Find the width of a photograph whose length is 24 inches and whose proportions
are the same as a photograph that is 3 inches wide by 4 inches long.

Answers

Answer 1

A photograph having length of 24 inches which is proportionate to another photograph having dimensions 3 × 4 inches, has width of 18 inches.

What is proportion?

In general, the term "proportion" refers to a part, share, or amount that is compared to a whole. According to the definition of proportion, two ratios are in proportion when they are equal.

Let the width of the photograph be x inches.

The length of the photograph is 24 inches.

A similar proportion photograph has width as 3 inches.

A similar proportion photograph has length as 4 inches.

The equation to find the width of photograph is -

x / 24 = 3 / 4

Simplify the equation -

x = (24 × 3) / 4

x = 72 / 4

x = 18

Therefore, the width value is 18 inches.

To learn more about proportion from the given link

https://brainly.com/question/19994681

#SPJ1


Related Questions

Trisha bought a carton of orange juice. She drank 1/3 of the carton on Monday and 5/12 of the carton on Tuesday. What fraction of the carton did Trisha drink?

Answers

Answer:

9/12 or 2/3

Step-by-step explanation:

Make both fractions have the same denominator by finding their least common multiple

1x12 = 12                1x3 = 3

2x6 = 12                3x1 = 3

3x4 = 12

4x3 = 12

6x2 = 12

12x1 = 12

In which case it would be 12.

1/3 would be 4/12

5/12 + 4/12 = 9/12

which is also 2/3 if your teacher wants the simplest answer



The sum of 3 times a number and 4 is 9.

Answers

Answer: x = 5/3

Step-by-step explanation:

Let the number be x

Then

3x + 4 = 9

3x = 9-4

3x = 5

x = 5/3

please click thanks and mark brainliest if you like :)

Answer:

x = 5/3 or 1.6

Step-by-step explanation:

The sum of 3 times a number and 4 is 9

Step 1. Write the phrase as an expression

3x + 4 = 9

Step 2. Solve for x

3x + 4 = 9

Step 3. Subtract 4 from 9

3x = 9 - 4

3x = 5

Step 4. Isolate the variable

x = 5/3

[tex]2i+3x=4-ix[/tex]

Show work.

No wrong answers or you will be reported. I will mark Brainliest! Thank you!

Answers

Answer:

Step-by-step explanation:

I am assuming i is the imaginary number:

Factor:

(3 + i)x - (4-2i) = 0.

In order for this to equal 0, x must be equal to 1-i.

I don't want to be reported to so take my word for it.

Also I plugged it into wolfram alpha so if it is wrong, blame the most powerful math equation solver available on the internet.

Using BTS he properties, find the unit's digit of the cube of each of the following numbers

HELP WILL GIVE BRAINLYIST

Answers

Answer:

The parent cubic function has been vertically stretched by a factor of 4.

Equation:G(x)= 4[tex]\sqrt[3]{x}[/tex]

Answer: Option B

OAmalOHopeO

The answer is option B

Write the point-slope form of an equation of the line through the points (-1, 4) and (-2, 2).

Answers

Answer:

Point-slope form: y-4=2(x+1)

Slope intercept form: y=2x+6

I hope this helps!

Answer:

[tex]y-4=2(x+1)[/tex]

Step-by-step explanation:

Point-slope form is equal to

[tex]y-y_1=m(x-x_1)[/tex]

where y and y1 are the known y coordinates of two points on the line, and x and x1 are the known x coordinates of two points on the line. All we need now is m, which is the slope:

[tex]4-2=m(-1-(-2))[/tex]

We can simplify negative one minus negative two as positive 1.

[tex]4-2=m(1)[/tex]

4 minus 2 is 2, so m times 1 is 2. That means m is 2.

Now, we have the slope, so we can convert to point-slope form using one of the two points. Let's use (-1, 4). We can plug those values in for x1 and y1:

[tex]y-4=2(x+1)[/tex]

Which line segment has the same measure as ST?

RX
TX
SR
XS

Answers

Answer:

The answer is Line Segment SR.

A line passes through the point (-4, -6) and has a slop of 5. Write an equation for this line.

Answers

The answer is y=5x+14 where 5 is the slope and 14 is the value of b in equation y=mx+c

what are the factor of pair of number?

a.45 and 60

b.45 and 70

c.40 and 80

d.30 and 50

Answers

C…………………………x Mmmmmvvtvjvj I j I

In the diagram below, circle O has a radius of 10. If the measure of arc AB is 72°, find the area of shaded sector AOB, in terms of π. Show all your work that leads to the final answer.

Answers

Answer:

62.8

Step-by-step explanation:

Area of sector=(pi*r^2)*(theta/360)

Area of sector=(pi*100)*(72/360)=62.8

The area of the shaded sector AOB in terms of π is 20π units squared.

How to find area of a sector?

The area of a sector can be described as follows;

area of sector = ∅ / 360 × πr²

where

r = radius of the circle

Therefore,

r = 10 units

∅ = 72°

Hence,

area of the sector = 72° / 360° × π10²

area of the sector = 7200 / 360 π

area of the sector = 20π units²

learn more on sector here: https://brainly.com/question/24351015

#SPJ2

what is the equationof the line that passes through (0,3) and (7,0)

Answers

Answer:

y = - 3/7x + 3

Step-by-step explanation:

First find the slope

Second find the y-intercept (already given by one of the points)

Third write it in slope-intercept form

how many ways can this be done. if a committee of 5 people from 7 men and 8 women?​

Answers

Answer:

3003 ways

Step-by-step explanation:

(7+8)C5

= 15C5

= 15!/(5!10!)

= 3003

The measurements of a circular object are given in the ratio table.

a. Find the missing dimensions of other circular objects by completing the ratio table.

b. Graph the pairs of values.

Answers

Answer:

answer hajandtb Tj.yfs5bsyb

Help plz last question

Answers

Answer:

224π in^2

Step-by-step explanation:

Just plug in the values,

Surface area=2πr(h+r) [Factoring]

r=7in

h=9in

2πr(h+r)=2π*7(9+7)=14π(16)=224π in^2

Mr. E bought 3 drinks and 5 sandwiches for $25.05 and Mr. E bought 4 drinks and 2 sandwiches $13.80. how much does each drink cost?

Answers

9514 1404 393

Answer:

drink: $1.35sandwich: $4.20

Step-by-step explanation:

Let d and s represent the cost of a drink and a sandwich, respectively. The two purchases give rise to the equations ...

  3d +5s = 25.05

  4d +2s = 13.80

Dividing the second equation by 2 gives ...

  2d + s = 6.90

Subtracting the first equation from 5 times this, we get ...

  5(2d +s) -(3d +5s) = 5(6.90) -25.05

  7d = 34.50 -25.05 = 9.45

  d = 1.35

The cost of each drink is $1.35.

__

Additional comment

Using the simplified 2nd equation, we can find the cost of a sandwich.

  s = 6.90 -2d = 6.90 -2.70 = 4.20

The cost of each sandwich is $4.20.

Find the distance traveled by a particle with position (x, y) as t varies in the given time interval.
x = 3 sin^2(t), y = 3 cos^2(t), 0< t<3pi
What is the length of the curve?

Answers

The length of the curve (and thus the total distance traveled by the particle along the curve) is

[tex]\displaystyle\int_0^{3\pi}\sqrt{x'(t)^2+y'(t)^2}\,\mathrm dt[/tex]

We have

x(t) = 3 sin²(t )   ==>   x'(t) = 6 sin(t ) cos(t ) = 3 sin(2t )

y(t) = 3 cos²(t )   ==>   y'(t) = -6 cos(t ) sin(t ) = -3 sin(2t )

Then

√(x'(t) ² + y'(t) ²) = √(18 sin²(2t )) = 18 |sin(2t )|

and the arc length is

[tex]\displaystyle 18 \int_0^{3\pi} |\sin(2t)| \,\mathrm dt[/tex]

Recall the definition of absolute value: |x| = x if x ≥ 0, and |x| = -x if x < 0.

Now,

• sin(2t ) ≥ 0 for t ∈ (0, π/2) U (π, 3π/2) U (2π, 5π/2)

• sin(2t ) < 0 for t ∈ (π/2, π) U (3π/2, 2π) U (5π/2, 3π)

so we split up the integral as

[tex]\displaystyle 18 \left(\int_0^{\pi/2} \sin(2t) \,\mathrm dt - \int_{\pi/2}^\pi \sin(2t) \,\mathrm dt + \cdots - \int_{5\pi/2}^{3\pi} \sin(2t) \,\mathrm dt\right)[/tex]

which evaluates to 18 × (1 - (-1) + 1 - (-1) + 1 - (-1)) = 18 × 6 = 108.

a number has 7 at the tens place .there is zero in the thousand place. the number 5 is at the hundreds place .there is number 1at the ten thousand place..what is the number?​

Answers

10570 - ten thousand, five hundred and seventy

Quadrilateral ABCD has vertices A(–1, –2), B(–1, 3), C(4, 3) and D(4, –2). It’s dilated by a factor of 2 with the center of dilation at the origin. What are the coordinates of the resulting quadrilateral A’B’C’D

Answers

9514 1404 393

Answer:

A'(-2, -4)B'(-2, 6)C'(8, 6)D'(8, -4)

Step-by-step explanation:

Dilation about the origin multiplies each coordinate value by the dilation factor.

  A' = 2A = 2(-1, -2) = (-2, -4)

  B' = 2B = 2(-1, 3) = (-2, 6)

 C' = 2C = 2(4, 3) = (8, 6)

  D' = 2D = 2(4, -2) = (8, -4)

Find the absolute extrema of the function over the region R. (In each case, R contains the boundaries.) Use a computer algebra system to confirm your results. (Order your answers from smallest to largest x, then from smallest to largest y.)
f(x, y) = x2 − 4xy + 5
R = {(x, y): 1 ≤ x ≤ 4, 0 ≤ y ≤ 2}

Answers

f(x, y) = x ² - 4xy + 5

has critical points where both partial derivatives vanish:

f/∂x = 2x - 4y = 0   ==>   x = 2y

f/∂y = -4x = 0   ==>   x = 0   ==>   y = 0

The origin does not lie in the region R, so we can ignore this point.

Now check the boundaries:

• x = 1   ==>   f (1, y) = 6 - 4y

Then

max{f (1, y) | 0 ≤ y ≤ 2} = 6 when y = 0

max{f (1, y) | 0 ≤ y ≤ 2} = -2 when y = 2

• x = 4   ==>   f (4, y) = 12 - 16y

Then

max{f (4, y) | 0 ≤ y ≤ 2} = 12 when y = 0

max{f (4, y) | 0 ≤ y ≤ 2} = -4 when y = 2

• y = 0   ==>   f (x, 0) = x ² + 5

Then

max{f (x, 0) | 1 ≤ x ≤ 4} = 21 when x = 4

min{f (x, 0) | 1 ≤ x ≤ 4} = 6 when x = 1

• y = 2   ==>   f (x, 2) = x ² - 8x + 5 = (x - 4)² - 11

Then

max{f (x, 2) | 1 ≤ x ≤ 4} = -2 when x = 1

min{f (x, 2) | 1 ≤ x ≤ 4} = -11 when x = 4

So to summarize, we found

max{f(x, y) | 1 ≤ x ≤ 4, 0 ≤ y ≤ 2} = 21 at (x, y) = (4, 0)

min{f(x, y) | 1 ≤ x ≤ 4, 0 ≤ y ≤ 2} = -11 at (x, y) = (4, 2)

A cylinder with a base diameter of x units has a volume of excubic units.
Which statements about the cylinder are true,Select
two options.

1)The radius of the cylinder is 2x units.

2)The area of the cylinder's base is 1/4 piex^2square units.

3)The area of the cylinder's base is 1/2 piex^2 square units.

4)The height of the cylinder is 2x units.

5)The height of the cylinder is 4x units.

Answers

Answer:3 and 4

Step-by-step explanation:

OLVE
(a) 3^2x+1=9^
2x-1​

Answers

Answer:

x=2

Step-by-step explanation:

you first have to make the bases the same

3^2x+1=9^2x-1

3^2x+1=3^2(2x-1) if you make the bases the same you will use 3^2 because it's equal to 9

3^2x+1=3^4x-2

2x+1=4x-2

2x-4x=-2-1

-2x/-2=-4/-2

x=2

I hope this helps

please help me with geometry

Answers

Answer:

x = 7

Explaination:

ABC = 40°

and BD bisects the angle so ABD = 20°

so 3x-1=20

solving for x gets us

x = 7

A lottery ticket has a grand prize of $30.1 million. The probity of winning the grand prize is .000000038
Deteman the expected value of the lottery ticket

Answers

Answer:

$30.1 million * .000000038

$1.14

did the question say how much the ticket cost?

if it was $1 then you would have to subtract $1 so the expected value would be 14 cents

Step-by-step explanation:

There are10 members on a board of directors. If they must elect a chairperson, a secretary, and a treasurer, howmany different slates of candidates are possible

Answers

Answer:

The answer is "720"

Step-by-step explanation:

The amount of different slates candidates:

[tex]n=\frac{N!}{(N-k)!}\\\\[/tex]

   [tex]=\frac{10!}{(10-3)!}\\\\=\frac{10!}{7!}\\\\=\frac{10\times 9 \times 8 \times 7! }{7!}\\\\=10\times 9 \times 8\\\\=90\times 8\\\\=720[/tex]

Find the missing segment in the image below

Answers

Answer:

x = 42

Step-by-step explanation:

24+8 = 32

[tex]\frac{x}{24}[/tex] = [tex]\frac{x+14}{32}[/tex]

32x = 24(x+14)

32x = 24x+336

8x = 336

x = 42

If a ∥ b and b ⊥ y, then _____

Answers

Answer:

a ⊥ y

Step-by-step explanation:

since b is parallel to a & perpendicular to y , line y will eventually cut across line a at a 90 degree angle as well

Answer:

a ⊥ y

Step-by-step explanation:

Look at the image given below.

Let x represent the average annual salary of college and university professors (in thousands of dollars) in the United States. For all colleges and universities in the United States, the population variance of x is approximately σ2
= 47.1. However, a random sample of 15 colleges and universities in Kansas showed that x has a sample variance σ2 = 83.2. Use a 5% level of significance to test the claim that the variance for colleges and universities in Kansas is greater than 47.1. Use the traditional method. Assume that a simple random sample is selected from a normally distributed population.
a. Check requirements.
b. Establish H0 and H1 and note the level of significance.
c. Find the sample test statistic.
d. Find Critical Value.
e. Conclude the test and interpret results.

Answers

Answer:

Kindly check explanation

Step-by-step explanation:

Given that :

The hypothesis :

H0 : σ²= 47.1

H1 : σ² > 47.1

α = 5% = 0.05

Population variance, σ² = 47.1

Sample variance, s² = 83.2

Sample size, n = 15

The test statistic = (n-1)*s²/σ²

Test statistic, T = [(15 - 1) * 83.2] ÷ 47.1

Test statistic = T = [(14 * 83.2)] * 47.1

Test statistic = 1164.8 / 47.1

Test statistic = 24.73

The degree of freedom, df = n - 1 ; 10 = 9

Critical value (0.05, 9) = 16.92 (Chisquare distribution table)

Reject H0 ; If Test statistic > Critical value

Since ; 24.73 > 16.92 ; Reject H0 and conclude that variance is greater.

Tickets to a local movie were sold at $6.00 for adults and $4.50 for students. If 390 tickets were sold for a total of $2190.00, how many student tickets were sold

Answers

Answer: Therefore 100 student tickets were sold

Step-by-step explanation:

Let the number of student tickets be x

So adult tickets = 390 - x

ATQ

4.5(x) + 6(390-x) = 2190

4.5x + 2340 - 6x = 2190

-1.5x + 2340 = 2190

-1.5x = 2190-2340

-1.5x = -150

x = -150/-1.5

x = 100

Therefore 100 student tickets were sold

please click thanks and mark brainliest if you like :)

The length L of the base of a rectangle is 5 less than twice its height H. Write the algebraic expression to model the area of the rectangle.

Answers

Answer:

Area of rectangle = 2H² - 5H

Step-by-step explanation:

Let the length be L.Let the height be H.

Translating the word problem into an algebraic expression, we have;

Length =2H - 5

To write the algebraic expression to model the area of the rectangle;

Mathematically, the area of a rectangle is given by the formula;

Area of rectangle = L * H

Where;

L is the Length.H is the Height.

Substituting the values into the formula, we have;

Area of rectangle = (2H - 5)*H

Area of rectangle = 2H² - 5H

Let U be a matrix where u_ij = 0 if i > j, and L be a matrix where l_ij = 0 if i < j.
(a) U is called an upper triangular matrix and L is a lower tri-angular matrix. Explain why.
(b) Prove or disprove: The sum of two upper triangular matrices is an upper triangular matrix.
(c) Prove or disprove: The product of two upper triangular matrices is an upper triangular matrix.

Answers

Answer:

A) U is called an upper triangular matrix because all entries below the principal diagonal element are zeros ( 0 )   since Uij = 0 if i >j  also

L is a lower triangular matrix because all entries above the principal diagonal element are zero ( 0 )

B) sum of two upper triangular matrices = upper triangular matrix.

C) product of two upper triangular matrices = upper triangular matrix

Step-by-step explanation:

A) U is called an upper triangular matrix because all entries below the principal diagonal element are zeros ( 0 )   since Uij = 0 if i >j  also

L is a lower triangular matrix because all entries above the principal diagonal element are zero ( 0 ) since Lij = 0  if i < j

B) To prove that sum of two upper triangular matrices

attached below

C) Prove or disprove that product of two upper triangular matrices is an upper triangular matrix

attached below

PLEASE gelp me with this, gelp me please oh please gelp me!

Answers

Answer:

V = 2143.57 cm^3

Step-by-step explanation:

The volume of a sphere is

V = 4/3 pi r^3

The diameter is 16 so the radius is 1/2 of the diameter or 8

V = 4/3 ( 3.14) (8)^3

V =2143.57333

Rounding to the nearest hundredth

V = 2143.57 cm^3

Answer:

2143.57 cm^3

Step-by-step explanation:

V = 4/3 * 3.14 * r^3

r = 1/2 * 16 = 8

So V = 4/3 * 3.14 * 8^3

= 2143.57 cm^3.

Other Questions
Solve for x. Round to the nearest tenth, if necessary. g In the year 2005, the age-adjusted death rate per 100,000 Americans for heart disease was 222.3. In the year 2009, the age-adjusted death rate per 100,000 Americans for heart disease had changed to 213.4. a) Find an exponential model for this data, where t How would the domain and range of the function y = one-fourth x minus 6 be determined? Explain. The federal government played an important role in assisting the development of industry. True False I am so lost Helppp! step by step would be great and any links would help! they help me ? is the last someone please find the value of x to the nearest tenth Find the next year's net income for XYZ Inc. Next year, the sales grow by 25%. The current sales $300 million, and the current profit margin is 10% and you expect it to remain constant. Find the length of side AB.Give your answer to 1 decimal place.12 cm62AB Solve the following linear quadratic system of equations algebraically.y=^2+3x-2y+3=5x pada hari kantin sebanyak 800 naskah kupon telah dijual,harga senaskah kupon masing masing rm 30 dan rm 50 .jumlah wang diperoleh hasil daripada jualan kupon ialah rm30000.berapa naskah kupon rm30 dan rm50 yang telah dijual? Costs associated with two alternatives, code-named Q and R, being considered by Albiston Corporation are listed below: Alternative Q Alternative R Supplies costs$79,000 $79,000 Power costs$36,600 $35,600 Inspection costs$32,000 $35,600 Assembly costs$48,000 $48,000 Required: a. Which costs are relevant and which are not relevant in the choice between these two alternatives 2. Resolve into factors.a) 8x3 + y3 A box contains 5 orange pencils, 8 yellow pencils, and 4 green pencils.Two pencils are selected, one at a time, with replacement.Find the probability that the first pencil is green and the second pencil is yellow.Express your answer as a decimal, rounded to the nearest hundredth. express 3 as a percent of 5 What is the difference between noun clause/ adverb clause/ adjective clause.It is very confusing can anyone to me.....I am not getting it...please:) The formula for centripetal acceleration, a, is given by this formula, where v is the velocity of the object and r is the objects distance from the center of the circular path:A= V2/RSolve the formula for r. A water storage tank has the shape of a cylinder with diameter 14 ft. It is mounted so that the circular cross-sections are vertical. If the depth of the water is 12 ft, what percentage of the total capacity is being used uuhdcnkhbbbbhbnbbbbnnnnnnnnnfddjkjfs y=x+2 y=-x +8 What is the solution for this system of equations?