Answer:
[tex][1, -4 ,5][/tex]
Step-by-step explanation:
In this question we are multiplying together two matrices. When we multiply a (1 x 3) matrix with a (3 x 3) matrix, we get a (1 x 3) matrix.
To compute each value, all you need to do is take the each value in each row in the first matrix, and multiply it by each value in each column of the second matrix and add up the result. So let's do that.
[tex]a = (2 * 1) + (1 * -1) + (0 * 0) = 2 - 1 + 0 = 1[/tex]
[tex]b = (2 * -1) + (1 * -2) + (0 * 1) = -2 -2 = -4[/tex]
[tex]c = (2 * 2) + (1 * 1) + (0 * 1) = 4 + 1 + 0 = 5[/tex]
How many 10-letter words real or imaginary can. Be formed from the following letters R,S,P,Q,H,J,S,M,B,A
Answer: 3628800
Step-by-step explanation: there are 10 letters so we multiply each with the other 1x2x3x4x5x6x7x8x9x10 or 10! to know all possible combinations so the answer will be 3628800.
Hope it helped!
Answer:
[tex]1,814,400[/tex]
Step-by-step explanation:
The number of ways to arrange a word with [tex]d[/tex] distinct digits is each to [tex]d![/tex]. Since there are 10 letters, there are [tex]10![/tex] permutations initially formed.
However, there is one letter that is repeated, S. We need to account for that fact that switching the placement of the S's does not change the word, as they still appear the same. Therefore, divide [tex]10![/tex] by the number of ways you can arrange the 2 S's, which is simply [tex]2![/tex]. Therefore, our answer is:
[tex]\frac{10!}{2!}=10 \cdot 9\cdot 8\cdot 7\cdot 6\cdot 5\cdot 4\cdot 3=\boxed{1,814,000}[/tex]
What is an equation of the line that passes through the points (4,-2) and (8,-7)?
Answer:
the slope-intercept form for any line is y = mx + b, where m is the slope and b is the y-intercept.
now, let's calculate the slope:
=
here is the equation we currently have solved: y = x + b
now we have to solve for the y-intercept. to do this, we substitute one of the given points into the equation, and solve for b.
let's use (8, 2). in this ordered pair, the 8 is the x, and the 2 is the y.
2 = 8 + b
2 - 8 = b
b = -6
and now we have our final equation!
y = x - 6
hope this helped! please let me know if you are confused about anything i did smiley
Step-by-step explanation:
Answer:
y = -5/4x + 3Step-by-step explanation:
Find the slope first:
m = (y2 - y1)/ (2 - x1)m = (-7 + 2)/(8 - 4) = -5/4Use point-slope form and the coordinates of one of the points:
y - y1 = m(x - x1)y - (-2) = -5/4(x - 4)y + 2 = - 5/4x + 5y = -5/4x + 3How do i solve this quesiton 6(x − 2) > 15
Answer:
Step-by-step explanation:
[tex]\displaystyle\ \!\!6(x-2)>15 \\\\6x-12>15 \\\\6x>27\\\\ \boldsymbol{x>4,5 \ \ or \ \ x\in(4,5\ ; \infty)}[/tex]
Clear parentheses by applying the distributive property.
-(-4s + 9t + 7)
Answer:
4s-9t-7
Step-by-step explanation:
multiply the negative one with all terms inside the bracket, since they are all unlike terms the answer remains the same
1/2-5(2/3x + 6)+4/5x?
Answer:
[tex]-29.5-\frac{38}{15}x[/tex]
Step-by-step explanation:
First, we must expand out the -5.
-5 times 2/3x is equal to -10/3x, and -5 times 6 is equal to -30. 1/2 minus 30 is equal to -29.5, and 4/5x minus 10/3x is equal to -38/15x.
A nut company is determining how to package their new type of party mix. The marketing department is experimenting with different-sized cans for the party mix packaging. The designers use the equation r=Vhπ⎯⎯⎯⎯⎯⎯√r=Vhπ to determine the radius of the can for a certain height hh and volume VV. The company decides they want the can to have a volume of 1280πcm31280πcm3. Find the radius of the can if the height is 16cm16cm. Keep your answers in simplified radical form.
Answer:
The radius of the can, in centimeters, is of [tex]4\sqrt{5}[/tex]
Step-by-step explanation:
Radius of the can:
The radius of the can is given by:
[tex]r^2 = \frac{V}{h\pi}[/tex]
In which V is the volume and h is the height.
In this question:
[tex]V = 1280\pi, h = 16[/tex]
Thus
[tex]r^2 = \frac{V}{h\pi}[/tex]
[tex]r^2 = \frac{1280\pi}{16\pi}[/tex]
[tex]r^2 = 80[/tex]
[tex]r = \sqrt{80}[/tex]
[tex]r = \sqrt{5*16}[/tex]
[tex]r = \sqrt{5}\sqrt{16}[/tex]
[tex]r = 4\sqrt{5}[/tex]
The radius of the can, in centimeters, is of [tex]4\sqrt{5}[/tex]
Help please so lost!!!!!!!!!!!!
Answer:
hmmmmm please send the pic again
I need help thank you so much !
Answer:
mana saya tau iwnisbagcayabaonsoanuwvsybwiwnusvwuagwyvwkwnwibsyafa
Charles spent 1/4 of his allowance on a shirt, and 2/5 of the remainder on a book. A.What fraction of his allowance did he have left? B.If he spent $18 on the book, how much did he have at first?
Answer:
18.65
Step-by-step explanation:
1/4+2/5+18=18.65
18.65
hope it helps you good luck
If it's possible to tell, decide if a and b are positive or negative: a-3>b-3 and b>4
PLEASE HELP NEED ASAPPPPPPP
Answer:
a and b are positive
Step-by-step explanation:
We are given that
[tex]a-3>b-3[/tex]
[tex]b>4[/tex]
We have to find that a and b are positive or negative.
We have
[tex]b>4[/tex]
It means b is positive and greater than 4.
[tex]a-3>b-3[/tex]
Adding 3 on both sides
[tex]a-3+3>b-3+3[/tex]
[tex]a>b>4[/tex]
[tex]\implies a>4[/tex]
Hence, a is positive and greater than 4.
Therefore, a and b are positive
A shopkeeper bought a second-hand car for Rs 1,50,000. He spent Rs 10,000
on its painting and repair and then sold it for Rs 2,00,000. Find his profit or loss.
URGENT 100 POINTS AND BRAINIEST
Question 9 (Essay Worth 10 points)
(04.01, 04.02 HC)
Ted practices two types of swimming styles for a total of 50 minutes every day. He practices the breaststroke for 20 minutes longer than he practices the butterfly stroke.
Part A: Write a pair of linear equations to show the relationship between the number of minutes Ted practices the butterfly stroke every day (x) and the number of minutes he practices the breaststroke every day (y). (5 points)
Part B: How much time does Ted spend practicing the breaststroke every day? Show your work. (3 points)
Part C: Is it possible for Ted to have spent 45 minutes practicing the butterfly stroke if he practices for a total of exactly 50 minutes and practices the breaststroke for 20 minutes longer than he practices the butterfly stroke? Explain your reasoning. (2 points)
Answer:
Part A:
x + y = 50
y = x + 20
Part B:
Ted spends 35 minutes practicing the breaststroke every day.
Part C: It is not possible, as 45 + 65 isn't 50.
Step-by-step explanation:
Please help.
Evaluate 6!
3,125
720
120
[tex]\huge\textsf{Hey there!}[/tex]
[tex]\large\textsf{6!}\\\large\textsf{= 6}\times\large\textsf{5}\times\large\textsf{4}\times\large\textsf{3}\times\large\textsf{2}\times\large\textsf{1}\\\large\textsf{6(5) = \bf 30}\\\large\textsf{= 30}\times\large\textsf{4}\times\large\textsf{3}\times\large\textsf{2}\times\large\textsf{1}\\\large\textsf{30(4) = \bf 120}\\\large\textsf{= 120}\times\large\textsf{3}\times\large\textsf{2}\times\textsf{1}\\\large\textsf{120(3) = \bf 360}\\\large\textsf{= 360}\times\large\textsf{2}\times\large\textsf{1}[/tex]
[tex]\large\textsf{360(2) = \bf 720}\\\large\textsf{720}\times\large\textsf{1}\\\large\textsf{= \bf 720}[/tex]
[tex]\boxed{\boxed{\huge\textsf{Therefore, your answer is: \bf 720}\huge\textsf{ (option B)}}}\huge\checkmark[/tex]
[tex]\large\textsf{Good luck on your assignment and enjoy your day!}[/tex]
~[tex]\frak{Amphitrite1040:)}[/tex]
Please Help me and don't report this
8 < x < 8.5 is your answer
other sides has to always be less than the hypotenuse
9514 1404 393
Answer:
0.5 < x < 16.5
Step-by-step explanation:
The sum of the two shortest sides of a triangle must always exceed the length of the longest side.
If x and 8.0 are the short sides, then ...
x + 8.0 > 8.5
x > 0.5
If 8.0 and 8.5 are the short sides, then ...
8.0 +8.5 > x
16.5 > x
So, for the given triangle to exist, we must have ...
0.5 < x < 16.5
_____
Additional comment
You will notice that the value 0.5 is the difference of the given sides, and 16.5 is their sum. This will always be the case for a problem like this. The third side length always lies between the difference and the sum of the other two sides.
Which quadratic function has minimum value at x = -b/2a?
O y=-3x2 + 5 X + 6
O y=x2 + 5 x + 6
O y=-x2 + 5x + 6
O y = -4 x2 + 5x + 6
Answer:
The choose (2)
y=x²+5x+6
Step-by-step explanation:
y=x²+5x+6 —> (–5/2 , –1/4)
y=-3x² + 5 X + 6 —> (5/6, 97/12)
y=-x² + 5x + 6 —> (5/2,49/4)
y = -4 x² + 5x + 6 —> (5/8 , 121/16)
Let Z be the standard normal random variable. Use a probability calculator to answer the following questions: What is the probability Z will be within one standard deviation of average?
Answer:
0.6826 = 68.26% probability Z will be within one standard deviation of average.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
What is the probability Z will be within one standard deviation of average?
This is the p-value of Z = 1 subtracted by the p-value of Z = -1.
Z = 1 has a p-value of 0.8413.
Z = -1 has a p-value of 0.1587.
0.8413 - 0.1587 = 0.6826
0.6826 = 68.26% probability Z will be within one standard deviation of average.
Need Help! ASAP!!! I gave a screen shot. Please someone give me the correct answer.
9514 1404 393
Answer:
x ∈ {-35, 0, 35}
Step-by-step explanation:
We can solve for x and equate those values to find corresponding y-values. Substituting into the original expressions for x gives the possible x-values.
[tex]x+xy^2=250y\ \Rightarrow\ x=\dfrac{250y}{1+y^2}\\\\x-xy^2=-240y\ \Rightarrow\ x=\dfrac{-240y}{1-y^2}\\\\\dfrac{250y}{1+y^2}+\dfrac{240y}{1-y^2}=0\\\\\dfrac{25y(1-y^2)+24y(1+y^2)}{(1+y^2)(1-y^2)}=0\\\\y(-y^2+49)=0=y(7-y)(7+y)\ \Rightarrow\ y\in\{-7,0,7\}\\\\x=\dfrac{250(\pm 7)}{1+(\pm7)^2}=\pm35,\quad=\dfrac{250(0)}{1+0^2}=0\\\\\boxed{x\in\{-35,0,35\}}[/tex]
Find the value of x. Show your work with proper statements and notation
Answer: x = 14
====================================================
Explanation:
For any triangle, the three inside or interior angles always add to 180
M+N+P = 180
32+64+6x = 180
6x+96 = 180
6x = 180-96
6x = 84
x = 84/6
x = 14
Find MP
Find NL
Hehdjsjsjsjzjxjzjzjjznznznz
Answer:
i dont know
Step-by-step explanation:
hmmm
Suppose we take a poll (random sample) of 3923 students classified as Juniors and find that 3196 of them believe that they will find a job immediately after graduation. What is the 99 % confidence interval for the proportion of GSU Juniors who believe that they will, immediately, be employed after graduation.
Answer:
The 99% confidence interval for the proportion of GSU Juniors who believe that they will, immediately, be employed after graduation is (0.7987, 0.8307).
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the z-score that has a p-value of [tex]1 - \frac{\alpha}{2}[/tex].
Suppose we take a poll (random sample) of 3923 students classified as Juniors and find that 3196 of them believe that they will find a job immediately after graduation.
This means that [tex]n = 3923, \pi = \frac{3196}{3923} = 0.8147[/tex]
99% confidence level
So [tex]\alpha = 0.01[/tex], z is the value of Z that has a p-value of [tex]1 - \frac{0.01}{2} = 0.995[/tex], so [tex]Z = 2.575[/tex].
The lower limit of this interval is:
[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.8147 - 2.575\sqrt{\frac{0.8147*0.1853}{3923}} = 0.7987[/tex]
The upper limit of this interval is:
[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.8147 + 2.575\sqrt{\frac{0.8147*0.1853}{3923}} = 0.8307[/tex]
The 99% confidence interval for the proportion of GSU Juniors who believe that they will, immediately, be employed after graduation is (0.7987, 0.8307).
Write an equation for a line containing (–2,8) that is perpendicular to the line containing the points (3,–4)and (–7,1).
Answer and I will give you brainiliest
Answer:
y = 2x + 12
Step-by-step explanation:
the formula for a line is typically
y = ax + b
a is the slope of the line (expressed as y/x ratio describing how many units y changes, when x changes a certain amount of units).
b is the offset of the line in y direction (for x=0).
we have the points (3, -4) and (-7, 1).
to get the slope of the line let's wander from left to right (x direction).
to go from -7 to 3 x changes by 10 units.
at the same time y changes from 1 to -4, so it decreases by 5 units.
so, the slope is -5/10 = -1/2
and the line equation looks like
y = -1/2 x + b
to get b we simply use a point like (3, -4)
-4 = -1/2 × 3 + b
-4 = -3/2 + b
-5/2 = b
so, the full line equation is
y = -1/2 x - 5/2
now, for a perpendicular line the slope exchanges x and y and flips the sign.
in our case this means +2/1 or simply 2.
so, the line equation for the perpendicular line looks like
y = 2x + b
and to get b we use the point we know (-2, 8)
8 = 2×-2 + b
8 = -4 +b
12 = b
so, the full equation for the line is
y = 2x + 12
Answer:
2x-y+12= 0 or y = 2x+12 is the answer
Step-by-step explanation:
slope of the line joining (3,-4) and (-7,1) is 1-(-4)/-7-3
= -5/10
= - 1/2
slope of the line containing (-2,8) and that is perpendicular to the line containing (3,-4) and (-7,1) = 2
Equation of the line line containing (-2,8) and that is perpendicular to the line containing (3,-4) and (-7,1) is y-8 = 2(x-(-2))
y-8 = 2(x+2)
y- 8 = 2x+4
y=2x+12 (slope- intercept form) or 2x-y+12= 0 (point slope form)
The population of a city has increased by 33% since it was last measured. If the current population is 39,900, what was the previous population?
=___
Answer:
26,733
Step-by-step explanation:
39,900 - Percentage decrease =
39,900 - (33% × 39,900) =
39,900 - 33% × 39,900 =
(1 - 33%) × 39,900 =
(100% - 33%) × 39,900 =
67% × 39,900 =
67 ÷ 100 × 39,900 =
67 × 39,900 ÷ 100 =
2,673,300 ÷ 100 =
26,733
Hope this helps :)
Select the correct answer
The equation of a line is y= 15x-2 What are its slope and y-intercept?
A.slope = 15 and y-intercept=-2
B.slope = 15 and y-intercept = 2
C.slope = 2 and y-intercept=15
D.siope =-2 and y-intercept=15
RES
Answer:
A
Step-by-step explanation:
Slope = term that multiply x
y intercept = the number without a variable
Random samples of size 100 are taken from an infinite population whose population proportion is 0.2. The mean and standard deviation of the sample proportion are:__________
a) 0.2 and .04
b) 0.2 and 0.2
c) 20 and .04
d) 20 and 0.2
Answer:
c I think
Step-by-step explanation:
just cuz I did the math but I don't wanna type rn
Flying with a tailwind, a flight crew flew 500 km in 4 hours. Flying against the tailwind, the crew flew 468 km in 4 hours. Find the speed of the plane in calm air and the speed of the wind, both in km per hour.
Answer:
spped of the plane in calm air=121 km/h
speed of the wind= 4km/h
Step-by-step explanation:
Let say V the speed of the plane in calm air
and v the speed of the wind
Flying with a tailwind, a flight crew flew 500 km in 4 hours ==> 500= (V+v)*4
Flying against the tailwind, the crew flew 468 km in 4 hours ==> 468 = (V-v)*4
We divide the 2 equations by 4 and then add the 2 results equations:
(500+468)/4=2V ==> V=121 (km/h)
We replace that value in the first equation:
V+v=500/4=125
v=125-121=4 (km/h)
What is the simplified form of the following expression?
Answer:
-( cube root of 2x)-6(cube root of x)
what is 32⋅(12)x+1=2x−14?
Answer:
[tex]x=-\frac{15}{382}[/tex]
Step-by-step explanation:
32 × 12x + 1 = 2x - 14
384x + 1 = 2x - 14
384x + 1 - 1 = 2x - 14 - 1
384x = 2x - 15
384x - 2x = 2x - 2x - 15
382x = - 15
382x ÷ 382 = - 15 ÷ 382
[tex]x=-\frac{15}{382}[/tex]
Calculate trend values by method of least squares
Answer:
It is a mathematical method and with it gives a fitted trend line for the set of data in such a manner that the following tow conditions are satisfied. The sum of the deviation of the actual values of Y and the computed values of Y is zero.
Solve the right triangle given that mZA= 30°, mZC = 90°, anda = 15. Round your result to one decimal place.
Answer:
[tex]\angle B = 60^o[/tex]
[tex]b =17.3[/tex]
[tex]c = 20[/tex]
Step-by-step explanation:
Given
[tex]a= 15[/tex]
[tex]\angle A = 30^o[/tex]
[tex]\angle C = 90^o[/tex]
See attachment for illustration
Required
Solve the triangle
First, we calculate the measure of B
[tex]\angle A + \angle B + \angle C = 180^o[/tex] --- angles in a triangle
[tex]30^o + \angle B + 90^o = 180^o[/tex]
Collect like terms
[tex]\angle B = 180^o-90^o-30^o[/tex]
[tex]\angle B = 60^o[/tex]
Solve for (c) using sine function
[tex]\sin(30) = \frac{a}{c}[/tex]
Make c the subject
[tex]c = \frac{a}{\sin(30)}[/tex]
Substitute known values
[tex]c = \frac{10}{0.5}[/tex]
[tex]c = 20[/tex]
Solve for (b) using Pythagoras
[tex]c^2 = a^2 + b^2[/tex]
This gives:
[tex]20^2 = 10^2 + b^2[/tex]
[tex]400 = 100 + b^2[/tex]
Collect like terms
[tex]b^2 =400 - 100[/tex]
[tex]b^2 =300[/tex]
Take square roots
[tex]b =17.3[/tex]
Suppose 5 men and 7 women are on a crowded elevator. At the next floor, four people get off the elevator. Find the probability that three are women.
0.010
0.354
0.424
0.25
Total People=5+7+4=16
Women=7We know
[tex]\boxed{\sf P(W)=\dfrac{No.\:of\:women}{Total\:People}}[/tex]
[tex] \\ \sf \longmapsto \: p(w) = \frac{7}{16} [/tex]