Answer:
15÷39
Step-by-step explanation:
I hope it will help you
cos x = adjacent÷ hypotenuse
cos x =15÷39
cos x = 5÷13
An isosceles right triangle has a hypotenuse that measures 4√2 cm. What is the area of the triangle?
HELP
Answer:
8 cm^2
Step-by-step explanation:
If the triangle is isosceles the sides are the same
Let the sides be x
We know that we can use the Pythagorean theorem
a^2+b^2 = c^2 where a and b are the sides and c is the hypotenuse
x^2+x^2 = (4 sqrt(2))^2
2x^2 =16(2)
2x^2 = 32
Divide by 2
2x^2/ 32/2
x^2 = 16
Taking the square root of each side
sqrt(x^2) = sqrt(16)
x = 4
The area of the triangle is
A =1/2 bh
A = 1/2 (4) (4)
A = 1/2(16)
A = 8
Answer:
8
Step-by-step explanation:
a^2 + b^2 = c^2
c = [tex]4\sqrt{2}[/tex]
[tex]c^{2} = 32[/tex]
a^2 + b^2 = 32
a=b (isosceles triangle)
a=b=4
base = 4
height = 4
area = 1/2 bh = 1/2(4)(4) = 8
Show all work to identify the asymptotes and zero of the function f(x)=6x/x^2-36
9514 1404 393
Answer:
asymptotes: x = ±6
zero: x = 0
Step-by-step explanation:
The vertical asymptotes of the function will be at the values of x where the denominator is zero. The denominator is x^2 -36, so has zeros for values of x that satisfy ...
x^2 -36 = 0
x^2 = 36
x = ±√36 = ±6
The vertical asymptotes of the function are x = -6 and x = +6.
__
The zero of the function is at the value of x that makes the numerator zero. This will be the value of x that satisfies ...
6x = 0
x = 0 . . . . . divide by 6
The zero of the function is x=0.
__
As a check on this work, we have had a graphing calculator graph the function and identify the zero.
Is the ratio 4:1 equivalent to the ratio 12:9
Answer:
No
Step-by-step explanation:
4:1
Multiply each side by 3
4*3 : 1*3
12: 3
This is not equal to 12:9
Answer:
no
Step-by-step explanation:
12 : 9
4 : 3 ≠ 4 : 1
If(a²-1) x²+(a-1)x+a²-4a+3=0 is an identity in x, then find the value of a
Answer:
Step-by-step explanation:
[tex](a^2-1)x^2+(a-1)x+a^2-4a+3=0\\\\Calculate\ and\ identify\ the\ polynomials\\\\\Longleftrightarrow\ a^2x^2-x^2+ax-x+a^2-4a+3=0\\\\\Longleftrightarrow\ a^2x^2+ax+a^2-4a+3=x^2+x+0\\\\\Longleftrightarrow\ \left\{\begin{array}{ccc}a^2&=&1\\a&=&1\\a^2-4a+3&=&0\\\end{array} \right.\\\\\Longleftrightarrow\ \left\{\begin{array}{ccc}(a-1)(a+1)&=&0\\a-1&=&0\\(a-1)(a-3)&=&0\\\end{array} \right.\\\\\\We\ must\ exclude\ a=-1\ and\ a=3\ (not\ solution)\\\Longrightarrow\ a=1\\[/tex]
Find the total surface area of the square pyramid in the figure.
Question 8 options:
A)
64 yd.^2
B)
224 yd.^2
C)
112 yd.^2
D)
144 yd.^2
Answer:
D
Step-by-step explanation:
Surface area is area of base plus all 4 sides. Base is a square with s = 8 so area is 64sq yd. Sides are triangles, with A = 1/2 bh, so 1/2(8)(5) = 20. Four sides would be 80sq yds. Add base and sum is 144 sq yds.
Can you please help me
Answer:
you will add the numerator and the denominator and or you look for lowest common factor
Instructions: Given the following constraints, find the maximum and minimum values for
z
.
Constraints: 2−≤124+2≥0+2≤6 2x−y≤12 4x+2y≥0 x+2y≤6
Optimization Equation: =2+5
z
=
2
x
+
5
y
Maximum Value of
z
:
Minimum Value of
z
:
Answer:
z(max) = 16
z(min) = -24
Step-by-step explanation:
2x - y = 12 multiply by 2
4x - 2y = 24 (1)
4x + 2y = 0 add equations
8x = 24
x = 3
4(3) + 2y = 0
y = -6
so (3, -6) is a common point on these two lines
z = 2(3) + 5(-6) = -24
4x - 2y = 24 (1)
x + 2y = 6 add equations
5x = 30
x = 6
6 + 2y = 6
y = 0
so (6, 0) is a common point on these two lines
z = 2(6) + 5(0) = 12
4x + 2y = 0 multiply by -1
-4x - 2y = 0
x + 2y = 6 add equations
-3x = 6
x = -2
-2 + 2y = 6
y = 4
so (-2, 4) is a common point on these two lines
z = 2(-2) + 5(4) = 16
Polymer composite materials have gained popularity because they have high strength to weight ratios and are relatively easy and inexpensive to manufacture. However, their nondegradable nature has prompted development of environmentally friendly composites using natural materials. The article "Properties of Waste Silk Shod Fiber/Cellulose Green Composite Films" (. of Composite Materials, 2012: 123-127) reported that for a sample of 10 specimens with 2% fiber content, the sample mean tensile strength (MPa) was 51.3 and the sample standard deviation was 1.2. Suppose the true average strength for 0% fibers (pure cellulose) is known to be 48 MPa. Does the data provide compelling evidence for concluding that true average strength for the WSF/cellulose composite exceeds this value?
Complete Question
Polymer composite materials have gained popularity because they have high strength to weight ratios and are relatively easy and inexpensive to manufacture. However, their nondegradable nature has prompted development of environmentally friendly composites using natural materials. An article reported that for a sample of 10 specimens with 2% fiber content, the sample mean tensile strength (MPa) was 51.1 and the sample standard deviation was 1.2. Suppose the true average strength for 0% fibers (pure cellulose) is known to be 48 MPa. Does the data provide compelling evidence for concluding that true average strength for the WSF/cellulose composite exceeds this value? (Use α = 0.05.)
t=8.169
P-value= ?
Answer:
a) [tex]P-value=0[/tex]
b) Hence,We FAil to reject the alternative hypothesis and accept that the true average strength for the WSF/ cellulose composite exceeds 48 MPa.
Step-by-step explanation:
From the question we are told that:
Sample size [tex]n=10[/tex]
Mean [tex]\=x= 51.3[/tex]
Standard deviation [tex]\sigma=1.2[/tex]
Significance level is taken as [tex]\alpha=0.05[/tex]
t test statistics
[tex]t=8.169[/tex]
Therefore
[tex]P-Value=P(t>8.169)[/tex]
Critical point
[tex]t_{\alpha,df}[/tex]
[tex]\alpha=0.05[/tex]
[tex]df=10-1=>9[/tex]
Therefore
P-value from T distribution table
[tex]P-value=0[/tex]
Conclusion
[tex]P-value (0)< \alpha(0.05)[/tex]
We Reject the Null Hypothesis [tex]H_0[/tex]
Hence,We FAil to reject the alternative hypothesis and accept that the true average strength for the WSF/ cellulose composite exceeds 48 MPa.
A manufacturer claims that its drug test will detect steroid use (that is, show positive for an athlete who uses steroids) 95% of the time. Further, 15% of all steroid-free individuals also test positive. 10% of the rugby team members use steroids. Your friend on the rugby team has just tested positive. The correct probability tree looks like
Answer:
The probability tree is;
0.95 [tex](+)[/tex]
[tex](S)[/tex]
0.1 0.05 [tex](-)[/tex]
[ P ]
0.9 0.15 [tex](+)[/tex]
[tex](S_{no})[/tex]
0.85 [tex](-)[/tex]
Step-by-step explanation:
Given the data in the question;
10% of the rugby team members use steroids
so Probability of using steroid; P( use steroid ) = 10% = 0.10
Probability of not using steroid; P( no steroid use ) = 1 - 0.10 = 0.90
Since the test show positive for an athlete who uses steroids, 95% of the time.
Probability of using steroids and testing positive = 95% = 0.95
Probability of using steroids and testing Negative = 1 - 0.95 = 0.05
Also from the test, 15% of all steroid-free individuals also test positive.
so
Probability of not using steroids and testing positive = 15% = 0.15
Probability of not using steroids and testing negative = 1 - 0.15 = 0.85
To set up the probability tree, Let;
[tex](S)[/tex] represent steroid use
[tex](S_{no})[/tex] represent no steroid use
[tex](+)[/tex] represent test positive
[tex](-)[/tex] represent test negative
so we have;
0.95 [tex](+)[/tex]
[tex](S)[/tex]
0.1 0.05 [tex](-)[/tex]
[ P ]
0.9 0.15 [tex](+)[/tex]
[tex](S_{no})[/tex]
0.85 [tex](-)[/tex]
Fill in the blanks.
(3b^3)^2 = _b^_
We can seperate (3b³) into two different parts, the constant and the variable.
The constant (3) and the variable (b) can both be squared and multiplied to get the correct answer, so:
3² = 9
(b³)² = [tex]b^{6}[/tex]
So, [tex](3b^{3})^{2} = 9b^{6}[/tex]
What is the base and height of parallelogram S?
Train X traveled 216.6 kilometers in 38 minutes. How many miles per hour was it traveling?
Answer:
210 miles in 1 hour
Step-by-step explanation:
steps are in picture
HELP ASAP PLEASE I WILL MARK BRAINLEST
Show all work to identify the asymptotes and zero of the function f of x equals 6 x over quantity x squared minus 36.
Answer:
vertical asymptotes
x=6, x=-6
horizontal asymptotes
y=0
zeros (0,0)
Step-by-step explanation:
f(x) = 6x / ( x^2 - 36)
First factor
f(x) = 6x / ( x-6)(x+6)
Since nothing cancels
The vertical asymptotes are when the denominator goes to zero
x-6 = 0 x+6=0
x=6 x= -6
Since the numerator has a smaller power than the denominator (1 < 2), there is an asymptote at y = 0
To find the zeros, we find where the numerator = 0
6x=0
x=0
[tex]\\ \rm\Rrightarrow y=\dfrac{6x}{x^2-36}[/tex]
The h orizontal asymptote
As x has less degree than x²
y=0 is a asymptoteVertical asymptote
x²-36=0x²=36x=±6Tính tích phân sau bằng cách dùng tọa độ cực I=∫∫ [tex]\frac{1}{\sqrt{x^{2} +y^{2} } }[/tex]dxdy R là miền nằm trọg góc phần tư thứ nhất thỏa mãn 4[tex]\leq x^{2} +y^{2} \leq 9[/tex]
It sounds like R is the region (in polar coordinates)
R = {(r, θ) : 2 ≤ r ≤ 3 and 0 ≤ θ ≤ π/2}
Then the integral is
[tex]\displaystyle \iint_R\frac{\mathrm dx\,\mathrm dy}{\sqrt{x^2+y^2}} = \int_0^{\pi/2}\int_2^3 \frac{r\,\mathrm dr\,\mathrm d\theta}{\sqrt{r^2}} \\\\ = \int_0^{\pi/2}\int_2^3 \mathrm dr\,\mathrm d\theta \\\\ = \frac\pi2\int_2^3 \mathrm dr \\\\ = \frac\pi2r\bigg|_2^3 = \frac\pi2 (3-2) = \boxed{\frac\pi2}[/tex]
Question 8 plz show ALL STEPS
Answer:
Substitute the functions and the value of the functions.
Step-by-step explanation:
Doing all will be long, so i'll present a and d
Here,(no a)
f(x)=3x-1, g(x)=x^2+2
Now,
f(g(x))=f(x^2+2)=3(x^2+2)-1=3x^2+6-1=3x^2+5
g(f(x))=g(3x-1)=(3x-1)^2+2=9x^2-6x+1+2=9x^2-6x+3
Here, (no d)
f(x)=x^2-9, g(x)=√(x+4)
Now,
f(g(x))=f(√(x+4))=(√(x+4))^2-9=x+4-9=x-5
g(f(x))=g(x^2-9)=√(x^2-9+4)=√(x^2-5)
Describe what is the most difficult part of solving equations, for you personally.
What do you personaly feel like is most dificult.
For me its rembering minus signs
Let h(x)=20e^kx where k ɛ R (Picture attached. Thank you so much!)
Answer:
A)
[tex]k=0[/tex]
B)
[tex]\displaystyle \begin{aligned} 2k + 1& = 2\ln 20 + 1 \\ &\approx 2.3863\end{aligned}[/tex]
C)
[tex]\displaystyle \begin{aligned} k - 3&= \ln \frac{1}{2} - 3 \\ &\approx-3.6931 \end{aligned}[/tex]
Step-by-step explanation:
We are given the function:
[tex]\displaystyle h(x) = 20e^{kx} \text{ where } k \in \mathbb{R}[/tex]
A)
Given that h(1) = 20, we want to find k.
h(1) = 20 means that h(x) = 20 when x = 1. Substitute:
[tex]\displaystyle (20) = 20e^{k(1)}[/tex]
Simplify:
[tex]1= e^k[/tex]
Anything raised to zero (except for zero) is one. Therefore:
[tex]k=0[/tex]
B)
Given that h(1) = 40, we want to find 2k + 1.
Likewise, this means that h(x) = 40 when x = 1. Substitute:
[tex]\displaystyle (40) = 20e^{k(1)}[/tex]
Simplify:
[tex]\displaystyle 2 = e^{k}[/tex]
We can take the natural log of both sides:
[tex]\displaystyle \ln 2 = \underbrace{k\ln e}_{\ln a^b = b\ln a}[/tex]
By definition, ln(e) = 1. Hence:
[tex]\displaystyle k = \ln 2[/tex]
Therefore:
[tex]2k+1 = 2\ln 2+ 1 \approx 2.3863[/tex]
C)
Given that h(1) = 10, we want to find k - 3.
Again, this meas that h(x) = 10 when x = 1. Substitute:
[tex]\displaystyle (10) = 20e^{k(1)}[/tex]
Simplfy:
[tex]\displaystyle \frac{1}{2} = e^k[/tex]
Take the natural log of both sides:
[tex]\displaystyle \ln \frac{1}{2} = k\ln e[/tex]
Therefore:
[tex]\displaystyle k = \ln \frac{1}{2}[/tex]
Therefore:
[tex]\displaystyle k - 3 = \ln\frac{1}{2} - 3\approx-3.6931[/tex]
5765865876+5737555586=
Answer:
5765865876+5737555586=11503421462
Dividing integers
7. (-154) ➗ (-14) =
11. (-40) ➗10=
15. 90 ➗ (-15)=
16. 108 ➗ (-9)=
17. (-48) ➗ (-6)=
18. (-105) ➗ 7=
first we shall learn the rules.when numbers with same sign are divided it gives pisitive sign but, when numbers of different signs are divided it gives negetive sign.
here,
7. (-154) ➗ (-14) =11
11. (-40) ➗10=-4
15. 90 ➗ (-15)=-6
16. 108 ➗ (-9)=-12
17. (-48) ➗ (-6)=8
18. (-105) ➗ 7=-15
hope it helps you......
find the area of the shaded regions. ANSWER IN PI FORM AND DO NOT I SAID DO NOT WRITE EXPLANATION
Answer: 18π
okokok gg
Step-by-step explanation:
Here angle is given in degree.We have convert it into radian.
[tex] {1}^{\circ} =( { \frac{\pi}{180} } )^{c} \\ \therefore \: {80}^{\circ} = ( \frac{80\pi}{180} ) ^{c} = {( \frac{4\pi}{9} })^{c} \: = \theta ^{c} [/tex]
radius r = 9 cmArea of green shaded regions = A
[tex] \sf \: A = \frac{1}{2} { {r}^{2} }{ { \theta}^{ c} } \\ = \frac{1}{2} \times {9}^{2} \times \frac{4\pi}{9} \\ = 18\pi \: {cm}^{2} [/tex]
Abigail buys two cartons of strawberries. One carton has 191919 berries and the other carton has 262626 berries. She wants to divide the berries into bags so there are exactly 666 berries in each bag.
How many bags will have 666 berries?
Answer:
682
Step-by-step explanation:
191,919 + 262,626
454545 ÷ 666 = 682.5
Thus meaning 682 bags will have 666 berries and one bag will have 333 berries.
51.Tandin Dorji was married to five women. First woman had three
daughters and five sons and the youngest wife had two sons. Two
of the remaining wives had one son each. If the ratio of children of
5th wife was 1:3 with the children of other wives. How many
children does Tandin have
Answer:
Tandin has 16 children.
Step-by-step explanation:
Total of children:
3+5 = 8(first woman)
2(youngest wife)
1 + 1 = 2(two of the remaining wives)
So
8 + 2 + 2 = 12
If the ratio of children of 5th wife was 1:3 with the children of other wives.
Thus the 5th wife has 12/3 = 4 children.
How many children does Tandin have?
12 + 4 = 16
Tandin has 16 children.
Find the final amount of money in an account if $7, 200 is deposited at 2.5 % interest compounded
quarterly (every 3 months) and the money is left for 9 years.
The final amount is $
Round answer to 2 decimal places
The final amount is $7,615.27
A = P(1 + r/n)^t
Where,
A = Final amount
P = principal = $7, 200
r = interest rate = 2.5% = 0.025
n = number of periods = 4
t = time = 9 years
A = P(1 + r/n)^t
= 7,200(1 + 0.025/4)^9
= 7,200(1 + 0.00625)^9
= 7,200(1.00625)^9
= 7,200(1.0576769512798)
= 7,615.2740492152
Approximately,
A = $7,615.27
https://brainly.com/question/14003110
Given: 3x+11=y, solve for x if y = 29
answer is 6
Step-by-step explanation:
3x+11=y
y=29
3x+11=29
3x=29-11
3x=18
x=18÷3
x=6
Answer:6
Step-by-step explanation:
3x+11=29
3x=29-11
3x=18
X=18/3
X=6
2cos2+cos2(2)−2cos2cos2=1
when 18 is subtracted from six times a certain number the result is 96 what is the number
Let the number be x
ATQ
[tex]\\ \sf\twoheadrightarrow 6x-18=96[/tex]
[tex]\\ \sf\twoheadrightarrow 6x=96+18[/tex]
[tex]\\ \sf\twoheadrightarrow 6x=112[/tex]
[tex]\\ \sf\twoheadrightarrow x=\dfrac{112}{6}[/tex]
[tex]\\ \sf\twoheadrightarrow x=7[/tex]
Instructions: Find the measure of the indicated angle to the nearest degree.
Answer:
? = 13.6
Step-by-step explanation:
Let the unknown angle be y
so
tan y= p/b
tan y =8/33
y = tan‐¹(8/33)
y = 13.62699486
y = 13.6
The 4th of an AP is 15 and the 9th term is 35. find the 15th term
Consecutive terms in this sequence are separated by a constant c, so if the 4th term is 15, then the next terms would be
5th: 15 + c
6th: (15 + c) + c = 15 + 2c
7th: (15 + 2c) + c = 15 + 3c
and so on. More generally, since any given number in the sequence depends on the number that came before it, we can write the n-th term in terms of the 4th term,
n-th: 15 + (n - 4) c
Then the 9th term in the sequence is
15 + (9 - 4) c = 35
and solving for c gives
15 + 5c = 35 ==> 5c = 20 ==> c = 4
Then the 15th term would be
15 + (15 - 4)×4 = 15 + 11×4 = 15 + 44 = 59
As an estimation we are told £3 is €4. Convert €36 to pounds.
Answer:
€36 = 30.62 pounds sterling
One book is 4cm thick, find out how many such books can be placed in a space of 53cm.