams. Find the margin of error E corresponding to a 95% confidence interval for the true mean cholesterol content, μ, of all such eggs.

Answers

Answer:

1.3859

Step-by-step explanation:

The formula for Margin of Error is given as:

Margin of Error = Critical value × Standard Error

Critical value = z score

In the question, we are given a confidence interval of 95%.

Z score for a 95% confidence level is given as: 1.96

Hence, critical value = 1.96

Standard Error = σ / √n

Where n = number of samples = 98 chicken eggs

σ = Standard deviation = 7 milligrams

Standard Error = 7/√98

Standard Error = 0.7071067812

Hence, Margin of Error = Critical value × Standard Error

Margin of Error = 1.96 × 0.7071067812

Margin of Error = 1.3859292911

Therefore, the margin of error corresponding to a 95% confidence interval for the true mean cholesterol content, μ, of all such eggs is approximately 1.3859

What are the solutions of the equation x4 + 6x2 + 5 = 0? Use u substitution to solve.
x = i and x = i5
x=+ i and x
x= +115
O x=V-1 and x = = -5
x=+ -1 and x = = -5​

Answers

Answer:

A; The first choice.

Step-by-step explanation:

We have the equation [tex]x^4+6x^2+5=0[/tex] and we want to solve using u-substitution.

When solving by u-substitution, we essentially want to turn our equation into quadratic form.

So, let [tex]u=x^2[/tex]. We can rewrite our equation as:

[tex](x^2)^2+6(x^2)+5=0[/tex]

Substitute:

[tex]u^2+6u+5=0[/tex]

Solve. We can factor:

[tex](u+5)(u+1)=0[/tex]

Zero Product Property:

[tex]u+5=0\text{ and } u+1=0[/tex]

Solve for each case:

[tex]u=-5\text{ and } u=-1[/tex]

Substitute back u:

[tex]x^2=-5\text{ and } x^2=-1[/tex]

Take the square root of both sides for each case. Since we are taking an even root, we need plus-minus. Thus:

[tex]x=\pm\sqrt{-5}\text{ and } x=\pm\sqrt{-1}[/tex]

Simplify:

[tex]x=\pm i\sqrt{5}\text{ and } x=\pm i[/tex]

Our answer is A.

Given a right triangle with a hypotenuse of 6 cm and a leg of 4cm, what is the measure of the other leg of the triangle rounded to the tenths?

Answers

Answer:

4.5 cm

Step-by-step explanation:

a^2+b^2=c^2

A represents the leg we already know, which has a length of 4 cm. C represents the hypotenuse with a length of 6 cm:

4^2+b^2=6^2, simplified: 16+b^2=36

subtract 16 from both sides:

b^2=20

now find the square root of both sides and that is the length of the other leg.

sqrt20= 4.4721, which can be rounded to 4.5

Answer:

4.5 cm

Step-by-step explanation:

Since this is a right triangle, we can use the Pythagorean Theorem.

[tex]a^2+b^2=c^2[/tex]

where a and b are the legs and c is the hypotenuse.

One leg is unknown and the other is 4 cm. The hypotenuse is 6 cm.

[tex]a=a\\b=4\\c=6[/tex]

Substitute the values into the theorem.

[tex]a^2+4^2=6^2[/tex]

Evaluate the exponents first.

4^2= 4*4= 16

[tex]a^2+16=6^2[/tex]

6^2=6*6=36

[tex]a^2+16=36[/tex]

We want to find a, therefore we must get a by itself.

16 is being added on to a^2. The inverse of addition is subtraction. Subtract 16 from both sides of the equation.

[tex]a^2+16-16=36-16\\\\a^2=36-16\\\\a^2=20[/tex]

a is being squared. The inverse of a square is a square root. Take the square root of both sides.

[tex]\sqrt{a^2}=\sqrt{20} \\\\a=\sqrt{20} \\\\a=4.47213595[/tex]

Round to the nearest tenth. The 7 in the hundredth place tells us to round the 4 in the tenth place to a 5.

[tex]a=4.5[/tex]

Add appropriate units. In this case, centimeters.

a= 4.5 cm

The length of the other leg is about 4.5 centimeters.

The length of the sides of the triangle are in the ratio 3:4:5 and it’s perimeter is 144 cm find its area and height corresponding to the longest side

Answers

3:4:5 is one of Pythagorean’s triplets, meaning this is a right triangle.

144 = 3x + 4x + 5x (combine like terms)
144 = 12x (divide both sides by 12)
x = 12
To find the side lengths, multiply 3, 4 and 5 by 12. This means the triangle has sides of 36, 48 and 60 centimetres.

Because this is a right triangle, two of the sides are the base and the height. The hypotenuse (longest side) is not the base nor the height because it is not directly adjacent to the right angle. In this case, the hypotenuse is 60 cm.
A = bh/2
A = (36 cm)(48 cm)/2
A = 864 cm^2
Therefore the area is 864 cm^2.

I’m not sure what is meant by the “height corresponding to the longest side”, sorry.

Hope this helps!

Consider the age distribution in the United States in the year 2075 (as projected by the Census Bureau). Construct a cumulative frequency plot and describe what information the plot communicates about the distribution of ages in the future.

Answers

Answer:

The cumulative frequency plot is also attached below.

Step-by-step explanation:

The data provided is as follows:

Age Group Frequency

   0 - 9             34.9

  10 - 19             35.7

20 - 29             36.8

30 - 39             38.1

40 - 49             37.8

50 - 59             37.8

60 - 69             34.5

70 - 79             27.2

80 - 89             18.8

90 - 99               7.7

100 - 109       1.7

Consider the Excel output attached.

The cumulative frequency are computed in the Excel sheet.

The cumulative frequency plot is also attached below.

From the cumulative frequency plot it can be seen that in the future most people will belong to a higher age group rather then the lower ones.

If the sample size is increased and the standard deviation and confidence level stay the same, then the margin of error will also be increased.

a. True
b. False

Answers

False!

The answer is: False.

Whomever stated the answer is "true" is wrong.

-8 + (-15)
Evaluate this expression ​

Answers

Answer:

-23

Step-by-step explanation:

-8+(-15) means that you are subtracting 15 from -8. So you end up with -8-15=-23.

A restaurant hands out a scratch-off game ticket with prizes being worth purchases at the restaurant. The back of the ticket lists the odds of winning each dollar value: 0.05 for $10, 0.04 for $25, 0.01 for $50, and 0.003 for $100. What are the odds that the ticket is worth at least $25?

Answers

Answer: 0.05412

Step-by-step explanation:

Formula : Odds of having an event is given by  [tex]o=\dfrac{p}{1-p}[/tex], where p = probability that event happens.

In terms to find p , we use [tex]p=\dfrac{o}{1+o}[/tex]

Given, he back of the ticket lists the odds of winning each dollar value: 0.05 for $10, 0.04 for $25, 0.01 for $50, and 0.003 for $100.

Let X be the worth of ticket.

Then, the probability that the ticket is worth at least $25 =

[tex]P(X\geq 25)=P(X=25)+P(X=50)+P(X=100)[/tex]

[tex]=\dfrac{0.04}{1+0.04}+\dfrac{0.01}{1+0.01}+\dfrac{0.003}{1+0.003}\\\\=0.05135[/tex]

The odds that the ticket is worth at least $25 = [tex]\dfrac{0.05135}{1-0.05135}[/tex]

=0.05412

hence, the odds that the ticket is worth at least $25 is 0.05412 .

There are 30 colored marbles inside a bag. Six marbles are yellow, 9 are red, 7 are white, and 8 are blue. One is drawn at random. Which color is most likely to be chosen? A. white B. red C. blue D. yellow Include ALL work please!

Answers

Answer:

red

Step-by-step explanation:

Since the bag contains more red marbles than any other color, you are most likely to pick a red marble

Given the number of trials and the probability of success, determine the probability indicated: a. n = 15, p = 0.4, find P(4 successes) b. n = 12, p = 0.2, find P(2 failures) c. n = 20, p = 0.05, find P(at least 3 successes)

Answers

Answer:

A)0.126775 B)0.000004325376 C) 0.07548

Step-by-step explanation:

Given the following :

A.) a. n = 15, p = 0.4, find P(4 successes)

a = number of trials p=probability of success

P(4 successes) = P(x = 4)

USING:

nCx * p^x * (1-p)^(n-x)

15C4 * 0.4^4 * (1-0.4)^(15-4)

1365 * 0.0256 * 0.00362797056

= 0.126775

B)

b. n = 12, p = 0.2, find P(2 failures),

P(2 failures) = P(12 - 2) = p(10 success)

USING:

nCx * p^x * (1-p)^(n-x)

12C10 * 0.2^10 * (1-0.2)^(12-10)

66 * 0.0000001024 * 0.64

= 0.000004325376

C) n = 20, p = 0.05, find P(at least 3 successes)

P(X≥ 3) = p(3) + p(4) + p(5) +.... p(20)

To avoid complicated calculations, we can use the online binomial probability distribution calculator :

P(X≥ 3) = 0.07548

Suppose that $2000 is invested at a rate of 2.6% , compounded semiannually. Assuming that no withdrawals are made, find the total amount after 10 years.

Answers

Answer:

$2,589.52

Step-by-step explanation:

[tex] A = P(1 + \dfrac{r}{n})^{nt} [/tex]

We start with the compound interest formula above, where

A = future value

P = principal amount invested

r = annual rate of interest written as a decimal

n = number of times interest is compound per year

t = number of years

For this problem, we have

P = 2000

r = 0.026

n = 2

t = 10,

and we find A.

[tex] A = $2000(1 + \dfrac{0.026}{2})^{2 \times 10} [/tex]

[tex] A = $2589.52 [/tex]

Compound interest formula:

Total = principal x ( 1 + interest rate/compound) ^ (compounds x years)

Total = 2000 x 1+ 0.026/2^20

Total = $2,589.52

What is the intersection of the lines given by 2y=-x+3 and -y=5x+1? Enter the answer as an ordered pair.

Answers

Answer:

(-5/9, 16/9)

Step-by-step explanation:

2y = -x + 3

-y = 5x + 1

To find the intersection, you need to substitute the y-value from the second equation into the first equation.  Rearrange the second equation so that it is equal to y.

-y = 5x + 1

-1(-y) = -1(5x + 1)

y = -5x - 1

Substitute this equation into the y-value of the first equation.

2y = -x + 3

2(-5x - 1) = -x + 3

-10x - 2 = -x + 3

(-10x - 2) + 2 = (-x + 3) + 2

-10x = -x + 5

(-10x) + x = (-x + 5) + x

-9x = 5

(-9x)/(-9) = (5)/(-9)

x = -5/9

Plug this x value into one of the equations and solve for y.

2y = -x + 3

2y = -(-5/9) + 3

2y = 5/9 + 3

2y = 32/9

(2y)/2 = (32/9)/2

y = 32/18 = 16/9

The ordered pair is (-5/9, 16/9).

(b) Suppose you want to study the length of time devoted to commercial breaks for two different types of television programs. Identify the types of programs you want to study (e.g., sitcoms, sports events, movies, news, children's programs, etc.). How large should the sample be for a specified margin of error

Answers

Answer:

The correct option is b.

Step-by-step explanation:

The complete question is:

Suppose you want to study the length of time devoted to commercial breaks for two different types of television programs. Identify the types of programs you want to study (e.g., sitcoms, sports events, movies, news, children's programs, etc.). How large should the sample be for a specified margin of error.

(a) It depends only on the specified margin of error.

(b) It depends on not only the specified margin of error, but also on the confidence level.

(c) It depends only on the confidence level.

Solution:

The (1 - α) % confidence interval for population mean is:

[tex]CI=\bar x\pm z_{\alpha/2}\times \frac{\sigma}{\sqrt{n}}[/tex]  

The margin of error for this interval is:

 [tex]MOE=z_{\alpha/2}\times \frac{\sigma}{\sqrt{n}}[/tex]

Then the sample size formula is:

[tex]n=[\frac{z_{\alpha/2}\times \sigma}{MOE}]^{2}[/tex]

The sample size is dependent upon the confidence level (1 - α) %, the standard deviation and the desired margin of error.

Thus, the correct option is b.

The size of the sample 'n' depends on not only the specified margin of error, but also on the confidence level.

Given :

Suppose you want to study the length of time devoted to commercial breaks for two different types of television programs.

The following steps can be used in order to determine the size of the sample be for a specified margin of error:

Step 1 - The formula of the confidence interval is given below:

[tex]\rm CI =\bar{x}+z_{\alpha /2}\times \dfrac{\sigma }{\sqrt{n} }[/tex]

Step 2 - Now, for this interval, the formula of margin of error is given below:

[tex]\rm MOE = z_{\alpha /2}\times \dfrac{\sigma}{\sqrt{n} }[/tex]

Step 3 - Solve the above expression for sample size 'n'.

[tex]\rm n = \left(\dfrac{z_{\alpha /2}\times \sigma}{MOE}\right)^2[/tex]

From the above steps, it can be concluded that the correct option is B) It depends on not only the specified margin of error, but also on the confidence level.

For more information, refer to the link given below:

https://brainly.com/question/13990500

The base of a right rectangular prism has an area of 173.6 square centimeters and a height of 9 centimeters. What is the volume, in cubic centimeters, of the right rectangular prism?

Answers

Answer:

D) 1562.4 cubic centimeters

Step-by-step explanation:

volume = area of the base × height

volume = 173.6cm² × 9 cm

volume = 1562.4 cm³

A thin metal plate, located in the xy-plane, has temperature T(x, y) at the point (x, y). Sketch some level curves (isothermals) if the temperature function is given by

T(x, y)= 100/1+x^2+2y^2

Answers

Answer:

Step-by-step explanation:

Given that:

[tex]T(x,y) = \dfrac{100}{1+x^2+y^2}[/tex]

This implies that the level curves of a function(f) of two variables relates with the curves with equation f(x,y) = c

here c is the constant.

[tex]c = \dfrac{100}{1+x^2+2y^2} \ \ \--- (1)[/tex]

By cross multiply

[tex]c({1+x^2+2y^2}) = 100[/tex]

[tex]1+x^2+2y^2 = \dfrac{100}{c}[/tex]

[tex]x^2+2y^2 = \dfrac{100}{c} - 1 \ \ -- (2)[/tex]

From (2); let assume that the values of c > 0 likewise c < 100, then the interval can be expressed as 0 < c <100.

Now,

[tex]\dfrac{(x)^2}{\dfrac{100}{c}-1 } + \dfrac{(y)^2}{\dfrac{50}{c}-\dfrac{1}{2} }=1[/tex]

This is the equation for the  family of the eclipses centred at (0,0) is :

[tex]\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1[/tex]

[tex]a^2 = \dfrac{100}{c} -1 \ \ and \ \ b^2 = \dfrac{50}{c}- \dfrac{1}{2}[/tex]

Therefore; the level of the curves are all the eclipses with the major axis:

[tex]a = \sqrt{\dfrac{100 }{c}-1}[/tex]  and a minor axis [tex]b = \sqrt{\dfrac{50 }{c}-\dfrac{1}{2}}[/tex]  which satisfies the values for which 0< c < 100.

The sketch of the level curves can be see in the attached image below.

find out what's wrong with this graph

Answers

Answer:

The y-axis is upside down, meaning that instead of the values increasing as they go up, they decrease.

can anyone show me this in verbal form?

Answers

Answer:

2 * (x + 2) = 50

Step-by-step explanation:

Let's call the unknown number x. "A number and 2" means that we need to add the numbers, therefore it would be x + 2. "Twice" means 2 times a quantity so "twice a number and 2" would be 2 * (x + 2). "Is" denotes that we need to use the "=" sign and because 50 comes after "is", we know that 50 goes on the right side of the "=" so the final answer is 2 * (x + 2) = 50.

Hi i need help on this im not that smart sorry, what is the x-intercept of the graph that is shown below

Answers

Answer:

(3, 0)

Step-by-step explanation:

x-intercept is where the line touches the x-axis

It is the point on the line where y=0

Answer:

3,0

Step-by-step explanation:

the point where the line cuts the x axis is the x-intecept

Express the product of z1 and z2 in standard form given that [tex]z_{1} = 6[cos(\frac{2\pi }{5}) + isin(\frac{2\pi }{5})][/tex] and [tex]z_{2} = 2\sqrt{2} [cos(\frac{-\pi }{2}) + isin(\frac{-\pi }{2})][/tex]

Answers

Answer:

Solution : 5.244 - 16.140i

Step-by-step explanation:

If we want to express the two as a product, we would have the following expression.

[tex]-6\left[\cos \left(\frac{2\pi }{5}\right)+i\sin \left(\frac{2\pi }{5}\right)\right]\cdot 2\sqrt{2}\left[\cos \left(\frac{-\pi }{2}\right)+i\sin \left(\frac{-\pi \:}{2}\right)\right][/tex]

Now we have two trivial identities that we can apply here,

( 1 ) cos(- π / 2) = 0,

( 2 ) sin(- π / 2) = - 1

Substituting them,

= [tex]-6\cdot \:2\sqrt{2}\left(0-i\right)\left(\cos \left(\frac{2\pi }{5}\right)+i\sin \left(\frac{2\pi }{5}\right)\right)[/tex]

= [tex]-12\sqrt{2}\sin \left(\frac{2\pi }{5}\right)+12\sqrt{2}\cos \left(\frac{2\pi }{5}\right)i[/tex]

Again we have another two identities we can apply,

( 1 ) sin(x) = cos(π / 2 - x )

( 2 ) cos(x) = sin(π / 2 - x )

[tex]\sin \left(\frac{2\pi }{5}\right)=\cos \left(\frac{\pi }{2}-\frac{2\pi }{5}\right) = \frac{\sqrt{2}\sqrt{5+\sqrt{5}}}{4}[/tex]

[tex]\cos \left(\frac{2\pi }{5}\right)=\sin \left(\frac{\pi }{2}-\frac{2\pi }{5}\right) = \frac{\sqrt{2}\sqrt{3-\sqrt{5}}}{4}[/tex]

Substitute,

[tex]-12\sqrt{2}(\frac{\sqrt{2}\sqrt{5+\sqrt{5}}}{4}) + 12\sqrt{2}(\frac{\sqrt{2}\sqrt{3-\sqrt{5}}}{4})[/tex]

= [tex]-6\sqrt{5+\sqrt{5}}+6\sqrt{3-\sqrt{5}} i[/tex]

= [tex]-16.13996 + 5.24419i[/tex]

= [tex]5.24419i - 16.13996[/tex]

As you can see option d is the correct answer. 5.24419 is rounded to 5.244, and 16.13996 is rounded to 16.14.


8.What side of the road will you see speed, yield, and guide signs on ?

Answers

Answer:

we see it in our left side of the road

you will be able to spot these signs on your left hand side :)

HELP ASAP PLS :Find all the missing elements:

Answers

Answer:

a ≈ 1.59

b ≈ 6.69

Step-by-step explanation:

Law of Sines: [tex]\frac{a}{sinA} =\frac{b}{sinB} =\frac{c}{sinC}[/tex]

Step 1: Find c using Law of Sines

[tex]\frac{6}{sin58} =\frac{c}{sin13}[/tex]

[tex]c = sin13(\frac{6}{sin58})[/tex]

c = 1.59154

Step 2: Find a using Law of Sines

[tex]\frac{6}{sin58} =\frac{a}{sin109}[/tex]

[tex]a = sin109(\frac{6}{sin58} )[/tex]

a = 6.68961

Find the value of x show your work

Answers

Answer:

x≈13.08

Step-by-step explanation:

We use the pythagora's theorem

[tex]a^{2} +b^2=c^2\\a=5\\b=x\\c=14\\5^2+x^2=14^2\\x^2=196-25\\x^2=171\\x=3\sqrt{19} =13.08[/tex]

The general manager, marketing director, and 3 other employees of CompanyAare hosting a visitby the vice president and 2 other employees of CompanyB. The eight people line up in a randomorder to take a photo. Every way of lining up the people is equally likely.Required:a. What is the probability that the bride is next to the groom?b. What is the probability that the maid of honor is in the leftmost position?c. Determine whether the two events are independent. Prove your answer by showing that one of the conditions for independence is either true or false.

Answers

Answer:

Following are the answer to this question:

Step-by-step explanation:

Let, In the Bth place there are 8 values.

In point a:

There is no case, where it generally manages its next groom is = 7 and it will be arranged in the 2, that can be arranged in 2! ways. So, the total number of ways are: [tex]\to 7 \times 2= 14\\\\ \{(1,2),(2,1),(2,3),(3,2),(3,4),(4,3),(4,5),(5,4),(5,6),(6,5),(6,7),(7,8),(8,7),(7,6)\}\\[/tex][tex]\therefore[/tex] required probability:

[tex]= \frac{14}{8!}\\\\= \frac{14}{8\times7 \times6 \times 5 \times 4 \times 3\times 2 \times 1 }\\\\= \frac{1}{8\times6 \times5 \times 4 \times 3}\\\\= \frac{1}{8\times6 \times5 \times 4 \times 3}\\\\=\frac{1}{2880}\\\\=0.00034[/tex]

In point b:

Calculating the leftmost position:

[tex]\to \frac{7!}{8!}\\\\\to \frac{7!}{8 \times 7!}\\\\\to \frac{1}{8}\\\\\to 0.125[/tex]

In point c:

This option is false because

[tex]\to P(A \cap B) \neq P(A) \times P(B)\\\\\to \frac{12}{8!} \neq \frac{14}{8!}\times \frac{1}{8}\\\\\to \frac{12}{8!} \neq \frac{7}{8!}\times \frac{1}{4}\\\\[/tex]

what must be added to 2/3 of 5.25 to make it 7.00​

Answers

(2/3)(5.25) + x = 7
3.5 + x = 7
x = 3.5

Answer:

3.5

Step-by-step explanation:

Well you have to find first 2/3 of 5.25. This means multiplication, which is 3.5. so to find how much to add to this to get 7, we have to subtract 3.5 from 7. 7-3.5=3.5. so we must add 3.5 to get 7. Hope this helps :D

Please give me the answer ASAP The average of 5 numbers is 7. If one of the five numbers is removed, the average of the four remaining numbers is 6. What is the value of the number that was removed Show Your Work

Answers

Answer:

The removed number is 11.

Step-by-step explanation:

Given that the average of 5 numbers is 7. So you have to find the total values of 5 numbers :

[tex]let \: x = total \: values[/tex]

[tex] \frac{x}{5} = 7[/tex]

[tex]x = 7 \times 5[/tex]

[tex]x = 35[/tex]

Assuming that the total values of 5 numbers is 35. Next, we have to find the removed number :

[tex]let \: y = removed \: number[/tex]

[tex] \frac{35 - y}{4} = 6[/tex]

[tex]35 - y = 6 \times 4[/tex]

[tex]35 - y = 24[/tex]

[tex]35 - 24 = y[/tex]

[tex]y = 11[/tex]

Okay, let's slightly generalize this

Average of [tex]n[/tex] numbers is [tex]a[/tex]

and then [tex]r[/tex] numbers are removed, and you're asked to find the sum of these [tex]r[/tex] numbers.

Solution:

If average of [tex]n[/tex] numbers is [tex]a[/tex] then the sum of all these numbers is [tex]n\cdot a[/tex]

Now we remove [tex]r[/tex] numbers, so we're left with [tex](n-r)[/tex] numbers. and their. average will be [tex]{\text{sum of these } (n-r) \text{ numbers} \over (n-r)}[/tex] let's call this new average [tex] a^{\prime}[/tex]

For simplicity, say, sum of these [tex]r[/tex] numbers, which are removed is denoted by [tex]x[/tex] .

so the new average is [tex]\frac{\text{Sum of } n \text{ numbers} - x}{n-r}=a^{\prime}[/tex]

or, [tex] \frac{n\cdot a -x}{n-r}=a^{\prime}[/tex]

Simplify the equation, and solve for [tex]x[/tex] to get,

[tex] x= n\cdot a -a^{\prime}(n-r)=n(a-a^{\prime})+ra^{\prime}[/tex]

Hope you understand it :)

Other Questions
A race-car drives around a circular track of radius RRR. The race-car speeds around its first lap at linear speed v_iv i v, start subscript, i, end subscript. Later, its speed increases to 4v_i4v i 4, v, start subscript, i, end subscript. How does the magnitude of the car's centripetal acceleration change after the linear speed increases What happens to the deflection of the galvanometer needle (due to moving the magnet) when you increase the number of loops Please solve, -7x+8=-4(x+1) Why should nations diversify? You are in the process of building a computer for a user in your organization. You have installed the following components into the computer in Support:AMD Phenom II X4 quad core processor8 GB DDR3 memoryOne SATA hard drive with Windows 7 installedYou need to make sure the new components are installed correctly and functioning properly. You also need to install a new SATA CD/DVD drive and make sure the computer boots successfully.Perform tasks in the following order:Identify and connect any components that are not properly connected.Use the PC tools on the shelf to test for components that are not functioning. Replace any bad components with the known good parts on the shelf.Install the required CD/DVD drive in one of the drive bays and connect the power cable from the power supply. Atomic mass is calculated by _____. subtracting protons from neutrons averaging the mass of isotopes adding protons and neutrons subtracting neutrons from protons The quantity of money has no real impact on things people really care about like whether or not they have a job. Most economists would agree that this statement is appropriate concerning Group of answer choices both the short run and the long run. the short run, but not the long run. the long run, but not the short run. neither the long run nor the short run. In a triangle, the sum of two angles equals the third, Find the measure of the third angle.A.45 degreeB.60 degreeC.90 degreeD.30 degree Which piece of information is needed for an individual to improve cardiorespiratory endurance? If an investor's aversion to risk increased, would the risk premium on a high beta stock increase by more or less than that of a low-beta stock? Explain. Quality improvement teams are groups of people from various work areas who define, analyze, and solve common production problems.a. Trueb. False The cost of milk is modeled by a linear equation where four quarts (one gallon) costs $3.09 while two quarts(half-gallon) costs $1.65. Write the linear equation that expresses the price in terms of quarts. How much wouldan eight-quart container of milk cost? Moorcroft sales are 40% cash and 60% credit. Credit sales are collected 20% in the month of sale, 50% in the month following sale, and 26% in the second month following sale; 4% are uncollectible. Moorcroft purchases are 50% cash and 50% on account. Purchases on account are paid 40% in the month following the purchase and 60% in the second month following the purchase.Prepare a schedule of expected collections from customers for June. What is the measure of angle X? g A solenoid 63.5 cm long has 960 turns and a radius of 2.77 cm. If it carries a current of 2.28 A, find the magnetic field along the axis at its center.Find the magnetic field on the solenoidal axis at the end of the solenoid. PLEASE HELP!! I NEED THIS SOON!! Explain why you cannot use algebra tiles to model the multiplication of a linear polynomial by a quadratic polynomial. As an added challenge, develop a model similar to algebra tiles that will allow you to show this multiplication. Describe an example of your model for the product (x + 1)(x2 + 2x + 2). Give at least 5 sentences. Hayduke Corporation reported the following results from the sale of 5,000 units in May: sales $300,000, variable costs $180,000, fixed costs $90,000, and net income $30,000. Assume that Hayduke increases the selling price by 5% on June 1. How many units will have to be sold in June to maintain the same level of net income? Greyson completes a dive from acliff 75-feet above a river. It takeshim only 1.5 seconds to hit thewater and then another 0.5second to descend 10 feet into the riverwhats the x axis and y axis? The ages of some lectures are 42,54,50,54,50,42,46,46,48 and 48.Calculate the:(a)Mean Age.(b)Standard deviation. PLEASE HELP ME I'LL MAKE YOU BRAINLIEST!!!!!!!!!! Lichens can best be described by which of the following? a) autotrophic organisms and fungi in a mutualistic relationship b) photosynthesizing fungi that can live in harsh environment conditions c) saprophytic fungi that secretes acids to grow on and colonize rocks d) two heterotrophic fungi species that thrive on nutrients from the air