Answer:
x=3
Step-by-step explanation:
(segment piece) x (segment piece) = (segment piece) x (segment piece)
3x(x+1) = 4x(x)
Divide each side by x
3x(x+1)/x = 4x(x)/x
3(x+1) = 4x
Distribute
3x+3 = 4x
Subtract 3x
3x+3-3x= 4x-3x
3 =x
Answer:
x = 3
Step-by-step explanation:
0 is a rediculas answer 9 and 12 are to big.
The lines are supposed to have a simular length:
3(3) + 4 = 13
4(3) + 3 = 15
These are the best answers that fit.
Brainliest for the correct answer!! A calculator was used to perform a linear regression on the values in the table. The results are shown to the right of the table.What is the line of best fit?A.y = –0.984x + 13.5B.y = –2.9x + 13.5C.–0.984 = –2.9x + 13.5D.y = 13.5x – 2.9
Answer:
B. y = –2.9x + 13.5
Step-by-step explanation:
You can try to use the calculator to determine the best line for the values given; you will se that the calculator form, for the linear function is
y = a + bx, where a is the y intercept and b is the slope.
To determine the slope, we apply a formula, to calculate the product of the two xy and, x², plus the sum of each column.
x y xy x²
1 . 11 = 11 → x² = 1² = 1
2 . 8 = 16 → x² = 2² = 4
3 . 4 = 12 → x² = 3² = 9
4 . 1 = 4 → x² = 4² = 16
5 . 0 = 0 → x² = 5² = 25
Total x = 1 + 2 + 3 + 4 + 5 = 15
Total y = 11 + 8 + 4+ 1 + 0 = 24
Sum of xy = 11 + 16 + 12 + 4 + 0 = 43
Sum of x² = 1 + 4 + 9 + 16 + 25 = 55
n = 5
So b = 5 (43) - (15) . (24) / 5 (55) - 15² = -2.9
a = y media - b . x media → a = 24/5 - (-2.9) . 15/5 = 13.5
tan inverse 1/4 +tan inverse 2/7 = 1/2 cos inverse 3/5
Answer:
The equation is always false
Step-by-step explanation:
arctan1/4+arctan2/7=1/2arccos3/5
0.24497866+0.27829965=1/2(0.92729521)
0.52327832 =0.46364760
not equivalent and will never be.
The size of the left upper chamber of the heart is one measure of cardiovascular health. When the upper left chamber is enlarged, the risk of heart problems is increased. A paper described a study in which the left atrial size was measured for a large number of children ages 5 to 15 years. Based on this data, the authors conclude that for healthy children, left atrial diameter was approximately normally distributed with a mean of 26.5 mm and a standard deviation of 4.8 mm.
Required:
a. Approximately what proportion of healthy children has left atrial diameters less than 24 mm?
b. Approximately what proportion of healthy children has left atrial diameters greater than 32 mm?
c. Approximately what proportion of healthy children has left atrial diameters between 25 and 30 mm?
d. For healthy children, what is the value for which only about 20% have a larger left atrial diameter?
Answer:
a) P [ X < 24 mm ] = 0,3015 or P [ X < 24 mm ] = 30,15 %
b) P [ X > 32 mm ] = 0,1251 or P [ X > 32 mm ] = 12,51 %
c) P [ 25 < X < 30 ] = 0,4964 or P [ 25 < X < 30 ] = 49,64 %
d) z(s) = 0,84
Step-by-step explanation:
Normal Distribution N ( μ₀ ; σ ) is N ( 26,5 ; 4,8 )
a) P [ X < 24 mm ] = ( X - μ₀ ) / σ
P [ X < 24 mm ] = (24 - 26,5)/ 4,8 = - 0,5208 ≈ - 0,52
P [ X < 24 mm ] = - 0,52
And from z-table we find area for z score
P [ X < 24 mm ] = 0,3015 or P [ X < 24 mm ] = 30,15 %
b)P [ X > 32 mm ] = 1 - P [ X < 32 mm ]
P [ X < 32 mm ] = ( 32 - 26,5 ) / 4,8
P [ X < 32 mm ] = 5,5/4,8 = 1,1458 ≈ 1,15
P [ X < 32 mm ] = 1,15
And from z-table we get
P [ X < 32 mm ] = 0,8749
Then:
P [ X > 32 mm ] = 1 - 0,8749
P [ X > 32 mm ] = 0,1251 or P [ X > 32 mm ] = 12,51 %
c) P [ 25 < X < 30 ] = P [ X < 30 ] - P [ X < 25 ]
P [ X < 30 ] = 30 - 26,5 / 4,8 = 0,73
From z-table P [ X < 30 ] = 0,7673
P [ X < 25 ] = 25 - 26,5 / 4,8 = - 0,3125 ≈ - 0,31
From z-table P [ X < 25 ] = 0,2709
Then
P [ 25 < X < 30 ] = 0,7673 - 0,2709
P [ 25 < X < 30 ] = 0,4964 or P [ 25 < X < 30 ] = 49,64 %
d) If 20 %
z- score for 20% is from z-table
z(s) = 0,84
HELP ASAP ROCKY!!! will get branliest.
Answer:
work pictured and shown
Answer:
Last one
Step-by-step explanation:
● [ ( 3^2 × 5^0) / 4 ]^2
5^0 is 1 since any number that has a null power is equal to 1.
●[ (3^2 ×1 ) / 4 ]^2
● (9/4)^2
● 81 / 16
49, 34, and 48 students are selected from the Sophomore, Junior, and Senior classes with 496, 348, and 481 students respectively. Group of answer choices
Answer:
Stratified Random sampling.
Step-by-step explanation:
As per the scenario, It is stratified random sampling as it divides students into strata which represent Sophomores, Juniors, and Seniors.
Simple random samples of the given sizes of the proportional to the size of the stratum which is to be taken from every stratum that is to be about 10 percent of students from every class that is selected here.
Hence, according to the given situation, the correct answer is a random stratified sampling.
a
A solid metal cone of base radius a cm and height 2a cm is melted and solid
spheres of radius are made without wastage. How many such spheres can be
made?
volume of a cone
.
.
.
volume of sphere
.
.
number of spheres that can be made......
.
.
hence a hemisphere can be formed
A low-noise transistor for use in computing products is being developed. It is claimed that the mean noise level will be below the 2.5-dB level of products currently in use. It is believed that the noise level is approximately normal with a standard deviation of .8. find 95% CI
Answer:
The 95% CI is [tex]2.108 < \mu < 2.892[/tex]
Step-by-step explanation:
From the question we are told that
The population mean [tex]\mu = 2.5[/tex]
The standard deviation is [tex]\sigma = 0.8[/tex]
Given that the confidence level is 95% then the level of confidence is mathematically evaluated as
[tex]\alpha = 100 - 95[/tex]
=> [tex]\alpha = 5\%[/tex]
=> [tex]\alpha = 0.05[/tex]
Next we obtain the critical value of [tex]\frac{\alpha }{2}[/tex] from the normal distribution table, the values is [tex]Z_{\frac{\alpha }{2} } = 1.96[/tex]
Generally the margin of error is mathematically evaluated as
[tex]E = Z_{\frac{\alpha }{2} } * \frac{\sigma}{\sqrt{n} }[/tex]
here we would assume that the sample size is n = 16 since the person that posted the question did not include the sample size
So
[tex]E = 1.96* \frac{0.8}{\sqrt{16} }[/tex]
[tex]E = 0.392[/tex]
The 95% CI is mathematically represented as
[tex]\= x -E < \mu < \= x +E[/tex]
substituting values
[tex]2.5 - 0.392 < \mu < 2.5 + 0.392[/tex]
substituting values
[tex]2.108 < \mu < 2.892[/tex]
A museum curator is hanging 7 paintings in a row for an exhibit. There are 4 Renaissance paintings and 3 Baroque paintings. From left to right, all of the Renaissance paintings will be hung first, followed by all of the Baroque paintings. How many ways are there to hang the paintings
Answer:
144 ways
Step-by-step explanation:
Number of paintings = 7
Renaissance = 4
Baroque = 3
We are hanging from left to right and we will first hang Renaissance painting before baroque painting.
For Renaissance we have 4! Ways of doing so. 4 x3x2x1 = 24
For baroque we have 3! Ways of doing so. 3x2x1 = 6
We have 4!ways x 3!ways
= (4x3x2x1) * (3x2x1) ways
= 144 ways
Therefore we have 144 ways to hang the painting.
The size of a television is the length of the diagonal of its screen in inches. The aspect ratio of the screens of older televisions is 4:3, while the aspect ratio of newer wide-screen televisions is 16:9. Find the width and height of an older 35-inch television whose screen has an aspect ratio of 4:3.
Answer:
The Width = 28 inches
The Height = 21 inches
Step-by-step explanation:
We are told in the question that:
The width and height of an older 35-inch television whose screen has an aspect ratio of 4:3
Using Pythagoras Theorem
Width² + Height² = Diagonal²
Since we known that the size of a television is the length of the diagonal of its screen in inches.
Hence, for this new TV
Width² + Height² = 35²
We are given ratio: 4:3 as aspect ratio
Width = 4x
Height = 3x
(4x)² +(3x)² = 35²
= 16x² + 9x² = 35²
25x² = 1225
x² = 1225/25
x² = 49
x = √49
x = 7
Hence, for the 35 inch tv set
The Width = 4x
= 4 × 7
= 28 inches.
The Height = 3x
= 3 × 7
= 21 inches
The weight of a full steel bead tire is approximately 800 grams, while a lighter wheel weighs only 700 grams. What is the weight of each tire in pounds? There are 453.592 grams in one pound. Round answers to 2 decimal places. 800 grams = ______ pounds 700 grams = _____ pounds
Answer:
800= about 1.76 lbs
700= about 1.54 lbs
(there are about 453.5 grams in a pound
Step-by-step explanation:
Answer:
800 grams = 1.76 pounds
700 grams = 1.54 pounds
Step-by-step explanation:
i googled it
Kenji earned the test scores below in English class.
79, 91, 93, 85, 86, and 88
What are the mean and median of his test scores?
Answer:
mean=87
median=87
Step-by-step explanation:
mean=sum of test score/number of subject
mean=79+91+93+85+86+88/6
mean=522/6
mean=87
Literal meaning of median is medium.
To find the number which lies in the medium, we must rearrange the number in ascending.
79, 91, 93, 85, 86, 88
79, 85, 86, 88, 91, 93
86+88/2=87
Hope this helps ;) ❤❤❤
Let me know if there is an error in my answer.
BRAINLIST AND A THANK YOU AND 5 stars WILL BE REWARDED PLS ANSER
Answer:
The first picture's answer would be (6, 21)
Step-by-step explanation:
You have to find the points on the 8th and the 9th day, and then you would add them together, and then divide by two finding the average, which would be 24 and 18, so when added, you get 42, divided by 2 you get 21. You look on the graph for the point with 21, and you find it is on 6.
Techwiz electronics makes a profit of $35 for each mp3 and $18 for each DVD last week techwiz sold a combined total of 118 mp3 and DVD players. Let x be the number of mp3 sold last week write an expression for the combined total profit (in dollars) made last week
Answer:
The total profit is [tex]p = 17x + 2124[/tex]
Step-by-step explanation:
From the question we are told that
The profit made on each mp3 is k = $35
The profit made on each mp3 is y = $18
The total amount sold is n = 118
Now given that the amount of mp3 sold is x then the amount of DVD sold is mathematically evaluated as
[tex]n - x[/tex]
Now the profit made on the x number of mp3 sold is
[tex]x * 35 = 3x[/tex]
And the the profit made from the n-x number of DVD sold is 18 (n-x ) = 18 - 18x
So the total profit made last week from the sales of both mp3 and DVD is
[tex]p = 35x + 18n - 18x[/tex]
[tex]p = 17x + 18(118)[/tex]
[tex]p = 17x + 2124[/tex]
Please answer this correctly without making mistakes
Answer:
1/8
Step-by-step explanation:
3/8-1/8-1/8=1/8
For some postive value of Z, the probability that a standardized normal variable is between 0 and Z is 0.3770. The value of Z is
Answer:
1.16
Step-by-step explanation:
Given that;
For some positive value of Z, the probability that a standardized normal variable is between 0 and Z is 0.3770.
This implies that:
P(0<Z<z) = 0.3770
P(Z < z)-P(Z < 0) = 0.3770
P(Z < z) = 0.3770 + P(Z < 0)
From the standard normal tables , P(Z < 0) =0.5
P(Z < z) = 0.3770 + 0.5
P(Z < z) = 0.877
SO to determine the value of z for which it is equal to 0.877, we look at the
table of standard normal distribution and locate the probability value of 0.8770. we advance to the left until the first column is reached, we see that the value was 1.1. similarly, we did the same in the upward direction until the top row is reached, the value was 0.06. The intersection of the row and column values gives the area to the two tail of z. (i.e 1.1 + 0.06 =1.16)
therefore, P(Z ≤ 1.16 ) = 0.877
602/100 into a decimal describe plz
Answer:
6.02
six point zero two
Step-by-step explanation:
Answer:
602 / 100= 6,02
Step-by-step explanation:
602 to divide 100 = 6,02
Average of 44.64, 43.45, 42.79, 42.28
Answer:
43.29Step-by-step explanation:
[tex]44.64+ 43.45+42.79+42.28\\\\= \frac{44.64+ 43.45+42.79+42.28}{4} \\\\\\= \frac{173.16}{4} \\\\= 43.29\\[/tex]
One number is twice another. The sum of their reciprocals is 3/2 . Find the numbers.
Answer:
The two numbers are 1 and 2.
Step-by-step explanation:
Let the two numbers be a and b.
One number is twice another, so let's let b=2a.
Their reciprocals are 3/2. Thus:
[tex]\frac{1}{a}+\frac{1}{b} =\frac{3}{2}[/tex]
Substitute and solve for a:
[tex]\frac{1}{a}+\frac{1}{2a} =\frac{3}{2}\\[/tex]
Combine the fractions by forming a common denominator by multiplying the left term by 2:
[tex]\frac{2}{2a} +\frac{1}{2a}=\frac{3}{2}[/tex]
Combine and cross-multiply:
[tex]3/2a=3/2\\6a=6\\a=1\\b=2(1)=2[/tex]
Thus, the two numbers are 1 and 2.
is this a function {(-2, 6), (-3, 7), (-4, 8), (-3, 10)}
No, that is not a function.
To be a function, each different input (x) needs a different output (y)
In the given function there are two -3’s as inputs and they have different y values, so it can’t be a function.
Answer: no
Step-by-step explanation: To determine if a relation is a function, take a look at the x–coordinate of each ordered pair. If the x–coordinate is different in each ordered pair, then the relation is a function.
Note that the only exception to this would be that if the x-coordinate pairs up with the same y-coordinate in a relation more than once, it's still classified ad a function.
Ask yourself, do any of the ordered pairs
in this relation have the same x-coordinate?
Well by looking at this relation, we can see that two
of the ordered pairs have the same x-coordinate.
In this case, the x-coordinate of 3 appears twice.
So no, this relation is not a function.
Which relation is a function?
The number two is a function
First rule of function: for each element of A there is one and only one element of B
For example, in the first one -5 is "collegated" to -2 and 3. So this isn't a function.
Naturally, every element of B can have more element of A
BRAINLIEST IF CORRECT!!! and 15 points solve for z -cz + 6z = tz + 83
Answer:
z = 83/( -c+6-t)
Step-by-step explanation:
-cz + 6z = tz + 83
Subtract tz from each side
-cz + 6z -tz= tz-tz + 83
-cz + 6z - tz = 83
Factor out z
z( -c+6-t) = 83
Divide each side by ( -c+6-t)
z( -c+6-t)/( -c+6-t) = 83/( -c+6-t)
z = 83/( -c+6-t)
help pls:Find all the missing elements
Step-by-step explanation:
Using Sine Rule
[tex] \frac{ \sin(a) }{ |a| } = \frac{ \sin(b) }{ |b| } = \frac{ \sin(c) }{ |c| } [/tex]
[tex] \frac{ \sin(42) }{5} = \frac{ \sin(38) }{a} [/tex]
[tex]a = \frac{5( \sin(38))}{ \sin(42) } [/tex]
[tex]a = 4.6[/tex]
[tex] \frac{ \sin(42) }{5} = \frac{ \sin(100) }{b} [/tex]
[tex]b= \frac{5( \sin(100))}{ \sin(42) } [/tex]
[tex]b = 7.4[/tex]
The quotient of 3 and the cube
of y+2
Answer:
[tex]\dfrac{3}{(y+2)^3}[/tex]
Step-by-step explanation:
Maybe you want this written using math symbols. It will be ...
[tex]\boxed{\dfrac{3}{(y+2)^3}}[/tex]
Compute the flux of the vector field LaTeX: \vec{F}=F → =< y + z , x + z , x + y > though the unit cubed centered at origin.
Assuming the cube is closed, you can use the divergence theorem:
[tex]\displaystyle\iint_S\vec F\cdot\mathrm dS=\iiint_T\mathrm{div}\vec F\,\mathrm dV[/tex]
where [tex]S[/tex] is the surface of the cube and [tex]T[/tex] is the region bounded by [tex]S[/tex].
We have
[tex]\mathrm{div}\vec F=\dfrac{\partial(y+z)}{\partial x}+\dfrac{\partial(x+z)}{\partial y}+\dfrac{\partial(x+y)}{\partial z}=0[/tex]
so the flux is 0.
if 2x-7 is 5 more than x+4, what is the value of 3x+5
Answer:
53
Step-by-step explanation:
Let's start with the given relation:
2x -7 = (x+4) +5
x = 16 . . . . . . . . . add 7-x
3x +5 = 3(16) +5 = 53 . . . . . multiply by 3 and add 5
The value of 3x+5 is 53.
please help me in these question ????
A school bag contains 12 pens of which 5 are red and the other are black. 4 pens are selected from the bag.
(a) How many different samples of size 4 pens are possible?
(b) How many samples have 3 red pens and 1 black pen?
(c) How many samples of size 4 contain at least two red pens?
(d) How many samples of size 4 contain
If the average yield of cucumber acre is 800 kg, with a variance 1600 kg, and that the amount of the cucumber follows the normal distribution.
1- What percentage of a cucumber give the crop amount between and 834 kg?
2- What the probability of cucumber give the crop exceed 900 kg ?
Answer:
Step-by-step explanation:
A school bag contains 12 pens of which 5 are red and the other are black. 4 pens are selected from the bag.
(a) How many different samples of size 4 pens are possible?
12C4=12!/(4!*8!)=495
(b) How many samples have 3 red pens and 1 black pen?
5C3*7C1
5C3=5!/(3!*2!)=10
7C1=7!/(1!*6!)=7
=>5C3*7C1=10*7=70
(c) How many samples of size 4 contain at least two red pens?
(5C2*7C2)+(5C3*7C1)+(5C4*7C0)
5C2=5!/(2!*3!)=10
7C2=7!/(2!*5!)=21
5C3=5!/(3!*2!)=10
7C1=7!/(1!*6!)=7
5C4=5!/(4!*1!)=5
7C0=7!/(0!*7!)=1
=>(5C2*7C2)+(5C3*7C1)+(5C4*7C0)=285
(d) How many samples of size 4 contain at most one black pen?
(7C1*5C3)+(7C0*5C4)
7C1=7!/(1!*6!)=7
7C0=7!/(0!*7!)=1
5C3=5!/(3!*2!)=10
5C4=5!/(4!*1!)=5
=>(7C1*5C3)+(7C0*5C4)=(7*10)+(1*5)=75
A sports club was formed in the month of May last year. The function below, M(t), models the number of club members for the first 10 months, where t represents the number of months since the club was formed in May. m(t)=t^2-6t+28 What was the minimum number of members during the first 10 months the club was open? A. 19 B. 28 C. 25 D. 30
Answer:
A: 19
Step-by-step explanation:
For this, we can complete the square. We first look at the first 2 terms,
t^2 and -6t.
We know that [tex](t-3)^2[/tex] will include terms.
[tex](t-3)^2 = t^2 - 6t + 9[/tex]
But [tex](t-3)^2[/tex] will also add 9, so we can subtract 9. Putting this into the equation, we get:
[tex]m(t) = (t-3)^2 - 9 +28[/tex]
[tex]m(t) = (t-3)^2 +19[/tex]
Using the trivial inequality, which states that a square of a real number must be positive, we can say that in order to have the minimum number of members, we need to make (t-3) = 0. Luckily, 3 months is in our domain, which means that the minimum amount of members is 19.
Jaclyn is one-fourth of a foot taller than John. John is 31/6 feet tall. How many feet tall is Jaclyn
Answer:
5 5/12
Step-by-step explanation:
31/6 feet + 1/4 foot
= 31/6 + 1/4
= [(31 * 4) / 6 * 4] + [(1 * 6) / 4 * 6]
= [ 124/24 ] + [ 6/24 ]
= (124 + 6) / 24
= 130 / 24
= 5 10/24
= 5 5/12
Hope this helps! Tell me if I'm wrong!
What is 1/3 of 675 is left
Each leg of a 45°-45°-90° triangle measures 12 cm.
What is the length of the hypotenuse?
Z
х
45°
45°
O 6 cm
12 cm
12 cm
O 672 cm
O 12 cm
O 122 cm
Answer:
The legs are 12 cm each, so the hypotenuse is
√(144+144)=12√2
Step-by-step explanation:
Applying the Pythagorean Theorem, the length of the hypotenuse is: 12√2 cm.
The Pythagorean TheoremWhere, a and b are two legs of a right triangle, and c is the hypotenuse, the Pythagorean Theorem states that, c² = a² + b².Given the two legs of the right triangle to be 12 cm
Therefore:c² = 12² + 12².
c² = 288
c = √288
c = 12√2 cm
Therefore, applying the Pythagorean Theorem, the length of the hypotenuse is: 12√2 cm.
Learn more about, the Pythagorean Theorem on:
https://brainly.com/question/654982