Answer:
RA = 24
Step-by-step explanation:
Since the triangle is isosceles ( 2 equal sides ) , then LU is a perpendicular bisector , so
AU = RU , that is
4r = 18 - 2r ( add 2r to both sides )
6r = 18 ( divide both sides by 6 )
r = 3
Then
RA = 18 - 2r + 4r = 18 + 2r = 18 + 2(3) = 18 + 6 = 24
Why is the value of -9 is not-3
Answer:
Because it's a negative.
Step-by-step explanation:
The value of a positive number is still a positive number.
2y-x=6 and y=2x+7 graphed equals how many solutions
Answer:
One solution
BRAINLIEST, PLEASE!
Step-by-step explanation:
2y - x = 6
2y = x + 6
y = x/2 + 3
y = 2x + 7
After graphing, they have one solution at (-2.667, 1.667).
Three yellow balls, two red balls and five orange balls are placed in a bag. Mark draws a
ball out, and replaces it. He then picks another ball.
Draw a tree diagram to represent this information.
What is the probability that he gets at least one yellow ball?
Give your answer as a fraction in its simplest form
i think this could be the answer
A 40-foot ladder is leaning against a building and forms a 29.32° angle with the ground. How far away from the building is the base of the ladder? Round your answer to the nearest hundredth.
45.88 feet
34.88 feet
22.47 feet
19.59 feet
Answer:
34.88
Step-by-step explanation:
I took the test
The distance between the building and the ladder is 34.88 foot, the correct option is B.
What is a Right Triangle?A triangle in which one of the angle measure is equal to 90 degree is called a right triangle.
The ladder forms a right triangle with the building and the ground,
The length of the triangle is 40 foot
The angle made by the ladder is 29.32 degree
By using Trigonometric Ratios
cos 29.32 = Base / Hypotenuse
cos 29.32 = Base / 40
Base is the distance between the building and the ladder.
Base = 34.88 foot
To know more about Right Triangle
https://brainly.com/question/6322314
#SPJ5
Find 0.2B
B=[50 10
25 15]
Multiplying a matrix by a scalar results in every entry in a matrix get multiplied by that scalar, as defined,
[tex]a\begin{bmatrix}b&c\\d&e\\\end{bmatrix}=\begin{bmatrix}ab&ac\\ad&ae\\\end{bmatrix}[/tex]
So in our case, ([tex]0.2=\frac{1}{5}[/tex]
[tex]\frac{1}{5}\begin{bmatrix}50&10\\25&15\\\end{bmatrix}=\begin{bmatrix}\frac{50}{5}&\frac{10}{5}\\\frac{25}{5}&\frac{15}{5}\\\end{bmatrix}=\boxed{\begin{bmatrix}10&2\\5&3\\\end{bmatrix}}[/tex]
Hope this helps :)
0.108 ÷ 0.09
Please help in less then 3 mins
find the missing side of the triangle
Answer:
x = 34
Step-by-step explanation:
Pytago:
x[tex]30^{2} + 16^{2} = x^2\\x = \sqrt{30^2 + 16^2} \\x = 34[/tex]
Find the measure of a.
A. 20
B. 70
C. 80
D. 40
A circle is a curve sketched out by a point moving in a plane. The measure of a is 70°. The correct option is B.
What is a circle?A circle is a curve sketched out by a point moving in a plane so that its distance from a given point is constant; alternatively, it is the shape formed by all points in a plane that are at a set distance from a given point, the centre.
In the given circle, the line AC is the diameter of the circle, therefore, the measure of ∠ABC will be 90°.
∠ABC = 90°
This is because a triangle formed on the diameter of the circle such that all the vertices of the triangle intersect the circle, then the angle opposite to the diameter is a right angle.
Now, in ΔABC, the sum of all the angles of the triangle can be written as,
∠ABC + ∠BCA + ∠BAC = 180°
90° + a + 20° = 180°
110° + a = 180°
a = 180° - 110°
a = 70°
Hence, the measure of a is 70°.
Learn more about Circle:
https://brainly.com/question/11833983
#SPJ5
10 orange sodas, 15 cream sodas and 7 cherry sodas are in an ice chest. How many sodas must be removed from the chest to guarantee that on type of soda has been chosen?
PLEASE, GIVE A STEP BY STEP EXPLANATION
Answer:
25 sodas if the type of soda chosen is cherry sodas
Evaluate the equation
Answer:
3 +4 i
Step-by-step explanation:
x + sqrt(yz)
Let x = 3 y=2 and z = -8
3 + sqrt(2*-8)
3+ sqrt(-16)
3 + sqrt(16) sqrt(-1)
We know sqrt(-1) = i
3 +4 i
A line contains the piont (4,5) and is perpendicular to a line with a slope of -2/3. Write an equarion of the line satisfying the given conditions. Write the answer in slope-intercept form
Answer:
[tex]y=\frac{3}{2}x-3.5[/tex] or, preferably, [tex]y=\frac{3}{2}x-\frac{7}{2}[/tex]
Step-by-step explanation:
First is to find the perpendicular slope. In this case, you swap the numerator and denominator and then multiply that fraction by -1.
In this case, -2/3's inverse slope is 3/2.
Now, the initial y=3/2 passes through 7.5,5
So, you must subtract 3.5 from that to make it pass through 4,5.
In this way, you get the answer in slope-intercept form.
Answer:
y = [tex]\frac{3}{2}[/tex] x - 1
Step-by-step explanation:
Given a line with slope m then the slope of a line perpendicular to it is
[tex]m_{perpendicular}[/tex] = - [tex]\frac{1}{m}[/tex] = - [tex]\frac{1}{-\frac{2}{3} }[/tex] = [tex]\frac{3}{2}[/tex] , then
y = [tex]\frac{3}{2}[/tex] + c ← partial equation in slope- intercept form
To find c substitute (4, 5) into the partial equation
5 = 6 + c ⇒ c = 5 - 6 = - 1
y = [tex]\frac{3}{2}[/tex] x - 1 ← equation of line
A rectangle is divided into 25 equal parts. How many of these parts must be shaded in order to cover three fifths of the rectangle?
Answer:
15 parts must be shaded
Step-by-step explanation:
3/5 × 25 = 15
15/25 = 3/5
Have a great day.
15 parts must be shaded in order to cover three fifths of the rectangle.
What is a rectangle?
"A rectangle has two pairs of equal opposite parallel sides, four right angles and two diagonals. The diagonals of a rectangle are congruent.
They also bisect each other. Each diagonal divides the rectangle into two congruent right triangles."
Given
A rectangle is divided into 25 equal parts.
Number of parts must be shaded in order to cover three fifths of the rectangle
= [tex]\frac{3}{5}[/tex] × [tex]25[/tex]
= 15
Checking whether the 15 parts must be shaded in order to cover three fifths of the rectangle
= [tex]\frac{15}{25}[/tex]
= [tex]\frac{3}{5}[/tex]
Hence, 15 parts must be shaded in order to cover three fifths of the rectangle.
Learn more about rectangle here
https://brainly.com/question/12019874
#SPJ2
please help brainliest to correct answer
Answer:
Question to number 6 is-3
Question to number 7 is 3
Question to number 8 is 2 to the second power
Step-by-step explanation:
please correct me if I’m wrong and for number 8 I am correct it’s just I didn’t know how to put the little 2 on top of the big one
Step-by-step explanation:
question 6 is - 3
question 7 is 3
question 8 is 4
In a large midwestern university (the class of entering freshmen is 6000 or more students), an SRS of 100 entering freshmen in 1999 found that 20 finished in the bottom third of their high school class. Admission standards at the university were tightened in 2000. In 2001, an SRS of 100 entering freshmen found that 10 finished in the bottom third of their high school class. Let p1 and p2 be the proportion of all entering freshmen in 1999 and 2001, respectively, who graduated in the bottom third of their high school class.
Required:
Is there evidence that the proportion of freshmen who graduated in the bottom third of their high school class in 2001 has been reduced, as a result of the tougher admission standards adopted in 2000, compared with the proportion in 1999
Answer:
The p-value of the test is 0.0228, which is less than the standard significance level of 0.05, which means that there is evidence that the proportion of freshmen who graduated in the bottom third of their high school class in 2001 has been reduced.
Step-by-step explanation:
Before solving this question, we need to understand the central limit theorem and subtraction of normal variables.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
Subtraction between normal variables:
When two normal variables are subtracted, the mean is the difference of the means, while the standard deviation is the square root of the sum of the variances.
1999:
20 out of 100 in the bottom third, so:
[tex]p_1 = \frac{20}{100} = 0.2[/tex]
[tex]s_1 = \sqrt{\frac{0.2*0.8}{100}} = 0.04[/tex]
2001:
10 out of 100 in the bottom third, so:
[tex]p_2 = \frac{10}{100} = 0.1[/tex]
[tex]s_2 = \sqrt{\frac{0.1*0.9}{100}} = 0.03[/tex]
Test if proportion of freshmen who graduated in the bottom third of their high school class in 2001 has been reduced.
At the null hypothesis, we test if the proportion is still the same, that is, the subtraction of the proportions in 1999 and 2001 is 0, so:
[tex]H_0: p_1 - p_2 = 0[/tex]
At the alternative hypothesis, we test if the proportion has been reduced, that is, the subtraction of the proportion in 1999 by the proportion in 2001 is positive. So:
[tex]H_1: p_1 - p_2 > 0[/tex]
The test statistic is:
[tex]z = \frac{X - \mu}{s}[/tex]
In which X is the sample mean, [tex]\mu[/tex] is the value tested at the null hypothesis, and s is the standard error.
0 is tested at the null hypothesis:
This means that [tex]\mu = 0[/tex]
From the two samples:
[tex]X = p_1 - p_2 = 0.2 - 0.1 = 0.1[/tex]
[tex]s = \sqrt{s_1^2 + s_2^2} = \sqrt{0.04^2 + 0.03^2} = 0.05[/tex]
Value of the test statistic:
[tex]z = \frac{X - \mu}{s}[/tex]
[tex]z = \frac{0.1 - 0}{0.05}[/tex]
[tex]z = 2[/tex]
P-value of the test and decision:
The p-value of the test is the probability of finding a difference of at least 0.1, which is the p-value of z = 2.
Looking at the z-table, the p-value of z = 2 is 0.9772.
1 - 0.9772 = 0.0228.
The p-value of the test is 0.0228, which is less than the standard significance level of 0.05, which means that there is evidence that the proportion of freshmen who graduated in the bottom third of their high school class in 2001 has been reduced.
Paul can install a 300-square-foot hardwood floor in 18 hours. Matt can install the same floor in 22 hours. How long would it take Paul and Matt to install the floor working together?
4 hours
9.9 hours
13.2 hours
30 hours
Answer:
9.9 hours
Step-by-step explanation:
The formula to determine the time together is
1/a+1/b = 1/c where a and b are the times alone and c is the time together
1/18 + 1/22 = 1/c
The least common multiply of the denominators is 198c
198c(1/18 + 1/22 = 1/c)
11c+ 9c = 198
20c = 198
Divide by 20
20c/20 =198/20
c =9.9
Answer:
B - 9.9 hrs
Step-by-step explanation:
took the test.
Seven and one-half foot-pounds of work is required to compress a spring 2 inches from its natural length. Find the work required to compress the spring an additional 3 inch.
Answer:
Apply Hooke's Law to the integral application for work: W = int_a^b F dx , we get:
W = int_a^b kx dx
W = k * int_a^b x dx
Apply Power rule for integration: int x^n(dx) = x^(n+1)/(n+1)
W = k * x^(1+1)/(1+1)|_a^b
W = k * x^2/2|_a^b
From the given work: seven and one-half foot-pounds (7.5 ft-lbs) , note that the units has "ft" instead of inches. To be consistent, apply the conversion factor: 12 inches = 1 foot then:
2 inches = 1/6 ft
1/2 or 0.5 inches =1/24 ft
To solve for k, we consider the initial condition of applying 7.5 ft-lbs to compress a spring 2 inches or 1/6 ft from its natural length. Compressing 1/6 ft of it natural length implies the boundary values: a=0 to b=1/6 ft.
Applying W = k * x^2/2|_a^b , we get:
7.5= k * x^2/2|_0^(1/6)
Apply definite integral formula: F(x)|_a^b = F(b)-F(a) .
7.5 =k [(1/6)^2/2-(0)^2/2]
7.5 = k * [(1/36)/2 -0]
7.5= k *[1/72]
k =7.5*72
k =540
To solve for the work needed to compress the spring with additional 1/24 ft, we plug-in: k =540 , a=1/6 , and b = 5/24 on W = k * x^2/2|_a^b .
Note that compressing "additional one-half inches" from its 2 inches compression is the same as to compress a spring 2.5 inches or 5/24 ft from its natural length.
W= 540 * x^2/2|_((1/6))^((5/24))
W = 540 [ (5/24)^2/2-(1/6)^2/2 ]
W =540 [25/1152- 1/72 ]
W =540[1/128]
W=135/32 or 4.21875 ft-lbs
Step-by-step explanation:
Find an equation of the plane orthogonal to the line
(x,y,z)=(0,9,6)+t(7,−7,−6)
which passes through the point (9, 6, 0).
Give your answer in the form ax+by+cz=d (with a=7).
The given line is orthogonal to the plane you want to find, so the tangent vector of this line can be used as the normal vector for the plane.
The tangent vector for the line is
d/dt (⟨0, 9, 6⟩ + ⟨7, -7, -6⟩t ) = ⟨7, -7, -6⟩
Then the plane that passes through the origin with this as its normal vector has equation
⟨x, y, z⟩ • ⟨7, -7, -6⟩ = 0
We want the plane to pass through the point (9, 6, 0), so we just translate every vector pointing to the plane itself by adding ⟨9, 6, 0⟩,
(⟨x, y, z⟩ - ⟨9, 6, 0⟩) • ⟨7, -7, -6⟩ = 0
Simplifying this expression and writing it standard form gives
⟨x - 9, y - 6, z⟩ • ⟨7, -7, -6⟩ = 0
7 (x - 9) - 7 (y - 6) - 6z = 0
7x - 63 - 7y + 42 - 6z = 0
7x - 7y - 6z = 21
so that
a = 7, b = -7, c = -6, and d = 21
An equation of the plane orthogonal to the line 7x - 7y - 6z = 21.
The given line is orthogonal to the plane you want to find,
So the tangent vector of this line can be used as
The normal vector for the plane.
The tangent vector for the line is,
What is the tangent vector?A tangent vector is a vector that is tangent to a curve or surface at a given point.
d/dt (⟨0, 9, 6⟩ + ⟨7, -7, -6⟩t ) = ⟨7, -7, -6⟩
Then the plane that passes through the origin with this as its normal vector has the equation
⟨x, y, z⟩ • ⟨7, -7, -6⟩ = 0
We want the plane to pass through the point (9, 6, 0), so we just
translate every vector pointing to the plane itself by adding ⟨9, 6, 0⟩,
(⟨x, y, z⟩ - ⟨9, 6, 0⟩) • ⟨7, -7, -6⟩ = 0
Simplifying this expression and writing it in standard form gives
⟨x - 9, y - 6, z⟩ • ⟨7, -7, -6⟩ = 0
7 (x - 9) - 7 (y - 6) - 6z = 0
7x - 63 - 7y + 42 - 6z = 0
7x - 7y - 6z = 21
So that, a = 7, b = -7, c = -6, and d = 21.
To learn more about the equation of plane visit:
https://brainly.com/question/1603217
Round 573.073 to the greatest place
Answer:
574
Step-by-step explanation:
To round a two-digit number to the nearest ten, simply increase it or decrease it to the nearest number that ends in 0: When a number ends in 1, 2, 3, or 4, bring it down; in other words, keep the tens digit the same and turn the ones digit into a 0
Hope this helps <3
3. Find the minimum number of students needed to guarantee that five of them belong to the same class (Freshman, Sophomore, Junior, Senior)
Answer:
100
Step-by-step explanation:
well you can put 5 students in each class guaranteed 5 times over so it would make sense because 5 for each class 9th-12th 5 times over again and again will eventually give you the answer of 100 5•20
If we take 5 students are in each class.
Then let minimum number of students be x
ATQ
1/20()x = 5
x = 5 × 20
x = 100
Answer: 100 people
Must click thanks and mark brainliest
You and your friend decide to get your cars inspected. You are informed that 83% of cars pass inspection. If the event of your car's passing is independent of your friend's car. please help me with d! an explanation with steps would be nice but mandatory
There are 45 applicants for two Software
Maker positions.
I
Use the graph to complete the statement. O is the origin. Ry−axis ο Ry=x: (-1,2)
A. (2, -1)
B. (-2, -1)
C. (-1, -2)
D. (1, -2)
Answer:
[tex](x,y) = (1,2)[/tex] -------- [tex]R_{y-axis}[/tex]
[tex](x,y)=(2,-1)[/tex] --------- [tex]R_{y=x}[/tex]
Step-by-step explanation:
Given
[tex](x,y) = (-1,2)[/tex]
Required
[tex]R_{y-axis}[/tex]
[tex]R_{y=x}[/tex]
[tex]R_{y-axis}[/tex] implies that:
[tex](x,y) = (-x,y)[/tex]
So, we have: (-1,2) becomes
[tex](x,y) = (1,2)[/tex]
[tex]R_{y=x}[/tex] implies that
[tex](x,y) = (y,x)[/tex]
So, we have: (-1,2) becomes
[tex](x,y)=(2,-1)[/tex]
In a sociology class there are 14 men and 10 women. 3 students are randomly selected to present a topic. What is the probability that at least 1 of the 3 students selected is female? Express your answer as a fraction or a decimal number rounded to four decimal places.
Answer:
0.8015
Step-by-step explanation:
Hope I'm correct lol
8.9 x 10^3 in standard notation
Answer:
that is n standard notation mah frand
8.9 × 10^3 being scientific notation of " 8900 "
[tex]\huge\text{Hey there!}[/tex]
[tex]\large\textsf{8.9}\times\large\textsf{10}^\mathsf{3}\\\\\mathsf{10^3}\\\mathsf{= 10\times10\times10}\\\mathsf{= 100\times10}\\\mathsf{= \bf 1,000}\\\\\large\textsf{8.9}\times\large\textsf{1,000}\\\\\large\textsf{= \bf 8,900}\\\\\\\boxed{\boxed{\huge\text{Answer: \boxed{\underline{\underline{\bf 8,900}}}}}}\huge\checkmark[/tex]
[tex]\huge\text{Good luck on your assignment \& enjoy your day!}[/tex]
~[tex]\boxed{\huge\text{}\boxed{\frak{Amphitrite1040:)}}}[/tex]
Which of these graphs represents the inequality x > 5?
Answer:
A is correct.
x>5 means all numbers greater than BUT not equal to 5.
The open circle means "not equal".
So, A is correct.
Hope this helps!
Answer:
Graph A.
Step-by-step explanation:
Answer: x > 5 means all x values greater than 5
thus, the graph that best shows that x is greater than 5 is graph A.
Explanation: because x isn't being itself I mean by x isn't just 5 but greater than 5 (graph a)
graph b shows x being less than 5 which is wrong
graph c shows x being greater than 5 but being equal to 5 because of the bold circle
graph d shows everything wrong about x. first it's not suppose to be less than and second x isn't equal to 5
therefore the answer graph A.
--------------------------------------------------------------------
doomdabomb: all brainliest and thanks are appreciated
and would mean a lot to me, thanks!
How many edges are there?
9514 1404 393
Answer:
24
Step-by-step explanation:
The front face is an 8-sided star, so has 8 edges. We presume the back face is the same, so it also has 8 edges. Each of the front vertices is connected by an edge to each of the corresponding back vertices, so there are 8 more edges connecting front and back.
The total number of edges is 8 + 8 + 8 = 24.
State the counting number in the periodic table of elements of the element considered to be the heaviest gas. (the answer should consist of numbers only)
9514 1404 393
Answer:
118
Step-by-step explanation:
Oganesson is the heaviest element ever created. It is a "super-heavy" noble gas with a half-life less than 1 millisecond. Its atomic number is 118.
if U>T, R>Q, S>T and T>R, which of the following is TRUE?
1. S>Q
2. U > S
3.U > R
A. 1 only
B. 2 only
C. 1 and 2
D. 2 and 3
Answer:
C. 1 and 2
Step-by-step explantation:
First, i would order them as U>T, T>R, R>Q, S>T
we can rewrite them as
U>T>R>Q,
now adding S, we get U>S>T>R>Q,
so U>S
We can also rewrite all of them as inequalities:
U-T>0
T-R>0
R-Q>0
S-T>0
Add R-Q and T-R
(R-Q)+(T-R)>0
-Q+T>0
T>Q, but because S>T we can say S>Q
I need help ASAP PLEASEEE!
Answer:
The fourth number line is the answer.
Step-by-step explanation:
[tex] - 18 > - 5x + 2 \geqslant - 48 \\ ( - 18 - 2) > - 5x \geqslant ( - 48 - 2) \\ - 20 > - 5x \geqslant - 50 \\ \\ \frac{ - 20}{ - 5} > x \geqslant \frac{ - 50}{ - 5} \\ \\ 4 > x \geqslant 10[/tex]
Solve for X and show your work and explain please
Answer: x = 45
Step-by-step explanation:
Given
(2/3)x + 4 = (4/5)x - 2
Add 2 on both sides
(2/3)x + 4 + 2 = (4/5)x - 2 + 2
(2/3)x + 6 = (4/5)x
Subtract (2/3)x on both sides
(2/3)x + 6 - (2/3)x = (4/5)x - (2/3)x
6 = (12/15)x - (10/15)x
6 = (2/15)x
Divide 2/15 on both sides
6 / (2/15) = (2/15)x / (2/15)
[tex]\boxed{x=45}[/tex]
Hope this helps!! :)
Please let me know if you have any questions
Answer:
x = 45
Step-by-step explanation:
2/3 x + 4 = 4/5x - 2 Add 2 to both sides
2/3 x + 4 + 2 = 4/5x Combine
2/3x + 6 = 4/5x Subtract 2/3 x from both sides.
6 = 4/5x - 2/3 x Multiply both sides by 15
6*15 = 4/5 x * 15 - 2/3x * 15
6*15 = 12x - 10x Combine the left and right
90 = 2x Divide by 2
x = 45
Let's see if it works.
LHS = 2/3 * 45 + 4
LHS = 2*15 + 4
LHS = 30 + 4
LHS = 34
RHS
Right hand side = 4/5 * 45 - 2
RHS = 36 - 2
RHS = 34 which is the same as the LHS