Answer:
The missing side length is of 5.
Step-by-step explanation:
The sides are proportional, which means that the missing side can be found using a rule of three.
x - 10
3 - 6
Applying cross multiplication:
[tex]6x = 30[/tex]
[tex]x = \frac{30}{6} = 5[/tex]
The missing side length is of 5.
Find the value of x from the given equation.
x3 = 125/512
518
Sla
516
815
Answer:
x = 5/8
Step-by-step explanation:
x^3 = 125/512
Take the cube root of each side
x^3 ^1/3 = (125/512)^ 1/3
We know (a/b) ^1/3 = a^ 1/3 / b^1/3
x = (125) ^1/3 / (512)^ 1/3
x = 5/8
Question 5 of 25
Find the common ratio for this geometric sequence.
0.7, 2.1, 6.3, 18.9,...
O A. 1.4
O B. 3
O C.-3
D. 0.33
SUBMIT
Answer:
3
Step-by-step explanation:
common ratio
2.1/0.7=3
6.3/2.1=3
18.9/6.3=3
therefore common ratio is equal to 3
I need to know what goes in those two boxes and why I would really appreciate it if someone help me with this question
Answer:
below
Step-by-step explanation:
the is the procedure above
Does this graph represent a function?
Answer:
I think it's a function
Step-by-step explanation:
as you can see in the picture curve drawn in a graph represents a function, if every vertical line intersects the curve in at most one point. So I think its a function.
Answer:
yes
Step-by-step explanation:
it's a cubic function having maximum and minimum turning points
it has a point of inflation, y - intercept and x-intercept
4x - 2 - 1 = 2 hep plz
One angle measures 27° more than 2 times another. If the two angles are complementary, find the measures of the angles.
A. 21°; 69°
B. 26°; 64°
C. 31°; 59°
D. 23°; 67°
Answer:
A. 21°, 69°
Step-by-step explanation:
If you work by process of elimination all you have to do is take 27 away from the bigger degree of the two and see if it is 2x as much as the smaller degree.
Ex.
1. 69°-27°= 42°, which is 2x as many as 21°.
100 mice eat 100 cakes. If each big mouse eats 3 cakes, and 3 baby mice eat 1 cake, how many big mice and baby mice are there?
What are the x-intercepts of the graph of the function f(x) = x2 + 5x - 36?
O (-4,0) and (9, 0)
O (4,0) and (-9,0)
O (-3,0) and (12, 0)
O (3,0) and (-12, 0)
Answer: (3,0) and (-12,0)
Step-by-step explanation:
The x-intercepts of the graph of f(x) = x² + 5x - 36 are (-9,0) and (4,0).
Option B is the correct answer.
What is a function?A function has an input and an output.
A function can be one-to-one or onto one.
It simply indicated the relationships between the input and the output.
Example:
f(x) = 2x + 1
f(1) = 2 + 1 = 3
f(2) = 2 x 2 + 1 = 4 + 1 = 5
The outputs of the functions are 3 and 5
The inputs of the function are 1 and 2.
We have,
To find the x-intercepts of the function f(x) = x^2 + 5x - 36,
we need to set y = f(x) to 0 and solve for x.
So, we have:
x² + 5x - 36 = 0
We can factor the left side of the equation:
(x + 9)(x - 4) = 0
Using the zero product property, we get:
x + 9 = 0 or x - 4 = 0
Solving for x, we get:
x = -9 or x = 4
Therefore,
The x-intercepts of the graph of f(x) = x² + 5x - 36 are (-9,0) and (4,0).
Learn more about functions here:
https://brainly.com/question/28533782
#SPJ7
Two buses leave towns 576 kilometers apart at the same time and travel toward each other. One bus travels 12
h
slower than the other. If they meet in 3 hours, what is the rate of each bus?
km
Rate of the slower bus:
Rate of the faster bus:
Answer:
102 km/hr
90 km/hr
Step-by-step explanation:
Given that :
Total distance = 576
Time taken = 3 hours
Bus A :
Speed = x
Bus B :
Speed = x - 12
Recall :
Distance = speed * time
Hence,
Distance covered by A + Distance covered by B = total distance covered
(x * 3) + ((x - 12) * 3) = 576
3x + 3x - 36 = 576
6x = 576 + 36
6x = 612
x = 612 / 6
x = 102
Speed of faster bus, x = 102 km/h
Speed of slower bus, x - 12 = (102 - 12) = 90 km/hr
Sam can mow a lawn in 40 minutes. Melissa can mow the same lawn in 80 minutes. How long does it take for both Sam and Melissa to mow the lawn if they are working together?
Answer:
It will take them both 24 minutes to mow the lawn if they are working together.
Step-by-step explanation:
Given that Sam can mow a lawn in 40 minutes, and Melissa can mow the same lawn in 80 minutes, to determine how long does it take for both Sam and Melissa to mow the lawn if they are working together, the following calculation must be performed:
1/40 + 1/60 = 1 / X
3X + 2X = 120
X = 120/5
X = 24
Thus, it will take them both 24 minutes to mow the lawn if they are working together.
a river generates a spring flood about 40% of the time. Based on these records, what is the chance that it will flood for at least three years in a row sometime during the next five years
what is the image of ( 4, -8 ) after a dilation by a scale factor of 1/4 centered at the origin ?
what we know?:
* scale factor of 1/4
* the point (4, -8)
all we have to do is put 4/4 (because we are dilating by 1/4)
4/4= 1
same for the other one: -8/4= -2
FINAL ANSWER: (1, -2)
Find all the zeros of f(x).
f(x) = 2x3 + 7x2 - 28x + 12
Arrange your answers from smallest to largest. If
there is a double root, list it twice.
Plz help!
Answer:
The zeroes are -6, 1/2 and 2.
Step-by-step explanation:
f(x) = 2x3 + 7x2 - 28x + 12 = 0
From the first and last coefficient 2 and 12, one guess for a zero is x = 2.
So substituting x = 2:
f(2) = 16+ 28 - 56 + 12 = 0
So x = 2 is a zero and x - 2 is a factor of f(x)
Performing long division:
x - 2)2x3 + 7x2 - 28x + 12( 2x2 + 11x - 6 <------- Quotient
2x3 - 4x2
11x2 - 28x
11x2 - 22x
- 6x + 12
-6x + 12
.............
Now we solve
2x2 + 11x - 6 = 0
(2x - 1)(x + 6) = 0
2x - 1 = 0 or x + 6 = 0, so:
x = 1/2, x = -6.
Answer: -6, 1/2, 2.
Step-by-step explanation:
{(x) = 2x3 + 7x2 - 28x + 12 = 0
From the first and last coefficient 2 and 12, one
guess for a zero is x=2.
So substituting x=2:
{(2) = 16+ 28 - 56 + 12 = 0
So x = 2 is a zero and x - 2 is a factor of f(x)
Performing long division:
X - 2)2x3 + 7x2 - 28x + 12(2x2 + 11x - 6 <
Quotient
find the coefficient of the third term of (x+2)^5
Answer:
40
Step-by-step explanation:
(x+2)^5 use binomial theorem :
(a+b)^n = (n choose 0)*a^n*b^0 + (n choose 1)*a^(n-1)*b^1 + (n choose 2)*a^(n-2)*b^2) + ... + (n choose (n-1)*a^1*b^(n-1) + ( n choose n)*a^0*b^n
this seems like a lot but to break it down, notice how the exponent on 'a' decreases as the exponent on 'b' gets bigger.
also, the 'choose' formula is :
(n choose r ) = n!/ (n-r)!r!
now plug in your values
(x+2)^5 =
(5 choose 0)*x^5*2^0 + (5choose 1)*x^4*2^1 + (5 choose 2)*x^3*x^2 + (5 choose 3)*x^2*2^3 + (5 choose 4)*x^1*2^4 + (5 choose 5)*x^0*x^5
we only need the third term so we will solve for this :
(5 choose 2)*x^3*x^2
5 choose 2 = 5!/ (5-2)!2! = 5!/ 3!2! = 10
x^3 * 2^2 = 4x^3
10*4x^3 = 40x^3
how you could find the shortest distance from A(6, 5) to the line y = 5x – 10?
Answer:
The distance between two points (a, b) and (c, d) is given by:
[tex]d = \sqrt{(a - c)^2 + (b - d)^2}[/tex]
So the distance between the point (6, 5) and the line y = 5x - 10 can be thought as the distance between the point (6, 5) and the point (x, 5x - 10)
Where:
(x, 5x - 10) denotes all the points in the line y = 5x – 10
That distance is given by:
[tex]d = \sqrt{(x - 6)^2 + (5x - 10 - 5)^2} = \sqrt{(x - 6)^2 + (5x - 15)^2}[/tex]
Now we want to minimize this.
Because the distance is a positive quantity, we can try to minimize d^2 insted, so we have:
[tex]d^2 = (\sqrt{(x - 6)^2 + (5x - 15)^2})^2 = (x - 6)^2 + (5x - 15)^2}\\\\d^2 = x^2 - 2*x*6 + 36 + 25*x^2 - 2*15*x + (-15)^2\\\\d^2 = 26*x^2 - 42*x + 261[/tex]
Notice that this is a quadratic equation with a positive leading coefficient, which means that the arms of the graph will open upwards, then the minimum will be at the vertex of the parabola.
Remember that for a parabola:
y = a*x^2 + bx + c
the x-value of the vertex is:
x = -b/2a
Then for our parabola:
d^2 = 26*x^2 - 42*x + 261
The vertex is at:
x = -(-42)/(2*26) = 0.808
Then we just need to evaluate the distance equation in that value of x to get the shortest distance:
[tex]d = \sqrt{(0.808 - 6)^2 + (5*0.808 - 15)^2} = 12.129[/tex]
The shortest distance between the point A and the line is 12.129 units.
I need the answers to this
Does anyone know how to take the fuzzy stuff off
Answer:
???
Step-by-step explanation:
Find the area of a rectangle whose length is 14cm and breadth is 6cm
Answer:
Ellos dan las pistas de algunos problemas se pueden resolver de forma automática, los valores numéricos tienen ninguna importancia en los distintos ejemplos.
Traza 1
Uno de los lados de un rectángulo es 20 cm de largo; un segundo lado del rectángulo es de 0,85 m de largo. Calcular el perímetro y el área del rectángulo.
Traza 2
Calcular el área de un rectángulo cuyas dimensiones son 85 cm de largo y 20 cm respectivamente.
Traza 3
La base de un rectángulo es 20 cm de largo; la área es de 300 cm². Calcular la altura del rectángulo.
Traza 4
La altura de un rectángulo es 15 cm de largo; la área es de 300 cm². Calcula la base del rectángulo.
Traza 5
Un rectángulo tiene la altura que es de 3/8 de la base; la suma de las longitudes de los dos segmentos es 44 cm. Determinar el área del rectángulo y el perímetro.
Traza 6
La base de un rectángulo es de 0,40 m de largo; La altura del rectángulo es 30 cm. Calcular la diagonal.
Traza 7
Un tamaño de un rectángulo es un medio del lado de un cuadrado que tiene el perímetro de 20 cm. Sabiendo que los dos polígonos tienen el mismo perímetro, calcula la medida del tamaño del rectángulo.
Traza 8
La diagonal de un rectángulo es de 50 cm; la base es de 3/4 de la altura. Calcular el perímetro y el área del rectángulo.
Traza 9
La diagonal de un rectángulo mide 50 cm; ella es 5/3 de altura. Calcular el perímetro y el área del rectángulo.
Traza 10
Una mesa rectangular tiene lados de 180 cm y 90 cm respectivamente. Cuál es el perímetro y el área de un mantel que cuelga de 20 cm alrededor de la mesa?
Traza 11
Calcular el área de un rectángulo que tiene la altura 10 cm de largo, sabiendo que la medida de la base es el doble de la altura.
Traza 12
La diferencia entre el tamaño de un rectángulo es 12 cm y una es el triple de la otra. Calcular el área del rectángulo
Traza 13
La suma entre el tamaño de un rectángulo es 12 cm y una es el triple de la otra. Calcular el área del rectángulo
Traza 14
La suma de la base y la altura de un rectángulo es 50 cm; la base es superior a la altura de 4 cm. Calcular el área del rectángulo.
Traza 15
El semi-perímetro de un rectángulo es 32 cm y una dimensión es de 3/5 de la otra. Calcular el área del rectángulo.
Traza 16
El semi-perímetro de un rectángulo es 30 cm y una dimensión es igual a los sus 2/5. Calcular el área del rectángulo.
Traza 17
Un rectángulo tiene una base de 20 cm y una altura igual a 2/5 de la base. Calcular el perímetro y el área del rectángulo.
Traza 18
Un rectángulo tiene el área de 600 cm² y la base es 20 cm de largo. Cuál es su perímetro ?
Traza 19
Un rectángulo tiene un perímetro de 100 cm y la base es 30 cm de largo. Calcula su área.
Traza 20
Un rectángulo tiene un perímetro de 120 cm. Sabiendo que un tamaño es tres veces la otra, calcula el área del rectángulo.
Traza 21
La diferencia entre el tamaño de un rectángulo es 10 dm. Sabiendo que el perímetro es 100 dm, calcula el área del rectángulo.
Traza 22
Un rectángulo tiene un perímetro de 100 cm. Calcula su área sabiendo que la medida de la base es superior a la de la altura de 10 cm.
Traza 23
En el perímetro de un rectángulo es de 100 cm y la altura es de 20 cm de largo. Calcular el perímetro de un rectángulo equivalente a el mismo y que tiene su base de 40 cm de largo.
Traza 24
Un rectángulo es formado por dos cuadrados congruentes que tienen cada uno el perímetro de 24 cm. Calcular el perímetro y el área del rectángulo.
Traza 25
Un rectángulo es formado por tres cuadrados congruentes con cada lado 20 cm de largo. Calcular el perímetro y el área del rectángulo.
Traza 26
Un rectángulo es formado por dos cuadrados congruentes. Sabiendo que el perímetro del rectángulo es de 180 cm, calcular su área.
Traza 27
Un rectángulo y un cuadrado tienen el mismo perímetro. El lado de un cuadrado de 45 cm y las dimensiones del rectángulo son una 1/2 de la otra. Calcular el área del rectángulo.
Traza 28
Dos rectángulos son equivalentes. Sabiendo que las dimensiones de el primero miden respectivamente 30 cm y 20 cm, y que la base del segundo rectángulo es 40 cm de largo, calcula la diferencia entre los dos perímetros.
Traza 29
Calcular el perímetro de la figura y el área de la parte interior con la obtención de las medidas a partir del dibujo:
Traza 30
Calcular el perímetro de la figura y el área de la parte interior con la obtención de las medidas a partir del dibujo:
Traza 31
Un constructor ha comprado un terreno que tiene la planta mostrada en el dibujo y las dimensiones en metros se indican en la figura. Calcula el área y el perímetro de la tierra.
Traza 32
Una parcela de tierra tiene una forma rectangular con unas dimensiones de 50 m y de 30 m de largo. En el interior se ha construido una casa que ocupa una superficie rectangular de longitud 20 m y de 8 m de ancho. Calcular el área de la tierra permanecida libre.
Traza 33
Step-by-step explanation:
Answer:
A= 84cm
Step-by-step explanation:
length x width= area
plug in the given information.
14cm x 6cm = A
A=84
with a length of 14cm and a width of 6cm multiply them for an area of 84cm.
Tolong bantuin pakai cara
Answer:
1364
Step-by-step explanation:
1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364
a1+a2 = a3, a2+a3=a4 etcetera..
1+3 =4
3+4 =7
4+7=11
.
.
a13+a14 = a15
521+843 = 1364
so, 1364 is the answer
Please helpppppp
ASAPpppppp
The circumference of a
square orchard is 1600
meters. How many square
meters does the orchard
cover? How many hectares?
Answer:
A square is 4 even sides.
the circumference around the square area is 1600 meters. This means that each side is 400 meters.
Square meters is the area of the square.
400 x 400 = 160000 m^2
To get to Hectares, you divide the squared measurement by 10,000.
Answer:
160000m^2 = 16ha
Step-by-step explanation:
Bit of a nit pick first the word is perimeter not circumference circumference only applies to circles. 1600/4=400 (divide by 4 because a square has 4 sides) 400^2=160000 (A=L*H the length and height are the same so you square it) 160000/10000=16 (1 hectare = 10000m^2), Hope this helps. :)
Test for exactness. If exact, solve it directly. Otherwise, use integrating factors to solve it. Solve the IVP (if given). 2xy + (x^2) y' = 0
sin(x) cos(y) + cos(x) sin(y) y' = 0
(x^2) + (y^2) - 2xyy' = 0
e^(2x).(2 cos(y) - sin(y) y') = 0, where y(0) = 0
• 2xy + x ² y' = 0
This DE is exact, since
∂(2xy)/∂y = 2x
∂(x ²)/∂x = 2x
are the same. Then there is a solution of the form f(x, y) = C such that
∂f/∂x = 2xy ==> f(x, y) = x ² y + g(y)
∂f/∂y = x ² = x ² + dg/dy ==> dg/dy = 0 ==> g(y) = C
==> f(x, y) = x ² y = C
• sin(x) cos(y) + cos(x) sin(y) y' = 0
is also exact because
∂(sin(x) cos(y))/∂y = -sin(x) sin(y)
∂(cos(x) sin(y))/∂x = -sin(x) sin(y)
Then
∂f/∂x = sin(x) cos(y) ==> f(x, y) = -cos(x) cos(y) + g(y)
∂f/∂y = cos(x) sin(y) = cos(x) sin(y) + dg/dy ==> dg/dy = 0 ==> g(y) = C
==> f(x, y) = -cos(x) cos(y) = C
• x ² + y ² - 2xyy' = 0
is not exact:
∂(x ² + y ²)/∂x = 2x
∂(-2xy)/∂y = -2x
So we look for an integrating factor µ(x, y) such that
µ (x ² + y ²) - 2µxyy' = 0
becomes exact, which would require that these be equal:
∂(µ (x ² + y ²))/∂y = (x ² + y ²) ∂µ/∂y + 2µy
∂(-2µxy)/∂x = -2xy ∂µ/∂x - 2µy
Observe that if µ(x, y) = µ(x), then ∂µ/∂y = 0 and ∂µ/∂x = dµ/dx, so we would have
2µy = -2xy dµ/dx - 2µy
==> -2xy dµ/dx = 4µy
==> dµ/µ = -2/x dx
Integrating both sides gives
∫ dµ/µ = ∫ -2/x dx ==> ln|µ| = -2 ln|x| ==> µ = 1/x ²
So in the modified DE, we have
(1 + y ²/x ²) - 2y/x y' = 0
which is now exact and ready to solve, since
∂(1 + y ²/x ²)/∂y = 2y/x ²
∂(-2y/x)/∂x = 2y/x ²
We get
∂f/∂x = 1 + y ²/x ² ==> f(x, y) = x - y ²/x + g(y)
∂f/∂y = -2y/x = -2y/x + dg/dy ==> dg/dy = 0 ==> g(y) = C
==> f(x, y) = x - y ²/x = C
• exp(2x) (2 cos(y) - sin(y) y' ) = 0
is exact, since
∂(2 exp(2x) cos(y))/∂y = -2 exp(2x) sin(y)
∂(-exp(2x) sin(y))/∂x = -2 exp(2x) sin(y)
Then
∂f/∂x = 2 exp(2x) cos(y) ==> f(x, y) = exp(2x) cos(y) + g(y)
∂f/∂y = -exp(2x) sin(y) = -exp(2x) sin(y) + dg/dy ==> dg/dy = 0 ==> g(y) = C
==> f(x, y) = exp(2x) cos(y) = C
Given that y = 0 when x = 0, we find that
C = exp(0) cos(0) = 1
so that the particular solution is
exp(2x) cos(y) = 1
Find the missing side. Round your answer to the nearest tenth
Answer:
x = 24.8
Step-by-step explanation:
Since this is a right triangle, we can use trig functions
Sin theta = opp / hypotenuse
sin 75 = 24 /x
x sin 75 = 24
x = 24/ sin 75
x=24.84662
Rounding to the nearest tenth
x = 24.8
state the hundred thousands place for 7,832,906,215
Answer:
Step-by-step explanation:
6 is the thousands place
0 (right next to it) is the 10 thousands place
9 is the hundred thousands place. There is only 1 nine present so the answer is unique.
A waste management company is designing a rectangular construction dumpster that will be twice as long as it is wide and must hold 10 yd3 of debris. Find the dimensions of the dumpster that will minimize its surface area.
Answer:
The dimensions are:
l = 2*1.96 = 3.92 yd
h = 5/(1.96)² = 1.30 yd
w = 1.96 yd
Step-by-step explanation:
The volume is given by:
[tex]V=l*w*h[/tex]
Where:
l is the longw the wide h the heightWe know that l = 2w, so we have:
[tex]V=2w^{2}*h[/tex]
[tex]10=2w^{2}*h[/tex]
[tex]5=w^{2}*h[/tex] (2)
Now, the surface of this parallelepiped is:
[tex]S=2wh+2lh+lw[/tex]
Using l = 2w:
[tex]S=2wh+4wh+2w^{2}[/tex]
Using (2) we obtain the surface equation in terms of w.
[tex]S=2w\frac{5}{w^{2}}+4w\frac{5}{w^{2}}+2w^{2}[/tex]
[tex]S=2\frac{5}{w}+4\frac{5}{w}+2w^{2}[/tex]
We need to take the derivative with respect to w to minimize the surface area.
[tex]S=2\frac{5}{w}+4\frac{5}{w}+2w^{2}[/tex]
[tex]S=\frac{30}{w}+2w^{2}[/tex]
[tex]\frac{dS}{dw}=-\frac{30}{w^{2}}+4w[/tex]
Now, let's equal it to zero.
[tex]0=-\frac{30}{w^{2}}+4w[/tex]
[tex]\frac{30}{w^{2}}=4w[/tex]
[tex]w^{3}=\frac{30}{4}[/tex]
[tex]w=1.96\: yd[/tex]
So, l = 2*1.96 = 3.92 yd and h = 5/(1.96)² = 1.30 yd
Therefore, the dimensions are:
l = 2*1.96 = 3.92 yd
h = 5/(1.96)² = 1.30 yd
w = 1.96 yd
I hope it helps you!
• The difference between a polynomial or rational equation and polynomial or rational inequality
Answer:
An equation has an equal sign between two expressions, while an inequality has a ≤ or ≥ sign.
Explain why a + b = d.
B
lbº
aº
dº
A
С C
Given limit f(x) = 4 as x approaches 0. What is limit 1/4[f(x)]^4 as x approaches 0?
Answer:
[tex]\displaystyle 64[/tex]
General Formulas and Concepts:
Calculus
Limits
Limit Rule [Variable Direct Substitution]: [tex]\displaystyle \lim_{x \to c} x = c[/tex]
Limit Rule [Variable Direct Substitution Exponential]: [tex]\displaystyle \lim_{x \to c} x^n = c^n[/tex]
Limit Property [Multiplied Constant]: [tex]\displaystyle \lim_{x \to c} bf(x) = b \lim_{x \to c} f(x)[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle \lim_{x \to 0} f(x) = 4[/tex]
Step 2: Solve
Rewrite [Limit Property - Multiplied Constant]: [tex]\displaystyle \lim_{x \to 0} \frac{1}{4}[f(x)]^4 = \frac{1}{4} \lim_{x \to 0} [f(x)]^4[/tex]Evaluate limit [Limit Rule - Variable Direct Substitution Exponential]: [tex]\displaystyle \lim_{x \to 0} \frac{1}{4}[f(x)]^4 = \frac{1}{4}(4^4)[/tex]Simplify: [tex]\displaystyle \lim_{x \to 0} \frac{1}{4}[f(x)]^4 = 64[/tex]Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Limits
Book: College Calculus 10e
Answer: C. 64
Step-by-step explanation:
Edge 100%
he solutions to the inequality y > −3x + 2 are shaded on the graph. Which point is a solution? (0, 2) (2, 0) (1, −2) (−2, 1)
Answer:
The Answer Is Point B (2,0)
Step-by-step explanation:
A , B, C , D probability
Answer:
your laptop is nice really