Answer:
[tex]{ \tt{y = \frac{2 {x}^{2} + 5x + 2}{ {x}^{2} - 4x + 3 } }} \\ x - intercept : y = 0 \\ { \tt{ \frac{2 {x}^{2} + 5x + 2 }{ {x}^{2} - 4x + 3 } = 0 }} \\ \\ { \tt{2 {x}^{2} + 5x + 2 = 0}} \\ x = \frac{1}{2} \: \: and \: \: x = - 2[/tex]
The scatterplot shows the selling prices of homes and the square feet of living space.
A graph titled home value has square feet (thousands) on the x-axis, and price (hundred thousand dollars) on the y-axis. Points are at (1.2, 1), (1.5, 1.1), (2, 1.5), (2.5, 2). An orange point is at (3.8, 3.9).
Complete the statements based on the information provided.
The scatterplot including only the blue data points shows
✔ a strong positive
correlation. Including the orange data point at (3.8, 3.9) in the correlation would
✔ strengthen
and
✔ increase
the value of
Answer:
✔ a strong positive
✔ strengthen
✔ increase
ED2021
Answer:
- a strong positive
- strengthen
- increase
1) (1) The selling price (ii) The cost price (iii) Profit The marked price of an article is 15% above its selling price and the cost price is 25% less tha its marked price. Find the discount percent and gain percent.
Answer: (iii) Profit The marked price of an article is 15% above its selling price and the cost price is 25% less tha its marked price. Find the discount percent and gain percent.
Step-by-step explanation:
Instructions: The polygons in each pair are similar. Find the
missing side length.
Answer:
missing side length is 12
Step-by-step explanation:
similar means that all correlating pairs of sides have the same ratio (old side length) / (new side length).
so, when we know the ratio of one pair, we can apply it to any other side to calculate the correlating side.
we see, when we go from small to large, that we have the ratio 32/40 = 4/5.
so, multiplying the larger side by this, we get the shorter side.
15 × 4/5 = 3 × 4 = 12
the proportion part in your picture is a bit confusing :
yes,
x/15 = 32/40 = 32/40
I don't know, why this last expression was repeated.
x/15 = 32/40
x = 15×32/40 = 15×4/5 = 3×4 = 12
as you see we get of course the same result doing it that way.
Find the length of the arc.
A. 21/π4 in
B. 18π in
C. 45/π8 in
D. 1890π in
Answer:
we know that all Lenght of circle is 2πr so 2*π*7=14π
Step-by-step explanation:
14π equal to 360°
but we need just 135° so we should write it kind of radian(π)
if 14π=360°
x=135°
14π*135=360°*x 14π*27=72*x ........= 14π*3=8*x
7π*3=4*x ....... X=21π/4
The length of the arc is 21/π4 in
An answer is an option A. 21/π4 in
What is the arc of the circle?The arc period of a circle can be calculated with the radius and relevant perspective using the arc period method.
⇒angle= arc/radius
⇒ 135°=arc/7
⇒ arc =135°*7
⇒arc=135°*π/180° *7in
⇒arc = 21/π4 in
Learn more about circle here:-brainly.com/question/24375372
#SPJ2
Calculate the break even sales dollars if the fixed expenses are $7,000 and the contribution ratio is 40%.
Answer:
Break even sales = $17,500 (Approx.)
Step-by-step explanation:
Given:
Fixed expenses = $7,000
Contribution ratio = 40%
Find:
Break even sales dollars
Computation:
Break even sales = Fixed expenses / Contribution ratio
Break even sales = 7,000 / 40%
Break even sales = 7,000 / 0.40
Break even sales = 17,500
Break even sales = $17,500 (Approx.)
Jason can peel 15 potatoes in 25 minutes. Janette can peel 8 potatoes in 1/10 hour. If they start peeling at the same time how many
minutes will it take them to peel 406 potatoes?
9514 1404 393
Answer:
210 minutes
Step-by-step explanation:
Jason's rate of peeling is ...
(15 potatoes)/(25 minutes) = 15/25 potatoes/minute = 3/5 potatoes/minute
Janette's rate of peeing potatoes is ...
(8 potatoes)/(6 minutes) = 4/3 potatoes/minute
Their combined rate is ...
(3/5 +4/3) = (9 +20)/15 = 29/15 . . . . potatotes/minute
Then the time required for 406 potatoes is ...
(406 potatoes)/(29/15 potatoes/minute) = (406×15/29) minutes
= 210 minutes
what is 5(2x - 2y) - (4x + 3y)
Answer:
6x - 13y
Step-by-step explanation:
5(2x - 2y) - (4x + 3y)
10x - 10y - 4x - 3y
10x - 4x - 10y - 3y
6x - 13y
1. 3m into cmcube fi. 15m into liter please urgent
Answer:
3m=300cm.
15cubi(m)=15,000liter
Step-by-step explanation:
[1m=100cm]
[1cubic(m)=1000liters]
Is this a parallelogram
Answer:
Yes!
Step-by-step explanation:
Since it has four sides and has parallel sets of lines on each side.
A local cinema reduced its ticket prices by 15% which means a ticket now costs £10.88. how much was a ticket before the reduction?
Given h(x) = -x + 1, find h(0).
Answer:
Answer:
1
Step-by-step explanation:
Given,
h ( x ) = - x + 1
To find : h ( 0 ) = ?
h ( 0 )
= - ( 0 ) + 1
= 1
Answer: 1
Step-by-step explanation:
h(x) = -x + 1
To Find = h(0)
= -(0) + 1
= 1
Answered by GauthMath if you like pls heart it and comment thanks
How many mL of a 10% magnesium sulfate solution will contain 14 grams of magnesium sulfate?
Answer:
Upto 40 g or 160 mmols
Step-by-step explanation:
Can you plz mark me as brainliest?
Answer:
140 mL
Step-by-step explanation:
10% of 140 is 14
In the figure, find the measure of TU⎯⎯⎯⎯⎯⎯⎯⎯
Answer:
TU = 27
Step-by-step explanation:
We are given two secant segments that are drawn from a circle to meet at an exterior point of the circle. Thus, according to the secant secant theorem, the product of the measure of one secant segment and its external secant segment equals that of the product of the other and its external secant segment.
Thus:
VU*TU = VW*BW
Substitute
7(x + 4) = 9(-2 + x)
7x + 28 = -18 + 9x
Collect like terms
7x - 9x = -18 - 28
-2x = -46
Divide both sides by -2
x = -46/-2
x = 23
✔️TU = x + 4
Plug in the value of x
TU = 23 + 4
TU = 27
A simple random sample of 400 individuals provides 112 Yes responses. (a) What is the point estimate of the proportion of the population that would provide Yes responses
Answer:
The point estimate of the proportion of the population that would provide Yes responses is 0.28.
Step-by-step explanation:
Point estimate of the proportion of the population that would provide Yes
The sample proportion of yes responses.
In the sample:
112 yes responses in the sample of 400, so:
[tex]p = \frac{112}{400} = 0.28[/tex]
The point estimate of the proportion of the population that would provide Yes responses is 0.28.
Find the equation for the line that passes through the points ( - 1, - 10) and ( - 6,9). Give your
answer in point-slope form. You do not need to simplify.
Answer:
The point slope form of the equation is,
[tex]y + 10 = - \frac{19(x + 6)}{5} [/tex]
m = (y2-y1)/(x2-x1) = (9-(-10))/((-6)-(-1)) = -19/5
b = y1-mx1 = -69/5
Answered by GAUTHMATH
Help me please with this question
9514 1404 393
Answer:
21
Step-by-step explanation:
Let c represent the number of child tickets sold. Then 2c is the number of adult tickets sold. The total revenue is ...
5.80c +9.50(2c) = 520.80
24.80c = 520.80 . . . . . . . . . simplify
c = 21 . . . . . . . . . . . . . . divide by 24.80
21 child tickets were sold that day.
Using the order of operations, what is the last calculation that should be done to evaluate 4(8 - 6952 - 6+(-3)
4(8 - 6352 – 6 + (-3)
4(2)52 - 6+(-3)
4(2)(25) - 6+(-3)
200 - 6+(-3)
200 - (-2)
Answer:
200 + 2
Step-by-step explanation:
you know that two (2) negatives multiplying each other is = +
=200 +2
=202
A telephone service representative believes that the proportion of customers completely satisfied with their local telephone service is different between the South and the Midwest. The representative's belief is based on the results of a survey. The survey included a random sample of 1300 southern residents and 1380 midwestern residents. 39% of the southern residents and 50% of the midwestern residents reported that they were completely satisfied with their local telephone service. Find the 80% confidence interval for the difference in two proportions. Step 1 of 3 : Find the point estimate that should be used in constructing the confidence interval
Answer:
The point estimate that should be used in constructing the confidence interval is 0.11.
The 80% confidence interval for the difference in two proportions is (0.0856, 0.1344).
Step-by-step explanation:
Before building the confidence interval, we need to understand the central limit theorem and subtraction of normal variables.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
Subtraction between normal variables:
When two normal variables are subtracted, the mean is the difference of the means, while the standard deviation is the square root of the sum of the variances.
Midwest:
50% of 1380, so:
[tex]p_M = 0.5[/tex]
[tex]s_M = \sqrt{\frac{0.5*0.5}{1380}} = 0.0135[/tex]
South:
39% of 1300, so:
[tex]p_S = 0.39[/tex]
[tex]s_S = \sqrt{\frac{0.39*0.61}{1300}} = 0.0135[/tex]
Distribution of the difference:
[tex]p = p_M - p_S = 0.5 - 0.39 = 0.11[/tex]
So the point estimate that should be used in constructing the confidence interval is 0.11.
[tex]s = \sqrt{s_M^2+s_S^2} = \sqrt{0.0135^2+0.0135^2} = 0.0191[/tex]
Confidence interval:
[tex]p \pm zs[/tex]
In which
z is the z-score that has a p-value of [tex]1 - \frac{\alpha}{2}[/tex].
80% confidence level
So [tex]\alpha = 0.2[/tex], z is the value of Z that has a p-value of [tex]1 - \frac{0.2}{2} = 0.9[/tex], so [tex]Z = 1.28[/tex].
The lower bound of the interval is:
[tex]p - zs = 0.11 - 1.28*0.0191 = 0.0856[/tex]
The upper bound of the interval is:
[tex]p + zs = 0.11 + 1.28*0.0191 = 0.1344[/tex]
The 80% confidence interval for the difference in two proportions is (0.0856, 0.1344).
Bearings And Vectors • The bearing of X from Y is 045 and the bearing of Z from Yis 145, where X, Y and Z are three points in the plane. If Y is equidistant from X and Z, find the bearing of Z from X.
9514 1404 393
Answer:
185°
Step-by-step explanation:
The triangle internal angle at Y is 145° -45° = 100°. Since the triangle is isosceles, the internal angles at X and Z are both (180° -100°)/2 = 40°. Then the bearing of Z from X is the bearing of Y from X less the internal angle at X:
(45° +180°) -40° = 185°.
Z from X is 185°.
I thought of a number. I added 15, tripled it and then subtracted 3 from the result. I got 42. What was my number?
Answer:
45
Step-by-step explanation:
15 x 3 = 45 - 3 = 42
Pls if anyone knows the answer with work included/steps that will be greatly appreciated :)
Answer:
3. 3x^2 + 15x
4. x=36
Step-by-step explanation:
The area of a rectangle is
A = l*w
A = (3x)*(x+5)
Distribute
3x^2 + 15x
2/3x - 4 = 20
Add 4 to each side
2/3x -4+4 = 20+4
2/3x = 24
Multiply each side by 3/2
2/3*3/2 =24*3/2
x = 12*3
x=36
Triangle A B C is shown. The included side between ∠A and ∠C is side . The included side between ∠A and ∠B is side . The included side between ∠C and ∠B is side .
Answer:
AC, AB, BC
Step-by-step explanation:
Given
[tex]\triangle ABC[/tex]
Required
Name the sides
(a) [tex]\angle A[/tex] and [tex]\angle C[/tex]
This represents side [tex]AC[/tex]
(b) [tex]\angle A[/tex] and [tex]\angle B[/tex]
This represents side [tex]AB[/tex]
(c) [tex]\angle C[/tex] and [tex]\angle B[/tex]
This represents side [tex]CB[/tex]
i.e. we simply bring the name of both angles together
Answer:
AC, AB, BC
Step-by-step explanation:
Staff at a fast food restaurant make up the cleaning solution in their spray bottles from a concentrate. In each 300mL bottle they pour 50mL of concentrate and fill the bottle the rest of the way with water. What is the ratio of concentrate to water used?
Answer:
1 : 5
Step-by-step explanation:
So 50mL is for thye concentrate then the rest is water which means the water is 300mL - 50mL = 250mL of water.
Ratio of concrentrate to water = 50mL: 250mL
To write a ratio you first write down the one stated first then the other one.
50mL : 250mL CAN BE SIMPLIFIED. This is done by dividing both parts by the highest common factor which is 50.
It then becomes 1 : 5.
HOPE THIS HELPED
Help with 5b please . thank you.
Answer:
See explanation
Step-by-step explanation:
We are given f(x)=ln(1+x)-x+(1/2)x^2.
We are first ask to differentiate this.
We will need chain rule for first term and power rule for all three terms.
f'(x)=(1+x)'/(1+x)-(1)+(1/2)×2x
f'(x)=(0+1)/(1+x)-(1)+x
f'(x)=1/(1+x)-(1)+x
We are then ask to prove if x is positive then f is positive.
I'm thinking they want us to use the derivative part in our answer.
Let's look at the critical numbers.
f' is undefined at x=-1 and it also makes f undefined.
Let's see if we can find when expression is 0.
1/(1+x)-(1)+x=0
Find common denominator:
1/(1+x)-(1+x)/(1+x)+x(1+x)/(1+x)=0
(1-1-x+x+x^2)/(1+x)=0
A fraction can only be zero when it's numerator is.
Simplify numerator equal 0:
x^2=0
This happens at x=0.
This means the expression,f, is increasing or decreasing after x=0. Let's found out what's happening there. f'(1)=1/(1+1)-(1)+1=1/2 which means after x=0, f is increasing since f'>0 after x=0.
So we should see increasing values of f when we up the value for x after 0.
Plugging in 0 gives: f(0)=ln(1+0)-0+(1/2)0^2=0.
So any value f, after this x=0, should be higher than 0 since f(0)=0 and f' told us f in increasing after x equals 0.
PLZ ANSWER QUESTION IN PICTURE
Answer: [tex]y=\frac{1}{3}x+\frac{13}{3}[/tex]
Step-by-step explanation:
(slope = m)
[tex]m=\frac{y_2-y_1}{x_2-x_1}=\frac{4-6}{-1-5}=\frac{-2}{-6}=\frac{1}{3}[/tex]
[tex]y=mx+b, (5,6), (-1,4), m=\frac{1}{3}[/tex]
[tex]y=mx+b\\6=\frac{1}{3}(5)+b\\b=6-\frac{5}{3} \\b=\frac{13}{3}\\y=\frac{1}{3}x+\frac{13}{3}[/tex]
Find the value of x
A. 15
B. 6
C. 60
D. 10
Answer:
hmm observe the diagram carefully there are 2 arcs drawn which means angle BEC and angle KEC are equal so
6x + 24 = 10x
4x = 24
x = 6
BRAINLIEST PLS
The value of x in the given figure is 6.
Used the concept of an angle of the figure,
An angle is a combination of two rays (half-lines) with a common endpoint.
Given that,
A figure with two congruent triangles is shown in the figure.
Now by definition of congruency of triangles,
∠ BEC = ∠ CEK
Substitute given values,
[tex]6x + 24 = 10x[/tex]
Solve for x,
[tex]24 = 10x - 6x[/tex]
[tex]24 = 4x[/tex]
Divide both sides by 4;
[tex]x = 6[/tex]
Therefore, the value of x is 6.
To learn more about the angle visit:;
https://brainly.com/question/25716982
#SPJ4
Given the function h(t) = 2t to the power of 2 + 9 evaluate h(5)
9514 1404 393
Answer:
59
Step-by-step explanation:
Put 5 where t is and do the arithmetic.
[tex]h(t)=2t^2+9\\\\h(5)=2\cdot5^2+9=2\cdot25+9\\\\\boxed{h(5)=59}[/tex]
Please help will give brainliest
Complete the equation describing how
x and y are related.
ws
х
-2
-1
0
1
2
3
y
-4
-4.5
-5
-5.5
-6
-6.5
y = [? ]x + [ ]
Enter the answer that belongs in [?].
the answer is 6.5
Step-by-step explanation:
consider the functions f(x)=-2x+4 and g(x)=8x-2 calculate the coordinates of the x and y interceptes of f(x)
Answer:
It more complex .Try to take help toggely
PLS HELP
If f(x) = x2 -1, what is the equation for f–1(x)?
We have a function,
[tex]f(x)=x^2-1[/tex]
and we are asked to find its inverse function.
An inverse function essentially gets you the original value that was dropped into a function.
For example,
If I put 5 into [tex]f(x)[/tex] I will get 24. Now If I take 24 and put it into the inverse function I have to get number 5 back.
The way to determine the inverse function swap the x and the [tex]f(x)[/tex], then solve for [tex]f(x)[/tex],
[tex]x=f(x)^2-1[/tex]
[tex]f(x)^2=x+1[/tex]
[tex]f(x)=\pm\sqrt{x+1}[/tex]
Of course the notation demands that the obtained function be called,
[tex]f^{-1}(x)=\pm\sqrt{x+1}[/tex]
Hope this helps :)