Find the product (-3/5) (-2/9)

Answers

Answer 1
I think the answer is 2/15
Answer 2

Answer:

2/15

Step-by-step explanation:

(-3/5) (-2/9)

Rewriting

-3/9 * -2/5

-1/3 * -2/5

A negative times a negative is a positive.

2/15


Related Questions

Addition prop of equality
subtraction prop of quality
multiplication prop of equality
Division prop of equality
simplifying
distrib prop

Answers

1 multiplication prop
2simplifying
3 Addition prop
4 simplifying

what decimal is equivalent to 0.85

Answers

Answer: 17/20

Step-by-step explanation:

0.85 = 85/100 = 17/20

The number 0.85 can be written using the fraction 85/100 which is equal to 17/20 when reduced to lowest terms.

Which equation is represented by the graph below?

Answers

Answer:

Hello,

Answer C

Step-by-step explanation:

Since ln(1)=0

if x=1 then y=4 ==> y=ln(x)+4

y=ln(x) is translated up for 4 units.

Please answer this question

Answers

The answer is C. 4.1¯6

Find the multiplicative inverse of: -3/7 X -4/9

Answers

Hi there!  

»»————- ★ ————-««

I believe your answer is:  

[tex]\frac{21}{4}[/tex]

»»————- ★ ————-««  

Here’s why:  

⸻⸻⸻⸻

[tex]\boxed{\text{Calculating the answer...}}\\\\---------------\\\rightarrow -\frac{3}{7} * -\frac{4}{9}\\\\\rightarrow \frac{12}{63} \\\\\rightarrow \frac{12/3}{63/3}\\\\\rightarrow\boxed{\frac{4}{21}}\\--------------\\\rightarrow \frac{4}{21}* x= 1\\\\\rightarrow (21)*\frac{4}{21}x= 1(21)\\\\\rightarrow 4x=21\\\\\rightarrow \frac{4x=21}{4}\\\\\rightarrow \boxed{x=\frac{21}{4}}[/tex]

»»————- ★ ————-««  

Hope this helps you. I apologize if it’s incorrect.  

Which statement is true about the ratios of squares to
cicles in the tables? PLS HURRY!!!!

Answers

Answer:

show us a screenshot or image

or type it out, copy paste

Step-by-step explanation:

Please help!
What is the pattern,
Y-interception
And equation

Answers

Answer: y=1x+1

Step-by-step explanation:

y=1x+3

that should be it

use undetermined coefficient to determine the solution of:y"-3y'+2y=2x+ex+2xex+4e3x​

Answers

First check the characteristic solution: the characteristic equation for this DE is

r ² - 3r + 2 = (r - 2) (r - 1) = 0

with roots r = 2 and r = 1, so the characteristic solution is

y (char.) = C₁ exp(2x) + C₂ exp(x)

For the ansatz particular solution, we might first try

y (part.) = (ax + b) + (cx + d) exp(x) + e exp(3x)

where ax + b corresponds to the 2x term on the right side, (cx + d) exp(x) corresponds to (1 + 2x) exp(x), and e exp(3x) corresponds to 4 exp(3x).

However, exp(x) is already accounted for in the characteristic solution, we multiply the second group by x :

y (part.) = (ax + b) + (cx ² + dx) exp(x) + e exp(3x)

Now take the derivatives of y (part.), substitute them into the DE, and solve for the coefficients.

y' (part.) = a + (2cx + d) exp(x) + (cx ² + dx) exp(x) + 3e exp(3x)

… = a + (cx ² + (2c + d)x + d) exp(x) + 3e exp(3x)

y'' (part.) = (2cx + 2c + d) exp(x) + (cx ² + (2c + d)x + d) exp(x) + 9e exp(3x)

… = (cx ² + (4c + d)x + 2c + 2d) exp(x) + 9e exp(3x)

Substituting every relevant expression and simplifying reduces the equation to

(cx ² + (4c + d)x + 2c + 2d) exp(x) + 9e exp(3x)

… - 3 [a + (cx ² + (2c + d)x + d) exp(x) + 3e exp(3x)]

… +2 [(ax + b) + (cx ² + dx) exp(x) + e exp(3x)]

= 2x + (1 + 2x) exp(x) + 4 exp(3x)

… … …

2ax - 3a + 2b + (-2cx + 2c - d) exp(x) + 2e exp(3x)

= 2x + (1 + 2x) exp(x) + 4 exp(3x)

Then, equating coefficients of corresponding terms on both sides, we have the system of equations,

x : 2a = 2

1 : -3a + 2b = 0

exp(x) : 2c - d = 1

x exp(x) : -2c = 2

exp(3x) : 2e = 4

Solving the system gives

a = 1, b = 3/2, c = -1, d = -3, e = 2

Then the general solution to the DE is

y(x) = C₁ exp(2x) + C₂ exp(x) + x + 3/2 - (x ² + 3x) exp(x) + 2 exp(3x)

Again need help with these ones I don’t understand and they have to show work

Answers

Let’s rewrite the given equation by adding 81 to both sides:
[tex]x^2 - 18x + 81= 65 + 81[/tex]
[tex](x - 9)^2 = 146[/tex]
Taking the square root of both sides, we get
[tex]x - 9 = \pm\sqrt{146}[/tex]
or
[tex]x = 9 \pm \sqrt{146} = 9 \pm 12.1 = 21.1\:\text{and}\:-3.1[/tex]

In the country of United States of Heightlandia, the height measurements of ten-year-old children are approximately normally distributed with a mean of 55.4 inches, and standard deviation of 4.1 inches.

A) What is the probability that a randomly chosen child has a height of less than 61.25 inches?

Answer= (Round your answer to 4 decimal places.)

B) What is the probability that a randomly chosen child has a height of more than 46.5 inches?

Answer= (Round your answer to 4 decimal places.)

Answers

(A)

P(X < 61.25) = P((X - 55.4)/4.1 < (61.25 - 55.4)/4.1)

… ≈ P(Z ≤ 0.1427)

… ≈ 0.5567

(B)

P(X > 46.5) = P((X - 55.4)/4.1 > (46.5 - 55.4)/4.1)

… ≈ P(Z > -2.1707)

… ≈ 1 - P(Z ≤ -2.1707)

… ≈ 0.9850

A baseball team plays in a stadium that holds 58000 spectators. With the ticket price at $12 the average attendance has been 25000. When the price dropped to $9, the average attendance rose to 29000. Assume that attendance is linearly related to ticket price.

Required:
a. Find the demand function p(x), where x is the number of the spectators.
b. How should ticket prices be set to maximize revenue?

Answers

Answer:

We need to assume that the relationship is linear.

a) Remember that a linear relation is written as:

y = a*x + b

then we will have:

p(x) = a*x + b

where a is the slope and b is the y-intercept.

If we know that the line passes through the points (a, b) and (c, d), then the slope can be written as:

y = (d - b)/(c - a)

In this case, we know that:

if the ticket has a price of $12, the average attendance is 25,000

Then we can define this with the point:

(25,000 , $12)

We also know that when the price is $9, the attendance is 29,000

This can be represented with the point:

(29,000, $9)

Then we can find the slope as:

a = ($9 - $12)/(29,000 - 25,000) = -$3/4,000 = -$0.00075

Then the equation is something like:

y = (-$0.00075)*x + b

to find the value of b we can use one of the known points.

For example, the point (25,000 , $12) means that when x = 25,000, the price is $12

then:

$12 = (-$0.00075)*25,000 + b

$12 = -$18.75 + b

$12 + $18.75 = b

$30.75 = b

Then the equation is:

p(x) = (-$0.00075)*x + $30.75

b) We want to find the ticket price such that it maximizes the revenue.

The revenue will be equal to the price per ticket, p(x) times the total attendance, x.

Then the revenue can be written as:

r(x) = x*p(x) = x*( (-$0.00075)*x + $30.75 )

r(x) =  (-$0.00075)*x^2 + $30.75*x

So we want to find the maximum revenue.

Notice that this is a quadratic equation with a negative leading coefficient, thus the maximum will be at the vertex.

Remember that for an equation like:

y = a*x^2 + bx + c

the x-value of the vertex is:

x = -b/2a

Then in our case, the x-value will be:

x = -$30.75/(2*(-$0.00075)) = 20,500

Then the revenue is maximized for x = 20,500

And the price for this x-vale is given by:

p( 20,500) =  (-$0.00075)*20,500 + $30.75 = $15.375

which should be rounded to $15.38

10. (30-i)-(18+6i)+30i

Answers

Answer:

[tex]12+23i[/tex]

Step-by-step explanation:

[tex](30−i)−(18+6i)+30i[/tex]

[tex]30−i−18−6i+30i[/tex]

[tex]12−i−6i+30i[/tex]

[tex]12−7i+30i[/tex]

[tex]12+23i[/tex]

Hope it is helpful....

We are given a weighted coin (with one side heads, one side tails), and we want to estimate the unknown probability pp that it will land heads. We flip the coin 1000 times and it happens to land heads 406 times. Give answers in decimal form, rounded to four decimal places (or more). We estimate the chance this coin will land on heads to

Answers

Answer:

0.4060

Step-by-step explanation:

To calculate the sample proportion, phat, we take the ratio of the number of preferred outcome to the total number of trials ;

Phat = number of times coin lands on head (preferred outcome), x / total number of trials (total coin flips), n

x = 406

n = 1000

Phat = x / n = 406/ 1000 = 0.4060

The estimate of the chance that this coin will land on heads is 0.406

Probability is the likelihood or chance that an event will occur.

Probability = Expected outcome/Total outcome

If a coin is flipped 1000 times, the total outcomes will 1000

If it landed on the head 406 times, the expected outcome will be 406.

Pr(the coin lands on the head) = 406/1000

Pr(the coin lands on the head) = 0.406

Hence the estimate of the chance that this coin will land on heads is 0.406

Learn more on probability here: https://brainly.com/question/14192140

Find the sum of ∑3/k=0 k^2

Answers

Answer:

[tex]14[/tex]

Step-by-step explanation:

Given

[tex]\displaystyle \sum_{k=0}^3k^2[/tex]

Let's break down each part. The input at the bottom, in this case [tex]k=0[/tex], is assigning an index [tex]k[/tex] at a value of [tex]0[/tex]. This is the value we should start with when substituting into our equation.

The number at the top, in this case 3, indicates the index we should stop at, inclusive (meaning we finish substituting that index and then stop). The equation on the right, in this case [tex]k^2[/tex], is the equation we will substitute each value in. After we substitute our starting index, we'll continue substituting indexes until we reach the last index, then add up each of the outputs produced.

Since [tex]k=0[/tex] is our starting index, start by substituting this into [tex]k^2[/tex]:

[tex]0^2=0[/tex]

Now continue with [tex]k=1[/tex]:

[tex]1^1=1[/tex]

Repeat until we get to the ending index, [tex]k=3[/tex]. Remember to still use [tex]k=3[/tex] before stopping!

Substituting [tex]k=2[/tex]:

[tex]2^2=4[/tex]

Substituting [tex]k=3[/tex]:

[tex]3^2=9[/tex]

Since 3 is the index we end at, we stop here. Now we will add up each of the outputs:

[tex]0+1+4+9=\boxed{14}[/tex]

Therefore, our answer is:

[tex]\displaystyle \sum_{k=0}^3k^2=0+1+4+9=\boxed{14}[/tex]

Answer:

14

Step-by-step explanation:

∑3/k=0 k^2

Let k=0

0^2 =0

Let k = 1

1^2 =1

Let k =2

2^2 = 4

Let k = 3

3^2 = 9

0+1+4+9 = 14

4. Jack started packing the box shown with 1-centimeter cubes.
- cubic centimeter
Select all the true statements below.
A. Jack needs to add 2 more layers to fill the box.
B. Jack packed 16 cubes into the bottom of the box.
The box is 8 centimeters long.
The box is 3 centimeters high.
E.) The volume of the box is 32 cubic centimeters.
F. The volume of the box is 16 centimeters.

Answers

Answer:

if I am not mistakedn the answe id e

please help! 50 points!

Answers

Answer:

a) forming a bell

b) 5

c) 4.7

d) mean

is the correct answer

pls mark me as brainliest

why infinity ( ) can’t be included in an inequality?

Answers

Answer:

Step-by-step explanation:

Because then the value on the other side will be unbounded by the infinity sign while expressing the answers on a number line.

please click thanks and mark brainliest if you like :)

Illustrate the 7th pattern of the sequence of square numbers. ​

Answers

1,4,9,16,25,36,49,........

7th pattern =49.....

Answer:

1, 4, 9, 16, 25, 36, 49…................the 7 the pattern is 49

A manufacturer of industrial solvent guarantees its customers that each drum of solvent they ship out contains at least 100 lbs of solvent. Suppose the amount of solvent in each drum is normally distributed with a mean of 101.8 pounds and a standard deviation of 3.76 pounds.

Required:
a. What is the probability that a drum meets the guarantee? Give your answer to four decimal places.
b. What would the standard deviation need to be so that the probability a drum meets the guarantee is 0.99?

Answers

Answer:

The answer is "0.6368 and 0.773".

Step-by-step explanation:

The manufacturer of organic compounds guarantees that its clients have at least 100 lbs. of solvent in every fluid drum they deliver. [tex]X\ is\ N(101.8, 3.76)\\\\P(X>100) =P(Z> \frac{100-101.8}{3.76}=P(Z>-0.47))[/tex]

For point a:

Therefore the Probability =0.6368  

For point b:

[tex]P(Z\geq \frac{100-101.8}{\sigma})=0.99\\\\P(Z\geq \frac{-1.8}{\sigma})=0.99\\\\1-P(Z< \frac{-1.8}{\sigma})=0.99\\\\P(Z< \frac{-1.8}{\sigma})=0.01\\\\z-value =0.01\\\\area=-2.33\\\\ \frac{-1.8}{\sigma}=-2.33\\\\ \sigma= \frac{-1.8}{-2.33}=0.773[/tex]

Subtract the integers. 22−​(−10​)​

Answers

Answer:

32

Step-by-step explanation:

Step 1: change 22 - ( -  10) into 22 + 10

Step 2: solve it like normal

if sin150=1/2 then find sin75

Answers

Answer:

0.966

Step-by-step explanation:

When typed into a calculator, sin75 = -0.3877816354

Upon converting to degrees, the full answer is 0.96592582628

If per unit variable cost of a product is Rs.8 and fixed cost is Rs 5000 and it is sold for Rs 15 per unit, profit in 1000 units is.......
a.. rs 7000
b. rs 2000
c. rs 25000
d. rs 0​

Answers

Answer:

a.. rs 7000

Because 15×1000=15000 it is SP when selling 1000units in the rate of Rs 15/unit& 8×1000=8000 this is cp when buying 1000 units in the rate of Rs 8/unit.

So,by formula of profit,

Rs (15000-8000)=Rs7000

Any number that CAN be divided by 2 without having remainder is considered an _______ number

Answers

Step-by-step explanation:

Any number that can be divided by 2 without having remainder is considered an even number.

I hope it helped U

stay safe stay happy

Which expression defines the given series for seven terms?

–4 + (–5) + (–6) + . . .

Answers

Answer: -n+(-n-1)

Step-by-step explanation:

Expression will be -n + (-1)

Series

-4 +(-5)+(-6)+(-7)+(-8)+(-9)+(-10)+(-11)+(-12)+(-13) and so on

Here number -n has + (-n-1) being added to it

please click thanks and mark brainliest if you like :)

A.) V’ (-3,-5), K’ (-1,-2), B’ (3,-1), Z’(2,-5)

B.) V’(-4, 1), K’(-2, 4), B(2,5) Z’ (1, 1)

C.) V’ (-3,-4), K’(-1,-1) B’ (3,0), Z’(2,-4)

D.) V’ (-1,0), K’ (1, 3), B’(5,4), Z’(4,0)

Answers

Answer:

C

Step-by-step explanation:

this is a "translation" - a shift of the object without changing its shadow and size.

this shift is described by a "vector" - in 2D space by the x and y distances to move.

we have here (1, 0) - so, we move every point one unit to the right (positive x direction) and 0 units up/down.

therefore, C is the right answer (the x coordinates of the points are increased by 1, the y coordinate are unchanged).

Use the information below to complete the problem: p(x)=1/x+1 and q(x)=1/x-1 Perform the operation and show that it results in another rational expression. p(x) + q(x)

Answers

Answer:

hope u will understand...if u like this answer plz mark as brainlist

Answer:

[tex]\displaystyle p(x) + q(x) = \frac{2x}{(x+1)(x-1)}[/tex]

The result is indeed another rational expression.

Step-by-step explanation:

We are given the two functions:

[tex]\displaystyle p(x) = \frac{1}{x+1}\text{ and } q(x) = \frac{1}{x-1}[/tex]

And we want to perform the operation:

[tex]\displaystyle p(x) + q(x)[/tex]

And show that the result is another rational expression.

Add:

[tex]\displaystyle = \frac{1}{x+1} + \frac{1}{x-1}[/tex]

To combine the fractions, we will need a common denominator. So, we can multiply the first fraction by (x - 1) and the second by (x + 1):

[tex]\displaystyle = \frac{1}{x+1}\left(\frac{x-1}{x-1}\right) + \frac{1}{x-1}\left(\frac{x+1}{x+1}\right)[/tex]

Simplify:

[tex]=\displaystyle \frac{x-1}{(x+1)(x-1)} + \frac{x+1}{(x+1)(x-1)}[/tex]

Add:

[tex]\displaystyle = \frac{(x-1)+(x+1)}{(x+1)(x-1)}[/tex]

Simplify. Hence:

[tex]\displaystyle p(x) + q(x) = \frac{2x}{(x+1)(x-1)}[/tex]

The result is indeed another rational expression.

help with 1 b please. using ln.​

Answers

Answer:

[tex]\displaystyle \frac{dy}{dx} = \frac{1}{(x - 2)^2\sqrt{\frac{x}{2 - x}}}[/tex]

General Formulas and Concepts:

Pre-Algebra

Equality Properties

Algebra I

Terms/CoefficientsFactoringExponential Rule [Root Rewrite]:                                                                 [tex]\displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}[/tex]

Algebra II

Natural logarithms ln and Euler's number eLogarithmic Property [Exponential]:                                                             [tex]\displaystyle log(a^b) = b \cdot log(a)[/tex]

Calculus

Differentiation

DerivativesDerivative NotationImplicit Differentiation

Derivative Property [Multiplied Constant]:                                                           [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]

Derivative Property [Addition/Subtraction]:                                                         [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]

Basic Power Rule:

f(x) = cxⁿf’(x) = c·nxⁿ⁻¹

Derivative Rule [Quotient Rule]:                                                                           [tex]\displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}[/tex]

Derivative Rule [Chain Rule]:                                                                                 [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]

Step-by-step explanation:

*Note:

You can simply just use the Quotient and Chain Rule to find the derivative instead of using ln.

Step 1: Define

Identify

[tex]\displaystyle y = \sqrt{\frac{x}{2 - x}}[/tex]

Step 2: Rewrite

[Function] Exponential Rule [Root Rewrite]:                                               [tex]\displaystyle y = \bigg( \frac{x}{2 - x} \bigg)^\bigg{\frac{1}{2}}[/tex][Equality Property] ln both sides:                                                                 [tex]\displaystyle lny = ln \bigg[ \bigg( \frac{x}{2 - x} \bigg)^\bigg{\frac{1}{2}} \bigg][/tex]Logarithmic Property [Exponential]:                                                             [tex]\displaystyle lny = \frac{1}{2}ln \bigg( \frac{x}{2 - x} \bigg)[/tex]

Step 3: Differentiate

Implicit Differentiation:                                                                                 [tex]\displaystyle \frac{dy}{dx}[lny] = \frac{dy}{dx} \bigg[ \frac{1}{2}ln \bigg( \frac{x}{2 - x} \bigg) \bigg][/tex]Logarithmic Differentiation [Derivative Rule - Chain Rule]:                       [tex]\displaystyle \frac{1}{y} \ \frac{dy}{dx} = \frac{1}{2} \bigg( \frac{1}{\frac{x}{2 - x}} \bigg) \frac{dy}{dx} \bigg[ \frac{x}{2 - x} \bigg][/tex]Chain Rule [Basic Power Rule]:                                                                     [tex]\displaystyle \frac{1}{y} \ \frac{dy}{dx} = \frac{1}{2} \bigg( \frac{1}{\frac{x}{2 - x}} \bigg) \bigg[ \frac{2}{(x - 2)^2} \bigg][/tex]Simplify:                                                                                                         [tex]\displaystyle \frac{1}{y} \ \frac{dy}{dx} = \frac{-1}{x(x - 2)}[/tex]Isolate  [tex]\displaystyle \frac{dy}{dx}[/tex]:                                                                                                     [tex]\displaystyle \frac{dy}{dx} = \frac{-y}{x(x - 2)}[/tex]Substitute in y [Derivative]:                                                                           [tex]\displaystyle \frac{dy}{dx} = \frac{-\sqrt{\frac{x}{2 - x}}}{x(x - 2)}[/tex]Rationalize:                                                                                                     [tex]\displaystyle \frac{dy}{dx} = \frac{-\frac{x}{2 - x}}{x(x - 2)\sqrt{\frac{x}{2 - x}}}[/tex]Rewrite:                                                                                                         [tex]\displaystyle \frac{dy}{dx} = \frac{-x}{x(x - 2)(2 - x)\sqrt{\frac{x}{2 - x}}}[/tex]Factor:                                                                                                           [tex]\displaystyle \frac{dy}{dx} = \frac{-x}{-x(x - 2)^2\sqrt{\frac{x}{2 - x}}}[/tex]Simplify:                                                                                                         [tex]\displaystyle \frac{dy}{dx} = \frac{1}{(x - 2)^2\sqrt{\frac{x}{2 - x}}}[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Book: College Calculus 10e

12) Find the angles between 0o and 360o where sec θ = −3.8637 . Round to the nearest 10th of a degree:

Please show all work

Answers

9514 1404 393

Answer:

  105.0°, 255.0°

Step-by-step explanation:

Many calculators do not have a secant function, so the cosine relation must be used.

  sec(θ) = -3.8637

  1/cos(θ) = -3.8637

  cos(θ) = -1/3.8637

  θ = arccos(-1/3.8637) ≈ 105.000013°

The secant and cosine functions are symmetrical about the line θ = 180°, so the other solution in the desired range is ...

  θ = 360° -105.0° = 255.0°

The angles of interest are θ = 105.0° and θ = 255.0°.

Write a quadratic equation having the given numbers as solutions. -7 and -5
The quadratic equation is ___ =0.

Answers

Answer:

x²+12x+35

Step-by-step explanation:

in factored form it would just be

(x+7)(x+5)=0

expand this

x²+12x+35=0

inveres laplace transform (3s-14)/s^2-4s+8​

Answers

Complete the square in the denominator.

[tex]s^2 - 4s + 8 = (s^2 - 4s + 4) + 4 = (s-2)^2 + 4[/tex]

Rewrite the given transform as

[tex]\dfrac{3s-14}{s^2-4s+8} = \dfrac{3(s-2) - 8}{(s-2)^2+4} = 3\times\dfrac{s-2}{(s-2)^2+2^2} - 4\times\dfrac{2}{(s-2)^2+2^2}[/tex]

Now take the inverse transform:

[tex]L^{-1}_t\left\{3\times\dfrac{s-2}{(s-2)^2+2^2} - 4\times\dfrac{2}{(s-2)^2+2^2}\right\} \\\\ 3L^{-1}_t\left\{\dfrac{s-2}{(s-2)^2+2^2}\right\} - 4L^{-1}_t\left\{\dfrac{2}{(s-2)^2+2^2}\right\} \\\\ 3e^{2t} L^{-1}_t\left\{\dfrac s{s^2+2^2}\right\} - 4e^{2t} L^{-1}_t\left\{\dfrac{2}{s^2+2^2}\right\} \\\\ \boxed{3e^{2t} \cos(2t) - 4e^{2t} \sin(2t)}[/tex]

Other Questions
A student observes a chemicalreaction where two liquids are mixed together. After the liquids are mixed the beaker feels cold to touch. This reactions is anexample of areaction.Synthesis CombustionExothermicEndothermic Persuasion is generally pretty easy.True or false d. On the afternoon of January 15, 1919, an unusually warm day in Boston, a 17.7-m-high, 27.4-m-diameter cylindrical metal tank used for storing molasses ruptured. Molasses flooded into the streets in a 5-m-deep stream, killing pedestrians and horses and knocking down buildings. The molasses had a density of 1600 kg>m3 . If the tank was full before the accident, what was the total outward force the molasses exerted on its sides Do you believe in aliens? And if so, what's your reasoning for believing in them? And what type of immunity will the difference between word and react in the same manner regardless of the organism invading Someone please help me Which of these is an exponential parent function? Edwards Manufacturing Company purchases two component parts from three different suppliers. The suppliers have limited capacity and no one supplier can meet all the company's needs. In addition, the suppliers charge different prices for the components. Component price data (in price per unit) are as follows:Supplier Component 1 2 31 $10 $12 $142 $10 $10 $11Each supplier has a limited capacity in terms of total number of components it can supply. However, as long as Edwards provides sufficient advance orders, each supplier can devote its capacity to component 1, component 2, or any combination of the two components, if the total number of units ordered is within its capacity. Supplier capacities are as followsSupplier 1 2 3Capacity 600 1050 775If the Edwards production plan for the next period includes 1050 units of component 1 and 800 units of component 2, what purchases do you recommend? The is, how many units of each component should be ordered from each supplier?Supplier 1 2 3Component 1 Component 2 What is the total purchase cost for the components? What is a variegated leaf The organization will most likely ___ to an internal user attempting to escalate privilege than to an external hacker A cost-benefit analysis of a highway is difficult to conduct because analysts a. are unlikely to have access to costs on similar projects. b. cannot estimate the explicit cost of a project that has not been completed. c. are not able to consider the opportunity cost of resources. d. will have difficulty estimating the value of the highway. The graph plots four equations, A, b,c,and dWhich pair of equations has (0.8) as its solution?Equation A and Equation CEquation B and EquationEquation C and Equation DEquation B and Equation D The energy source for active transport is ________ , while the force driving facilitated diffusion is ________. what type of literary device is " Wilson and I are different species: hes an early bird and I am a night owl. The problem is if I move him to his own cage, who will I get to clean up the droppings? (Adapted from T.V.s House.)" provide explanation please need this ASAP if sinA=3-1/22,then prove that cos2A=3/2 prove that Solve each inequality. Graph the solution on a number line. >Which statement describes an electron?EEEEIt has a positive charge and is located in the nucleus.O It has a positive charge and is located in orbitals around the nucleus.It has a negative charge and is located in the nucleus.O It has a negative charge and is located in orbitals around the nucleus. In the titration of 82.0 mL of 0.400 M HCOOH with 0.150 M LiOH, how many mL of LiOH are required to reach the equivalence point Who was Abott Suger? a. a well-known French artisan of Gothic style windows b. a German statesman and historian who was the first patron of Gothic architecture c. a French statesman and historian who was the first patron of Gothic architecture d. an apprentice of Pseudo-Dionysius art project