Find the value of x. A. 74 B. 244 C. 52 D. 64

Find The Value Of X. A. 74 B. 244 C. 52 D. 64

Answers

Answer 1

Answer:

Step-by-step explanation:

The formula you need to solve for angle x is:

∠x = 1/2(large arc - small arc)

We have enough info to find what we need to solve for the arcs. 58° is an inscribed angle. The rays of the angle cut off an arc on the circle and that arc measure is twice the measure of the angle. So the smaller arc is 58 * 2 = 116. Since around the outside of the circle measures 360°, then the larger arc measures 360 - 116 = 244. So the larger arc is 244. Filling in the formula to solve for the angle x:

∠x = 1/2(244 - 116) and

∠x = 1/2(128) so

∠x = 64

D is your answer.

Answer 2

Answer:

D.) 64

Step-by-step explanation:

I got it correct on founders edtell


Related Questions

What is the 6th row of Pascal's triangle?

Answers

Answer:

1, 6, 15, 20, 15, 6, 1

The Fairy Tale Spectacular is coming to town. Admission to the fair costs $32.50 and each ride costs $0.80. You have $50 to spend at the Fairy Tale Spectacular including admission. Write and solve an inequality to determine the maximum number of rides you can enjoy at the Fairy Tale Spectacular?

Answers

Answer:21

Step-by-step explanation:

50-32.5=17.5

17.5/0.8=21.875

Complex numbers
[ = square root symbol

-[-64
How would I find this?

Answers

[tex]-\sqrt{-64}=-\sqrt{8^2\cdot (-1)}-8\sqrt{-1}=-8i[/tex]

The axis of symmetry for a quadratic equation can be found using the formula x equals StartFraction negative b Over 2 a EndFraction, where a and b are coefficients in the quadratic equation and x represents the values along a vertical line on the coordinate plane. What is the equation when solved for a?

Answers

Answer:

[tex]a=-\frac{b}{2x}[/tex]

Step-by-step explanation:

The equation of a quadratic function is given as:

ax² + bx + c = 0

where a, b and c are the coefficient in the quadratic equation.

The axis of symmetry of the quadratic equation is given as:

[tex]x=-\frac{b}{2a}[/tex]

To get the equation for a, we have to make a the subject of formula:

[tex]x=-\frac{b}{2a}\\\\multiply\ both\ sides\ by \ 2a:\\\\x*2a=-\frac{b}{2a}*2a\\\\2ax=-b\\\\Divide\ through\ by\ 2a\\\\2ax/2a=-b/2a\\\\a=-\frac{b}{2x}[/tex]

The value of a when solved from x = -b/2a is;

a = -b/2x

We are given the formula for axis of symmetry of a quadratic equation to be;

x = -b/2a

Where;

a and b are coefficients in the quadratic equation

x represents the values along a vertical line on the coordinate plane.

Now, we want to solve for a which means we make it the subject of the equation;

Using multiplication property of equality, we multiply both sides by 2a to get;

2ax = -b

We now use division property of equality by dividing both sides by 2x to get;

a = -b/2x

Read more at; https://brainly.com/question/3528055

Cody is a lifeguard and spots a drowning child 40 meters along the shore and 70 meters from the shore to the child. Cody runs along the shore for a while and then jumps into the water and swims from there directly to the child. Cody can run at a rate of 4 meters per second and swim at a rate of 1.1 meters per second. How far along the shore should Cody run before jumping into the water in order to save the child? Round your answer to three decimal places.

Answers

Answer:

Cody should run approximately 19.978 meters along the shore before jumping into the water in order to save the child.Thus,

Step-by-step explanation:

Consider the diagram below.

In this case we need to minimize the time it takes Cody to save the child.

Total time to save the child (T) = Time taken along the shore (A) + Time taken from the shore (B)

The formula to compute time is:

[tex]time=\frac{distance}{speed}[/tex]

Compute the time taken along the shore as follows:

[tex]A=\frac{x}{4}[/tex]

Compute the time taken from the shore as follows:

[tex]B=\frac{\sqrt{70^{2}+(40-x)^{2}}}{1.1}[/tex]

Then the total time taken to save the child is:

[tex]T=\frac{x}{4}+\frac{\sqrt{70^{2}+(40-x)^{2}}}{1.1}[/tex]

Differentiate T with respect to x as follows:

[tex]\frac{dT}{dx}=\frac{d}{dx}[\frac{x}{4}]+\frac{d}{dx}[\frac{\sqrt{70^{2}+(40-x)^{2}}}{1.1}][/tex]

    [tex]=\frac{1}{4}-\frac{1}{1.1}\cdot \frac{(40-x)}{\sqrt{70^{2}+(40-x)^{2}}}[/tex]

Equate the derivative to 0 to compute the value of x as follows:

                              [tex]\frac{dT}{dx}=0[/tex]

[tex]\frac{1}{4}-\frac{1}{1.1}\cdot \frac{(40-x)}{\sqrt{70^{2}+(40-x)^{2}}}=0\\\\\frac{1}{1.1}\cdot \frac{(40-x)}{\sqrt{70^{2}+(40-x)^{2}}}=\frac{1}{4}\\\\4\cdot (40-x)=1.1\cdot [\sqrt{70^{2}+(40-x)^{2}}]\\\\\{4\cdot (40-x)\}^{2}=\{1.1\cdot [\sqrt{70^{2}+(40-x)^{2}}]\}^{2}\\\\16\cdot (40-x)^{2}=1.21\cdot [70^{2}+(40-x)^{2}}]\\\\16\cdot (40-x)^{2}-1.21\cdot (40-x)^{2}=5929\\\\14.79\cdot (40-x)^{2}=5929\\\\(40-x)^{2}=400.88\\\\40-x\approx 20.022\\\\x\approx 40-20.022\\\\x\approx 19.978[/tex]

Thus, Cody should run approximately 19.978 meters along the shore before jumping into the water in order to save the child.

A model of a wedge of cheese is used in a display for a deli. All the sides of the model are covered in yellow construction paper. A rectangular prism has a rectangular base with length of 15 centimeters and height of 5 centimeters. Another rectangle has length of 15 centimeters and height of 13 centimeters. Another rectangle has length of 15 centimeters, and height of 12 centimeters. The triangular sides have a base of 5 centimeters and heights of 12 centimeters. How much construction paper is needed for the model? 45 square cm 330 square cm 510 square cm 570 square cm

Answers

Answer:

510 cm²

Step-by-step explanation:

To find how much construction paper is needed for the model, we calculate the total areas of each of its sides.

The area of the first triangular sides is A₁ = 15 cm × 5 cm = 75 cm²

The area of the second triangular sides is A₂ = 15 cm × 13 cm = 195 cm²

The area of the third triangular sides is A₃ = 15 cm × 12 cm = 180 cm²

The area of each triangular side is A₄ = 1/2 × 5 cm × 12 cm = 30 cm²

The area of the two triangular sides is A₅ = 2A₄ = 2 × 30 cm² = 60 cm²

The total surface area of a wedge of cheese is A = A₁ + A₂ + A₃ + A₅ = 75 cm² + 195 cm² + 180 cm² + 60 cm² = 510 cm²

So the amount of construction paper needed equals the total surface area of the wedge of cheese = 510 cm²

Answer:

510

Step-by-step explanation:

The point-slope form of the equation of the line that passes through points (-5,-1) and (10, -7 ) is y-4=1/4 (x-8) what is the slope intercept form of the equation for this line​ ?

Answers

Answer:

y = [tex]\frac{1}{4}[/tex] x + 2

Step-by-step explanation:

The equation of a line in slope- intercept form is

y = mx + c ( m is the slope and c the y- intercept )

Given

y - 4 = [tex]\frac{1}{4}[/tex] (x - 8) ← distribute

y - 4 = [tex]\frac{1}4}[/tex] x - 2 ( add 4 to both sides )

y = [tex]\frac{1}{4}[/tex] x + 2 ← in slope- intercept form

what's the square footage of 12'3" * 18'4"

Answers

Answer:

multiply length time width  

What are the domain and range of the real-valued function f(x)=2/(x+5)?

Answers

Answer:

Domain is all real numbers, x ≠ -5

Range is all real numbers, y ≠ 0

Step-by-step explanation:

Domain: all real numbers except x=-5
(-infinity, -5)U(-5, infinity)

Range: all real numbers except y=0
(-infinity, 0)U(0, infinity)

The polygons in each pair are similar. find the scale factor of the smallest figure to larger figure.

Answers

Greetings from Brasil...

It is said that polygons are similar, so we can use the expression of similarity.

BIG/small = BIG/small

35/14 = 25/X

X = 10

But the scale factor is questioned. Just use one of the expressions. We conclude that the largest is 2.5 times the value of the smallest

35/14 OR 40/16 OR 25/10

We get 2.5x

-----------------------------------------------------------

BIG/small = BIG/small

25/5 = 40/Y

Y = 8

25/5 OR 25/5 OR 40/8

We get 5x

times the value of the smallest

find the Perimeter Of a circle whose radius is 14cm​

Answers

Answer:

88 cm

Step-by-step explanation:

Perimeter = 2πr

=2(14)(22/7)

= 88 cm

Answer:

87.97cm

Step-by-step explanation:

This question is asking to solve for the circumference.

The formula for the circumference of a circle is:  [tex]\pi*diameter[/tex]

To work this out you would first need to multiply the radius of 14 by 2, this gives you 28cm. This is because the radius is half of the diameter.

The final step is to multiply pi by the diameter of 28, this gives you 87.97cm (87.9645943). This is because the formula for the circumference of a circle is [tex]\pi * diameter[/tex].

1) Multiply 14 by 2.

[tex]14*2=28[/tex]

2) Multiply pi by the diameter.

[tex]\pi*28^2=87.97 cm[/tex]

Compute the range and interquartile range for the data collected for boys and girls. Describe their differences in detail using specific terms of spread. (4 points)

Answers

Answer:

The measure of central tendency, mean and median are approximately equal for the boys indicating that the data of the boys is more evenly spread while standard deviation of the girls data is less than those of the boys indicating that the data for the girls is less widely spread.

Step-by-step explanation:

The given data are;

,             1       2       3      4     5      6       7    8      9      10

Girls,    50    32     15    56   81    50     18    81    22    55

Boys,   75     41     25    22    7     0      43    12    45    70

Sorting the data gives;

Girls,     15,   18,     22,   32,  50,   50,   55,  56,    81,  81

Boys,     0,     7,     12,     22, 25,    41,    43, 45,     70, 75

For the even numbered sample data size, the first quartile, Q₁ is found by sharing the data into two and finding the median of the left half which  gives;

10/2 = 5 on each half

The first quartile, Q₁, is the median of the left 5 data points which is the 3rd data point = 22 for girls and 12 for boys

The third quartile, Q₃, is found in similar method to be the 8th data point which is 56 for girls and 45 for boys

The median = 50 for girls and 33 for boys

Therefore, the interquartile ranges are;

IQR = 56 - 22 = 34 for girls, 45 - 12 = 33 for boys

We check for outliers.

Q₁ - 1.5×IQR = 22 - 1.5*34 = -29

Q₃ + 1.5×IQR = 56 + 1.5*34 = 107

We check the mean of both data samples as follows;

Average for the girls = 46

Average for the boys = 34

Standard deviation for girls = 23.99

Standard deviation for girls = 25.43

Therefore, the measure of central tendency is more accurate for the boys indicating that the data of the boys is more evenly spread while the data for the girls is less widely spread.

A 250.0 kg rock falls off a 40.0 m cliff. What is the kinetic energy of the rock just before it hits the ground (hint: conservation of energy)?

Answers

Answer:

kinetic energy body when it hits the ground is 98000 joule

1000joule = 1 kilojoule

, kinetic energy body when it hits the ground is 98  kilo-joule

Step-by-step explanation:

conservation of energy states that total energy of a system remains constant.

Potential energy of body = mgh

m = mass

g = gravitational pull = 9/8 m/s^2

h = height

kinetic energy = 1/2 mv^2

where v is the velocity of body

________________________________________

Total energy for this at any point is sum of potential energy and kinetic energy

total energy at height h

v= 0

PE = 250*9.8*40= 98,000

KE = 1/2 m0^2  = 0

total energy at when ball hits the ground

h=0

PE = 250*9.8*0 =

KE = 1/2 mv^2  

_______________________________________\

Applying conservation of energy

Total energy at height h = total energy at ground

98000 = KE

Thus, kinetic energy body when it hits the ground is 98000 joule

1000joule = 1 kilojoule

, kinetic energy body when it hits the ground is 98  kilo-joule

solution for 2x is equal to 10​

Answers

Answer:

The answer is 5

Step-by-step explanation:

divide 10 by two and get 5

Answer:

[tex]x = 5[/tex]

Step-by-step explanation:

We have the equation [tex]2x = 10[/tex], we can try and isolate x by dividing both sides by 2.

[tex]2x \div 2 = 10\div2\\x = 5[/tex]

Hope this helped!

Select the correct answer. The velocity of a train relative to the ground is represented by the distance from A to B in the diagram. The velocity of a ball thrown inside the train at an angle of 66° relative to the train is represented by the distance from B to C. What is the distance from A to C (the velocity of the ball relative to the ground), correct to two decimal places? Assume that all the points in the diagram lie in the same plane. A. 21.14 m/s B. 18.03 m/s C. 17.20 m/s D. 15.00 m/s

Answers

Answer:

Step-by-step explanation:

we use cosine formula

2×15×10×cos(180-66)=15²+10²-AC²

-300 cos 66=225+100-AC²

AC²=325+300 cos 66

[tex]AC=\sqrt{325+300 cos 66} \approx 21.14 ~m/s[/tex]

The distance from A to C is 21.14. The correct option is A.

What is trigonometry?

Trigonometry is the branch of mathematics which set up a relationship between the sides and angles of right-angle triangles.

Velocity is defined as the ratio of the distance moved by the object at a particular time. The velocity is a vector quantity so it needs both the magnitude and the direction.

Given that the velocity of a train relative to the ground is represented by the distance from A to B in the diagram. The velocity of a ball thrown inside the train at an angle of 66° relative to the train is represented by the distance from B to C.

The distance A to C will be calculated as,

2×15×10×cos(180-66)=15²+10²-AC²

-300 cos 66=225+100-AC²

AC=√(325+300 cos 66)

AC = 21.17 m/s

Therefore, the distance from A to C is 21.14. The correct option is A.

To know more about trigonometry follow

https://brainly.com/question/14931414

#SPJ3

4:3=x:6, find the value of x please help me

Answers

Answer:

x=8

Step-by-step explanation:

4:3=x:6

Multiply the first set by 2

4*2 : 3*2

8:6

That means x =8

What are the solutions to the equation 3(x – 4)(x + 5) = 0? x = –4 or x = 5 x = 3, x = 4, or x = –5 x = 3, x = –4, or x = 5 x = 4 or x = –5

Answers

Answer:

x= 4                x = -5

Step-by-step explanation:

3(x – 4)(x + 5) = 0

Using the zero product property

(x – 4)=0      (x + 5) = 0

x= 4                x = -5

What are the solutions to the equation 3(x – 4)(x + 5) = 0?

x = –4 or x = 5

x = 3, x = 4, or x = –5

x = 3, x = –4, or x = 5

x = 4 or x = –5

Answer:

D. x = 4 or x = –5

Step-by-step explanation:

Which of the following best describes the graph shown below?
16
A1
1
14
O A This is the graph of a linear function
B. This is the graph of a one-to-one function
C. This is the graph of a function, but it is not one to one
D. This is not the graph of a function

Answers

Answer: C. It is a function, but is it not one-to-one

The vertical line test helps us see that we have a function. Note how it is not possible to draw a single straight line through more than one point on the curve. Any x input leads to exactly one y output. This graph passes the vertical line test. Therefore it is a function.

The function is not one-to-one because the graph fails the horizontal line test. Here it is possible to draw a single straight horizontal line through more than one point on the curve. The horizontal line through y = 2 is one example of many where the graph fails the horizontal line test, meaning the function is not one-to-one.

The term "one-to-one" means that each y value only pairs up with one x value. Here we have something like y = 2 pair up with multiple x values at the same time. This concept is useful when it comes to determining inverse functions.

What is the LCD of 1/2 and 3/5

Answers

Answer:

10

Step-by-step explanation:

How you find LCD (lowest common denominator) is that you have to look at the denominator (the bottom number) and try to find the lowest multiple between both of the numbers that is on the bottom (in this case it is 2 and 5). Sometimes you have to multiply both denominators together to get a LCD.

Example of multiplying two denominators together to get an LCD:

1/3 and 1/13 LCD is 39 because you multiply 3 and 13.

1/5 and 1/4 LCD is 20 because you multiply 5 and 4.

Ernesto solves the equation below by first squaring both sides of the equation. \sqrt{\dfrac{1}{2}w+8}=-2 2 1 ​ w+8 ​ =−2square root of, start fraction, 1, divided by, 2, end fraction, w, plus, 8, end square root, equals, minus, 2 What extraneous solution does Ernesto obtain?

Answers

Answer:

w = -8

Step-by-step explanation:

Given the equation solved by Ernesto expressed as [tex]\sqrt{\dfrac{1}{2}w+8}=-2[/tex], the extraneous solution obtained by Ernesto is shown below;

[tex]\sqrt{\dfrac{1}{2}w+8}=-2\\\\square\ both \ sides \ of \ the \ equation\\(\sqrt{\dfrac{1}{2}w+8})^2=(-2)^2\\\\\dfrac{1}{2}w+8 = 4\\\\Subtract \ 8 \ from \ both \ sides\\\\\dfrac{1}{2}w+8 - 8= 4- 8\\\\\dfrac{1}{2}w= -4\\\\multiply \ both \ sides \ by \ 2\\\\\dfrac{1}{2}w*2= -4*2\\\\w = -8[/tex]

Hence, the extraneous solution that Ernesto obtained is w = -8

Archer receives a day's work of pay, p, for 5 days of mowing lawns. He spent half of his money on gas. Then he spent $5 on water. Now, he has $40 left. Which equation represents how much Archer would get paid each day of mowing lawns?

Answers

Answer:

Daily pay= $18

5 days pay = $90

Step-by-step explanation:

Archer's daily pay =p

Pay for 5 days= 5p

Gas = 1/2 of 5p

= 1/2 × 5p

= 5p/2

Water = $5

Balance = $40

5p = 5/2p + 5 + 40

5p - 5/2p = 45

10p -5p /2 = 45

5/2p = 45

p= 45÷ 5/2

= 45 × 2/5

= 90/5

P= $18

5p= 5 × $18

=$90

The equation to determine Archer's daily pay is

5p = 5/2p + 5 + 40

Divide both sides by 5

p = 5/2p + 45 ÷ 5

= (5/2p + 45) / 5

p= (5/2p + 45) / 5

For a ,a relationship to be a function, which values cannot repeat: the x-
values or the y-values? *

Answers

Answer:

              The  x - values

The y-values repeat in various functions (for example: quadratic function: y=x²; y=4 for x=2 and for x=-2)  

The body paint, an automobile body paint shop, has determined that the painting time of automobiles is uniformly distributed and that the required time ranges between 45 minutes to 11/2hours.


What is the probability that the painting time will be less than or equal to an hour?

What is the probability that the painting time will be more than 50 minutes?

Determine the expected painting time and its standard deviation.

Answers

Answer:

a. [tex]\mathbf{P(Y \leq 60) = 0.3333}[/tex]

b. P(Y>50) = 0.8889

c. E(y) = 67.5 and  Standard deviation [tex]\sigma[/tex] = 12.99

Step-by-step explanation:

From the information given :

an automobile body paint shop, has determined that the painting time of automobiles is uniformly distributed and that the required time ranges between 45 minutes to [tex]1\frac{1}{2}[/tex]hours.

The objective is to determine  the probability that the painting time will be less than or equal to an hour?

since 60 minutes make an hour;

[tex]1\frac{1}{2}[/tex]hours = 60 +30 minutes = 90 minutes

Let Y be the painting time of the automobile; then,

the probability that  the painting time will be less than or equal to an hour ca be  computed as :

[tex]P(Y \leq 60) = \int ^{60}_{45} f(y) dy \\ \\ \\ P(Y \leq 60) = \int ^{60}_{45} \dfrac{1}{45} dy \\ \\ \\ P(Y \leq 60) = \dfrac{1}{45} \begin {pmatrix} x\end {pmatrix}^{60}_{45} \\ \\ \\ P(Y \leq 60) = \dfrac{60-45}{45 } \\ \\ \\ P(Y \leq 60) = \dfrac{15}{45} \\ \\ \\ P(Y \leq 60) = \dfrac{1}{3} \\ \\ \\ P(Y \leq 60) = 0.3333[/tex]

What is the probability that the painting time will be more than 50 minutes?

The probability that the painting will be more than 50 minutes is P(Y>50)

So;

[tex]P(Y>50) = \int \limits ^{90}_{50} f(y) dy[/tex]

[tex]P(Y>50) = \int \limits ^{90}_{50} \dfrac {1}{45} dy[/tex]

[tex]P(Y>50) = \dfrac{1}{45}[x]^{90}_{50}[/tex]

[tex]P(Y>50) = (\dfrac{90-50}{45})[/tex]

[tex]P(Y>50) = \dfrac{40}{45}[/tex]

P(Y>50) = 0.8889

Determine the expected painting time and its standard deviation.

Let consider E to be the expected painting time

Then :

[tex]E(y) = \int \limits ^{90}_{45} y f(y) dy \\ \\ \\ E(y) = \int \limits ^{90}_{45} y \dfrac{1}{45} dy \\ \\ \\ E(y) = \dfrac{1}{45} [\dfrac{y^2}{2}]^{90}_{45} \\ \\ \\ E(y) = \dfrac{1}{45}[\dfrac{(90^2-45^2)}{2}] \\ \\ \\ E(y) = \dfrac{1}{45} (\dfrac{6075}{2}) \\ \\ \\ E(y) = \dfrac{1}{45} \times 3037.8 \\ \\ \\ \mathbf{E(y) = 67.5}[/tex]

[tex]E(y^2) = \int \limits ^{90}_{45} y^2 f(y) dy \\ \\ \\ E(y^2) = \int \limits ^{90}_{45} y^2 \dfrac{1}{45} dy \\ \\ \\ E(y^2) = \dfrac{1}{45} [\dfrac{y^3}{3}]^{90}_{45} \\ \\ \\ E(y^2) = \dfrac{1}{45}[\dfrac{(90^3-45^3)}{3}] \\ \\ \\ E(y^2) = \dfrac{1}{45} (\dfrac{637875}{3}) \\ \\ \\ E(y^2) = \dfrac{1}{45} \times 2126.25 \\ \\ \\ \mathbf{E(y^2) = 4725}[/tex]

To determine the standard deviation, we need to first know what is the value of our variance,

So:

Variance [tex]\sigma^2[/tex] = E(x²) - [E(x)]²

Variance [tex]\sigma^2[/tex] = 4725 - (67.5)²

Variance [tex]\sigma^2[/tex] = 4725 - 4556.25

Variance [tex]\sigma^2[/tex] = 168.75

Standard deviation [tex]\sigma[/tex] = [tex]\sqrt{variance}[/tex]

Standard deviation [tex]\sigma[/tex] = [tex]\sqrt{168.75}[/tex]

Standard deviation [tex]\sigma[/tex] = 12.99

Mia’s average driving speed is 6 kilometers per hour faster than Kirk’s. In the same length of time it takes Mia to drive 558 kilometers, Kirk drives only 522 kilometers. What is Mia’s average speed?

Answers

Answer:

93km/hr

Step-by-step explanation:

Using the formula Speed = Distance/Time. From the formula we can substitute for time as shown;

Time = Distance/Speed

Let the distance and speed  travelled by Mia be Dm ans Ds respectively

Distance travelled by Kirk be Km and and Ks respective.

Time taken be Mia to travel Tm = Dm/Sm

Time taken be Kirk to travel Tk = Dk/Sk

Since it takes the same length of time for both of them to travel, then Tm = Tk. Hence Dm/Sm = Dk/Sk

Given parameters

Dm = 558 kilometers

Dk = 522 kilometres

If Mia’s average driving speed is 6 kilometers per hour faster than Kirk’s, then Mia's driving speed Sm = 6 + Sk

Required

Mia’s average speed (Sm)

Since Dm/Sm = Dk/Sk

Substituting the given values to get Sk first we have;

558/6+Sk = 522/Sk

Cross multiply

558Sk = 522(6+Sk)

open the parenthesis

558Sk = 3132 + 522SK

558Sk-522Sk = 3312

36Sk =3132

Sk = 3132/36

Sk =87km/hr

SInce Sm = 6+Sk

Sm = 6+87

Sm = 93km/hr

Hence Mia's average speed is 93km/hr

Meguel does not understand which digit is in the tenths location in the number 514.196 Where would it be located at

Answers

Answer:

first number after the decimal point

Step-by-step explanation:

after the decimal point is the tenths, hundredths, and thousandths place.

0.1 - tenths

0.09 - hundredths

0.006 - thousandths

1 liter of ink can print 5000 pages of text. If you had 100 gallons of ink then how many pages could you print?

Answers

Answer:

500,000 pages

Step-by-step explanation:

1 / 5000 = 100 / x

x = 5000(100)

x = 500,000

Answer:

1892705 pages of text.

Step-by-step explanation:

g=Gallon

L=Liters

P=Pages

1L=5000p

1g=3.78541L

100g·3.78541L=378.541L

378.541L·5000=1892705

Your fixed expenses are $1,235. 78/month. You want to save 5 months' worth for an emergency
fund over a year's time. How much must you save each month?

Answers

Answer:

  $514.91

Step-by-step explanation:

You want to save a total of ...

  5 × $1235.78

You want to do this over a 12-month period. So, you want to save 1/12 of this total each month. The amount you're saving each month is ...

  5(1235.78)/12 = 514.908333... ≈ 514.91

You must save $514.91 each month to reach the goal.

Answer: $514.91

Step-by-step explanation:

($1,235.78)(5 months)=$6,178.90


6,178.90/12 months=$514.91


(just for clarity: the other person is right, just wanted to show a simpler way to achieve the answer. gl :)

Sandra spotted the sailboat from the shore and measured the angle from the waterline to the top of the boats mast to be 7° if the top of the mask is 23 feet above the water how far is the middle of the sailboat from the shore? Estimate your answer to the nearest tenth.

Answers

Answer:

The middle of the sailboat is approximately 268.8 feet from the shore.

Step-by-step explanation:

Let the distance from shore to the middle of the boat be represented by x, the angle of elevation of Sandra from the shore to the top of the boat mast  is 7°. Applying the required trigonometric function to this question, we have;

Tan θ = [tex]\frac{opposite}{adjacent}[/tex]

Tan 7° = [tex]\frac{23}{x}[/tex]

⇒  x = [tex]\frac{23}{Tan 7^{0} }[/tex]

       = [tex]\frac{23}{0.12279}[/tex]

      = 268.7515

∴ x = 268.8 feet

The middle of the sailboat is approximately 268.8 feet from the shore.

What is the formula for finding mean or average?​

Answers

Answer:

LOOK BELOW

Step-by-step explanation:

I would not call the explanation a formula

All you have to do to solve mean or average is add all of the numbers up and divide by the total amount of numbers

so for example

0,2,4,0,2,3,2,8,6  <-------- lets find the mean/average

0+2+4+2+3+2+8+6= 27/amount of numbers

amount of numbers=9

(count the zeros too!)

27/9=3

3 is the mean or average!!!

At which times could rory phone have been plugged into the charger?select three options

Answers

Answer:

9hrs 11hrs 19hrs

Step-by-step explanation:

just took the quiz on edge 2020

Answer:

9 hours, 11 hours, 19 hours.

Other Questions
Identify the goal of any scientific method Kent Co. manufactures a product that sells for $60.00. Fixed costs are $285,000 and variable costs are $35.00 per unit. Kent can buy a new production machine that will increase fixed costs by $15,900 per year, but will decrease variable costs by $4.50 per unit. What effect would the purchase of the new machine have on Kent's break-even point in units? reasons people might be fascinated by something as dangerous as a nuclear weapon. [tex]f(x) = sqr root x+3 ; g(x) = 8x - 7[/tex]Find (f(g(x)) What element is being reduced in the following redox reaction? MnO4-(aq) + H2C2O4(aq) Mn2+(aq) + CO2(g) What element is being reduced in the following redox reaction? MnO4-(aq) + H2C2O4(aq) Mn2+(aq) + CO2(g) H O Mn C One of your summer lunar space camp activities is to launch a 1090 kg rocket from the surface of the Moon. You are a serious space camper and you launch a serious rocket: it reaches an altitude of 211 km . What gain ???? in gravitational potential energy does the launch accomplish? The mass and radius of the Moon are 7.361022 kg and 1740 km, respectively. for the first one the answer areadd 5 to both sides subtract 5 from both sidesadd 1/2x to both sidessubtract 1/2 from both sidesthe second one ismultiply both sides by 1/5dived both sides by 1/5multiply both sides by 6/7dived both sides by 6/7 QUICK does COPD damages the cardiovascular system ? true or false ? In the image above the ruler is measuring in centimeters. The blue cylinder falls somewhere between 2.7cm and 2.8cm according to the ruler. Since we can estimate the last digit I would say that the length of the cylinder is 2.76cm. Since I am estimating any number 2.72cm or 2.78cm could also be correct. Why would 2.755 not be a correct measurement according to estimating the last digit? Which word best completes the sentence? Angelina thought the rain on her wedding day was a(n) _______ sign, but the day could not have gone more perfectly. Which statement best describes how continuous events are marked on a time line?Continuous events are marked with an image or an illustration.Continuous events are marked in a different color from the rest of the events.Continuous events are marked by a bracket that spans from one date to another.O Continuous events are marked in a different font than the rest of the events. The fact that statutes requiring a license only requires payment of a fee indicates that the purpose of the law is to: In the late eighteenth century, artists' fascination for the ancient world found expression in an art movement called 10. (01.02)Given the function f(x)3x - 45which of the below expressions is correct? (1 point)5x+4f-1(x) =3f-1(x)5x - 43O f-'(x)-344-3x 4543xf-1(x) =5 The point (6, 6) is on the graph y = f(x) . Find the corresponding coordinates of this point on the graph y = 4f[1/3x +9] -7a. (-9,17)b. (17,-9)c. (11,11)d. (9,17) How do I solve for x. The Digital Electronic Quotation System (DEQS) Corporation pays no cash dividends currently and is not expected to for the next five years. Its latest EPS was $10, all of which was reinvested in the company. The firms expected ROE for the next five years is 20% per year, and during this time it is expected to continue to reinvest all of its earnings. Starting in year 6, the firms ROE on new investments is expected to fall to 15%, and the company is expected to start paying out 40% of its earnings in cash dividends, which it will continue to do forever after. DEQSs market capitalization rate is 15% per year. a. What is your estimate of DEQSs intrinsic value per share? (Do not round intermediate calculations. Round your answer to 2 decimal places.) b. Assuming its current market price is equal to its intrinsic value, what do you expect to happen to its price over the next year? (Round your dollar value to 2 decimal places.) Because there is (Click to select) , the entire return must be in (Click to select) . c. What do you expect to happen to price in the following year? (Round your dollar value to 2 decimal places.) TB MC Qu. 6-107 Mcmurtry Corporation sells a product for ... Mcmurtry Corporation sells a product for $250 per unit. The product's current sales are 13,600 units and its break-even sales are 10,608 units. The margin of safety as a percentage of sales is closest to: g suppose he used an alpha particle with an energy of 8.3 MeV, what would be the speed of this alpha particle What is the solution set for StartAbsoluteValue z + 4 EndAbsoluteValue greater-than 15? 11 less-than z less-than 19 Negative 19 less than z less-than 11 z less-than negative 19 or z greater-than 11 z less-than 19 or z greater-than 11