Answer:
m<A = 133 degrees
m<B = 17 degrees
m<C = 30 degrees
Step-by-step explanation:
In a triangle, all the angles add up to 180 degrees.
So, adding all the angles gets us,
39x + 24
This equals 180 degrees so,
39x + 24 = 180
Subtract 24 from both sides,
39x + 24 - 24 = 180 - 24
39x = 156
Divide both sides by 39
x = 4
Now we have x = 4, we use this to plug in each equation of the angles.
m<A = 40(4) - 27 = 160 - 27 = 133
m<B = 25 - 2(4) = 25 - 8 = 17
m<C = 26 + 4 = 30
Help me please answer this, this will be my first grade for freshman year. The picture of the question is down below.
Answer:
D
Step-by-step explanation:
-0.81 is a high negative correlation, which means the y is decreasing with x increasing, which means y(the number of broken glass) decreases when x(amount of paper used) increased. So we can say that the toilet paper is surely helping.
make me brainly if you find it correct
Find the value of x.
A. 3
B. 9
C. 0
D. 12
Answer:
x=3
Step-by-step explanation:
(segment piece) x (segment piece) = (segment piece) x (segment piece)
3x(x+1) = 4x(x)
Divide each side by x
3x(x+1)/x = 4x(x)/x
3(x+1) = 4x
Distribute
3x+3 = 4x
Subtract 3x
3x+3-3x= 4x-3x
3 =x
Answer:
x = 3
Step-by-step explanation:
0 is a rediculas answer 9 and 12 are to big.
The lines are supposed to have a simular length:
3(3) + 4 = 13
4(3) + 3 = 15
These are the best answers that fit.
Can someone please help me with this question?
Answer:
B
Step-by-step explanation:
11q + 5 ≤ 49
Subtract 5 from each side
11q + 5-5 ≤ 49-5
11q ≤44
Divide each side by 11
q ≤44/11
q≤4
There is a close circle at 4 because of the equals sign and the lines goes to the left
Answer:
B
Step 1:
To solve this, we need to isolate the variable q. To do so, we will subtract 5 from both sides of the inequality.
[tex]11q+5(-5)\leq 49(-5)\\11q\leq 44[/tex]
Step 2:
We divide both sides by 11 to get our q.
[tex]\frac{11q}{11}\leq \frac{44}{11} \\q\leq 4[/tex]
q ≤ 4
Step 3:
To find the correct graph, we need to know that a close circle means a ≤ or ≥ and an open one means a < or >. Here, we are using a ≤ so C and D are not our answers. Also remember that if the "arrow" is pointing left (<), then the arrow on the graph should be facing the left side. If the arrow is facing the right side, then that means we are using > or ≥. Here, we are using ≤ (left), so that means the arrow on the graph should be on a 4, facing left, with a closed circle.
Our answer is B.
evaluate -99 + 3^2•5
Answer:
= - 54
Step-by-step explanation:
- 99 + 3^2•5
- 99 + 9 × 5
- 99 + 45
= - 54
How far from the base of the house do you need to place a 13-foot ladder so that it exactly reaches the top of a 10-feet wall?
Answer:
√69 or 8.3 feets
Step-by-step explanation:
Hypotenuse=13
Therefore
13²=x²+10²
x²=169-100
x²=69
x=√69 feets
The distance from the base of the house is 8.3 feet.
What is the pythagoras theorem?The pythagoras theorem is used to obtain the sides of a right angled triangle.
Given that;
The hypotenues of the triangle is 13-foot
The length of the opposite side is 10 feet
Thus;
13^2 = 10^2 + a^2
a^2 = 13^2 - 10^2
a = √13^2 - 10^2
a = 8.3 feet
Learn more about pythagoras theorem:https://brainly.com/question/343682
#SPJ1
The triangle shown on the graph above is rotated 90 degrees clockwise about the original to form triangle P’Q’R which of the following are the (x,y) coordinates of the point P’
Hey there! I'm happy to help!
When rotating a point 90 degrees clockwise about the origin, our original point (x,y) becomes (-y,x), because it is now at a negative y-value.
We see that our point P is at (1,2). We can use this rotation formula to find the coordinates of P' (the new spot where P is)/
(x,y)⇒(-y,x)
(1,2)⇒(-2,1)
Therefore, the coordinates of the point P' are (-2,1).
Have a wonderful day! :D
Find the sum. 1. -7+(-5)
O-12
O-2
0 2
0 12
Answer:
-12
Step-by-step explanation:
-7+(-5)=
-7-5=
-12
If x to the 2nd power equal 60, What is the value of x
Answer:
7.745
Step-by-step explanation:
Square root of 60 equals X.
What is the volume of a sphere, to the nearest cubic inch, if the radius equals 5 inches? Use π = 3.14.
Answer:
V = 523 in^3
Step-by-step explanation:
The volume of a sphere is given by
V = 4/3 pi r^3
V = 4/3 ( 3.14) * 5^3
V = 523.33333repeating
Rounding to the nearest inch^3
V = 523 in^3
Answer:
[tex] 523.6 {in}^{3} [/tex]
Step-by-step explanation:
[tex]v = \frac{4}{3} \pi {r}^{3} \\ = \frac{4}{3} \pi \times 5 \times 5 \times 5 \\ = 523.6 {in}^{3} [/tex]
PLEASE HELP ! (4/4) - 50 POINTS -
Answer:
The correct answer, again, is A; Z = -0.6
Answer:
im pretty sure its A; Z = -0.6 sorry if im wrong
Step-by-step explanation:
A manufacturer of paper coffee cups would like to estimate the proportion of cups that are defective (tears, broken seems, etc.) from a large batch of cups. They take a random sample of 200 cups from the batch of a few thousand cups and found 18 to be defective. The goal is to perform a hypothesis test to determine if the proportion of defective cups made by this machine is more than 8%.
Required:
a. Calculate a 95% confidence interval for the true proportion of defective cups made by this machine.
b. What is the sample proportion?
c. What is the critical value for this problem?
d. What is the standard error for this problem?
Answer:
a
The 95% confidence interval is [tex]0.0503 < p < 0.1297[/tex]
b
The sample proportion is [tex]\r p = 0.09[/tex]
c
The critical value is [tex]Z_{\frac{\alpha }{2} } = 1.96[/tex]
d
The standard error is [tex]SE =0.020[/tex]
Step-by-step explanation:
From the question we are told that
The sample size is n = 200
The number of defective is k = 18
The null hypothesis is [tex]H_o : p = 0.08[/tex]
The alternative hypothesis is [tex]H_a : p > 0.08[/tex]
Generally the sample proportion is mathematically evaluated as
[tex]\r p = \frac{18}{200}[/tex]
[tex]\r p = 0.09[/tex]
Given that the confidence level is 95% then the level of significance is mathematically evaluated as
[tex]\alpha = 100 - 95[/tex]
[tex]\alpha = 5\%[/tex]
[tex]\alpha = 0.05[/tex]
Next we obtain the critical value of [tex]\frac{ \alpha }{2}[/tex] from the normal distribution table, the value is
[tex]Z_{\frac{\alpha }{2} } = 1.96[/tex]
Generally the standard of error is mathematically represented as
[tex]SE = \sqrt{\frac{\r p (1 - \r p)}{n} }[/tex]
substituting values
[tex]SE = \sqrt{\frac{0.09 (1 - 0.09)}{200} }[/tex]
[tex]SE =0.020[/tex]
The margin of error is
[tex]E = Z_{\frac{ \alpha }{2} } * SE[/tex]
=> [tex]E = 1.96 * 0.020[/tex]
=> [tex]E = 0.0397[/tex]
The 95% confidence interval is mathematically represented as
[tex]\r p - E < \mu < p < \r p + E[/tex]
=> [tex]0.09 - 0.0397 < \mu < p < 0.09 + 0.0397[/tex]
=> [tex]0.0503 < p < 0.1297[/tex]
Suppose that Y1, Y2,..., Yn denote a random sample of size n from a Poisson distribution with mean λ. Consider λˆ 1 = (Y1 + Y2)/2 and λˆ 2 = Y . Derive the efficiency of λˆ 1 relative to λˆ 2.
Answer:
The answer is "[tex]\bold{\frac{2}{n}}[/tex]".
Step-by-step explanation:
considering [tex]Y_1, Y_2,........, Y_n[/tex] signify a random Poisson distribution of the sample size of n which means is λ.
[tex]E(Y_i)= \lambda \ \ \ \ \ and \ \ \ \ \ Var(Y_i)= \lambda[/tex]
Let assume that,
[tex]\hat \lambda_i = \frac{Y_1+Y_2}{2}[/tex]
multiply the above value by Var on both sides:
[tex]Var (\hat \lambda_1 )= Var(\frac{Y_1+Y_2}{2} )[/tex]
[tex]=\frac{1}{4}(Var (Y_1)+Var (Y_2))\\\\=\frac{1}{4}(\lambda+\lambda)\\\\=\frac{1}{4}( 2\lambda)\\\\=\frac{\lambda}{2}\\[/tex]
now consider [tex]\hat \lambda_2[/tex] = [tex]\bar Y[/tex]
[tex]Var (\hat \lambda_2 )= Var(\bar Y )[/tex]
[tex]=Var \{ \frac{\sum Y_i}{n}\}[/tex]
[tex]=\frac{1}{n^2}\{\sum_{i}^{}Var(Y_i)\}\\\\=\frac{1}{n^2}\{ n \lambda \}\\\\=\frac{\lambda }{n}\\[/tex]
For calculating the efficiency divides the [tex]\hat \lambda_1 \ \ \ and \ \ \ \hat \lambda_2[/tex] value:
Formula:
[tex]\bold{Efficiency = \frac{Var(\lambda_2)}{Var(\lambda_1)}}[/tex]
[tex]=\frac{\frac{\lambda}{n}}{\frac{\lambda}{2}}\\\\= \frac{\lambda}{n} \times \frac {2} {\lambda}\\\\ \boxed{= \frac{2}{n}}[/tex]
The average score of all golfers for a particular course has a mean of 70and a standard deviation of 5.Suppose 100golfers played the course today. Find the probability that the average score of the 100golfers exceeded 71.Round to four decimal places.
Answer:
0.9773
Step-by-step explanation:
Here, we start by calculating the z-scores statistic
Mathematically;
z-score = (x-mean)/SD/√n
From the question, we have;
x = 71, mean = 70, SD = 5 and n = 100
Plugging these values in the equation above, we have;
z-score = (71-70)/5/√100 = 1/5/10 = 1/0.5 = 2
So the probability we want to calculate is that;
P(z > 2)
This is obtainable from the standard normal distribution table
P(z > 2) = 0.97725 which is 0.9773 to 4 decimal places
Find the area of the region enclosed by the curves x=3y^2, x=0, and y=2
Answer:
8
Step-by-step explanation:
Hello,
[tex]x=3y^2<=>y=\sqrt{\dfrac{x}{3}} \ \ for \ x\geq 0[/tex]
And for y = 2, x = 3 * 2 * 2 = 12 so first, let's compute
[tex]\displaystyle \int\limits^{12}_0 {\sqrt{\dfrac{x}{3}}} \, dx =\dfrac{1}{\sqrt{3}} \int\limits^{12}_0 {\sqrt{x}} \, dx\\\\=\dfrac{1}{\sqrt{3}} \left[ \dfrac{2}{3}x^{3/2}\right]_0^{12}\\\\=\dfrac{1}{\sqrt{3}} *\dfrac{2}{3}*12*\sqrt{12}\\\\=\dfrac{2*12*2*\sqrt{3}}{3*\sqrt{3}}\\\\=2*4*2=16[/tex]
The area which is asked is 12*2 - 16 = 24 - 16 = 8
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
Using integrals, it is found that the area of the region enclosed by the curves in the interval is of 27 units squared.
In this problem:
The curve is [tex]x = 3y^2[/tex], hence the integral is relative to y.The lower limit is when x = 0, hence [tex]0 = 3y^2 \rightarrow y = 0[/tex].The upper limit is when y = 2.Then, the integral for the area is:
[tex]A = \int_{0}^{2} 3y^2 dy[/tex]
[tex]A = y^3|_{y = 0}^{y = 3}[/tex]
[tex]A = 3^3 - 0^3[/tex]
[tex]A = 27[/tex]
The area of the region enclosed by the curves in the interval is of 27 units squared.
You can learn more about the use of integrals to calculate an area at https://brainly.com/question/15127807
which best defines a service
Answer:
A service could be multiple things.
Step-by-step explanation:
Like, working as a scribe in a nursing home helping old people. Or, being part of a leadership club at school that funds food banks and things like that
Answer:
a
Step-by-step explanation:
Translate the expression from algebra to words: 6+r
Answer:
a number, r, added to 6
Step-by-step explanation:
a number, r, added to 6
Answer:
a number, r, added to 6
Step-by-step explanation:
a number, r, added to 6
Write three fractions that are equivalent to 3 over 11 , but written in higher terms. One of them must
include one or more variables.
Answer:
Three fractions that are equivalent to [tex]\frac{3}{11}[/tex] are: [tex]\frac{6}{22}[/tex], [tex]\frac{24}{88}[/tex] and [tex]\frac{144}{528}[/tex].
Step-by-step explanation:
Equivalent fractions are set of fractions in which when simplified, they have the same answer.
Given: [tex]\frac{3}{11}[/tex]
i. multiply the numerator and denominator of [tex]\frac{3}{11}[/tex] by 2,
= [tex]\frac{3*2}{11*2}[/tex] = [tex]\frac{6}{22}[/tex]
i. multiply both the numerator and denominator of [tex]\frac{6}{22}[/tex] by 4,
= [tex]\frac{6*4}{22*4}[/tex]= [tex]\frac{24}{88}[/tex]
ii. multiply the numerator and denominator of [tex]\frac{24}{88}[/tex] by 6,
= [tex]\frac{24*6}{88*6}[/tex] = [tex]\frac{144}{528}[/tex]
So that;
[tex]\frac{3}{11}[/tex] = [tex]\frac{6}{22}[/tex] = [tex]\frac{24}{88}[/tex] = [tex]\frac{144}{528}[/tex].
Three fractions that are equivalent to [tex]\frac{3}{11}[/tex] are: [tex]\frac{6}{22}[/tex], [tex]\frac{24}{88}[/tex] and [tex]\frac{144}{528}[/tex].
how many meters are in 250 centimeters
Answer:
2.5 meters
Step-by-step explanation:
Simplify the following expression. 3x(4x − 3) A. 12x2 + 13x B. 12x2 + 5x C. 12x2 − 5x D. 12x2 − 9x
Answer:
Multiply using the distributive property.
D is the best answer.
Step-by-step explanation:
The simplified form of expression 3x (4x - 3) is 12x² - 9x.
What is an algebraic expression?An algebraic expression is consists of variables, numbers with various mathematical operations,
The given expression is,
3x (4x - 3).
Simplify the expression by solving bracket term,
3x × (4x) - 3 x (3x)
12x² - 9x
The given expression can be simplified as 12x² - 9x.
Hence, option (D) is correct.
To know more about Algebraic expression on:
https://brainly.com/question/19245500
#SPJ2
The one-sample z ‑statistic for Thomas' statistical test has a value of −1.73346 , and Thomas calculates a P-value of 0.0830 . Should Thomas conclude that telephone surveys provide adequate coverage with respect to p ? Why or why not? Select all correct statements about his decision and conclusion.
Answer:
Thomas should not reject the null hypothesis.
Step-by-step explanation:
The null hypothesis is rejected or accepted on the basis of level of significance. When the p-value is greater than level of significance we fail to reject the null hypothesis and null hypothesis is then accepted. It is not necessary that all null hypothesis will be rejected at 10% level of significance. To determine the criteria for accepting or rejecting a null hypothesis we should also consider p-value. Here in this question the test value is -1.73346 and p-value is 0.0830. The p value is greater than the test value therefore the null hypothesis should be accepted.
Residents of four cities are able to vote in an upcoming regional election. A newspaper recently conducted a survey to gauge support for each of the two candidates. The results of the poll are shown in the two-way frequency table below.
Answer:
3 only
Step-by-step explanation:
Consider the statement, "The two cities with the highest number of respondents, both show more support for candidate A." In the total column, the two highest number of respondents are 471 and 463 which represent Carsonville and Appleton. For Carsonville, the number of respondents who prefer candidate A is 205, which is less than the number of respondents who prefer candidate B, 266. Therefore, this statement is not true.
Consider the statement, "The number of people who support candidate B in Carsonville is twice the number of people who support candidate B in New Thomas." In the table, the number of people who support candidate B in Carsonville is observed to be 266 and the number of people who support candidate B in New Thomas is 138. Since 266 is not equal to twice 138, this statement is not true.
Consider the statement, "More residents of Center City responded to the poll than the number who responded from New Thomas." In the total column, it can be observed that 350 people responded to the poll in Center City and 318 people responded to the poll in New Thomas. Since, 350 is greater than 318, this statement is true.
Consider the statement, "Overall, more residents support candidate A than candidate B." The bottom row of the table represents the total number of responses for each candidate. The number of people supporting candidate A is 797, which is less than the number of people supporting candidate B, 805. So, this statement is not true.
Therefore, the true statement is III only.
More residents of the center city responded to the pole than the number who responded from New Thomas, which is the only correct option. Option B. is correct.
Data given in the table shows the data of elections between two candidates among the different cities.
What is Statistic?
Statistics is the study of mathematics that deals with relations between comprehensive data.
I.The two cities with the highest number of respondents both show more support for candidate A. This statement is false because carsonville is the second highest support for A but it does not show more support for candidate A.
II.The number of people who support candidate B in Carsonville is twice the number of people who support candidate B in New Thomas. It is false
III. More residents of Center City responded to the pole than the number who responded from New Thomas. It is true.
IV. Overall, more residents support candidate A than candidate B. it is also false.
Thus, more residents of the center city responded to the pole than the number who responded from New Thomas, which is the only correct option. Option B. is correct.
Learn more about Statistics here:
https://brainly.com/question/23091366
#SPJ5
determine the results of the following operations
Answer:
[tex]\sqrt[3]{4}\times (\sqrt[3]{16}-10 )[/tex]
Step-by-step explanation:
Let be [tex]\sqrt[3]{64}-\sqrt[3]{32} \times \sqrt[3]{125}[/tex], this expression is simplified as follows:
1) [tex]\sqrt[3]{64}-\sqrt[3]{32} \times \sqrt[3]{125}[/tex] Given
2) [tex]\sqrt[3]{4^{3}}-\sqrt[3]{2^{5}}\times \sqrt[3]{5^{3}}[/tex] Definition of power
3) [tex](4^{3})^{1/3}-(2^{2}\cdot 2^{3})^{1/3}\times (5^{3})^{1/3}[/tex] Definition of n-th root/[tex]a^{b+c}= a^{b}\cdot a^{c}[/tex]/[tex](a^{b})^{c} = a^{b\cdot c}[/tex]
4) [tex]4 - (2^{2})^{1/3}\times 2\times 5[/tex] [tex]a^{b+c}= a^{b}\cdot a^{c}[/tex]/[tex](a\cdot b)^{c} = a^{c}\cdot b^{c}[/tex]
5) [tex]4 - 10\times 4^{1/3}[/tex] Multiplication/Definition of power
6) [tex]4^{1/3}\cdot (4^{2/3}-10)[/tex] Distributive property/[tex]a^{b+c}= a^{b}\cdot a^{c}[/tex]
7) [tex]\sqrt[3]{4}\times [(4^{2})^{1/3}-10][/tex] [tex](a^{b})^{c} = a^{b\cdot c}[/tex]/Definition of n-th root
8) [tex]\sqrt[3]{4}\times (\sqrt[3]{16}-10 )[/tex] Definition of power/Result
Given the graph, find an equation for the parabola.
Answer:
[tex]\Large \boxed{\sf \bf \ \ y=\dfrac{1}{16}(a-3)^2-2 \ \ }[/tex]
Step-by-step explanation:
Hello, please consider the following.
When the parabola equation is like
[tex]y=a(x-h)^2+k[/tex]
The vertex is the point (h,k) and the focus is the point (h, k+1/(4a))
As the vertex is (3,-2) we can say that h = 3 and k = -2.
We need to find a.
The focus is (3,2) so we can say.
[tex]2=-2+\dfrac{1}{4a}\\\\\text{*** We add 2. ***}\\\\\dfrac{1}{4a}=2+2=4\\\\\text{*** We multiply by 4a. ***}\\\\16a=1\\\\\text{*** We divide by 16. ***}\\\\a=\dfrac{1}{16}[/tex]
So an equation for the parabola is.
[tex]\large \boxed{\sf y=\dfrac{1}{16}(a-3)^2-2 }[/tex]
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
What expression is equal to6 e + 3 (e-1)
Answer:
9e -3
Step-by-step explanation:
Perform the indicated multiplication:
6 e + 3 (e-1) = 6e + 3e - 3
This, in turn, simplifies to
9e -3, or 3(3e - 1).
Answer:
ANSWER: 9e-3
Step-by-step explanation:
6e+3(e−1)
As we need to simplify the above expression:
First we open the brackets :
3(e-1)=3e-33(e−1)=3e−3
Now, add it to 6e.
So, it becomes,
$$\begin{lgathered}6e+3e-3\\\\=9e-3\end{lgathered}$$
Hence, equivalent expression would be 9e-3.
I will be honest I'm having a major brain fart.. What's the line called and what's it do again? it's separating numbers.. Looks like this
29
---
3
I know I'm stupid for this one... I've been up for 30 hours studying and now I can't remember this.. I need sleep but can't till i figure this out now...
Answer:
fraction bar. separates numerator and denominator in a fraction
Answer:
basically a dividing symbol, but specifically used for fractions
Step-by-step explanation:
PLEASE HELP!!
Solve for y
a) 8
b) 12
c) 3V7
d) 4V7
Answer:
C. [tex] y = 3\sqrt{7} [/tex]
Step-by-step explanation:
Based on the right triangle altitude theorem, the altitude, y, in the diagram above, equals the geometric mean of 9 and 7.
This implies => [tex] y = \sqrt{9*7} [/tex]
Thus, solve for y.
[tex] y = \sqrt{9} * \sqrt{7} [/tex]
[tex] y = 3\sqrt{7} [/tex]
The answer is C. [tex] y = 3\sqrt{7} [/tex]
I will rate you brainliest Select the best description of what the LCM of a set of polynomials is. a.It is the quotient of all the factors of the polynomials. b.It is the common numerator of a rational expression. c. It is the product of the prime factors that are either unique to or shared by the polynomials. d. It is all the polynomials in the set.
Answer:
C. It is the product of the prime factors that are either unique to or shared by the polynomials.
Step-by-step explanation:
LCM of polynomials is:
=> Finding the factors of all the numbers and variable in the expression
=> Next, we multiply the unique numbers and the variable of the expression to find the LCM.
So, C is the correct answer.
The LCM of a set of polynomials is the product of the prime factors that are either unique to or shared by the polynomials.
What is LCM of polynomial?To find the lowest common multiple (L.C.M.) of polynomials, we first find the factors of polynomials by the method of factorization and then adopt the same process of finding L.C.M.
Example : The L.C.M. of 4a2 - 25b2 and 6a2 + 15ab.
Factorizing 4a2 - 25b2 we get,
(2a)2 - (5b)2, by using the identity a2 - b2.
= (2a + 5b) (2a - 5b)
Also, factorizing 6a2 + 15ab by taking the common factor '3a', we get
= 3a(2a + 5b)
L.C.M. is 3a(2a + 5b) (2a - 5b)
According to the question
The LCM of a set of polynomials is
is the product of the prime factors that are either unique to or shared by the polynomials.
(from above example we can see that )
Hence, It is the product of the prime factors that are either unique to or shared by the polynomials.
To know more about LCM of polynomial here :
https://brainly.com/question/26227783
# SPJ2
In designing an experiment involving a treatment applied to 4 test subjects, researchers plan to use a simple random sample of 4 subjects selected from a pool of 31 available subjects. (Recall that with a simple random sample, all samples of the same size have the same chance of being selected.) Answer the question below.
What is the probability of each simple random sample in thiscase?
Answer:
The probability is [tex]p(n ) = 3.18*10^{-5}[/tex]
Step-by-step explanation:
From the question we are told that
The population size is N = 31
The sample size n = 4
Generally the number of way by which the n can be selected from N is mathematically represented as
[tex]\left N} \atop {}} \right. C_n = \frac{N! }{(N-n)!n!}[/tex]
=> [tex]\left 31} \atop {}} \right. C_4 = \frac{31! }{(31-4)!4!}[/tex]
=> [tex]\left 31} \atop {}} \right. C_4 = \frac{31 * 30 * 29 * 28* 27! }{27! * 4*3 * 2 * 1 }[/tex]
=> [tex]\left 31} \atop {}} \right. C_4 = \frac{ 755160 }{ 24}[/tex]
=> [tex]\left 31} \atop {}} \right. C_4 = 31465[/tex]
The number of ways of selecting a particular sample size is is [tex]k = 1[/tex]
Therefore the probability of each simple random sample in this case is mathematically evaluated as
[tex]p(n ) = \frac{1}{31465}[/tex]
[tex]p(n ) = 3.18*10^{-5}[/tex]
Show that the set of functions from the positive integers to the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} is uncountable. [Hint: First set up a one-to-one correspondence between the set of real numbers between 0 and 1 and a subset of these functions. Do this by associating to the real number 0.d1d2 . . . dn . . . the function f with f(n).
Answer:
since the set of functions expressed are uncountable and they are a subset of real numbers starting from N therefore the set {0,1,2,3,4,5,6,7,8,9} is uncountable as well as its off functions
Step-by-step explanation:
set = {0,1,2,3,4,5,6,7,8,9}
setting up a one-to-one correspondence between the set of real numbers between 0 and 1
The function : F(n)= {0,1} is equivalent to the subset (sf) of (n) , this condition is met if n belongs to the subset (sf) when f(n) = 1
hence The power set of (n) is uncountable and is equivalent to the set of real numbers given
since the set of functions expressed are uncountable and they are a subset of real numbers starting from N therefore the set {0,1,2,3,4,5,6,7,8,9} is uncountable as well as its offfunctions
What is the correct answer and how can this be solved?
Answer:
[tex]$\mathbf{\frac{1}{19} }[/tex]
Step-by-step explanation:
[tex]$$\bullet \Nth \ Term;\\$$$\frac{n+2}{2n^{2} +3n-2}[/tex]
[tex]$$\bullet U_{10} \ Term;\\\\$$\boxed{\frac{(10+2) }{2*10^{2} +3*10-2}= \frac{1}{19} }[/tex]
Answer:
[tex]\boxed{\displaystyle \frac{1}{19}}[/tex]
Step-by-step explanation:
[tex]\displaystyle \frac{n+2}{2n^2 +3n-2}[/tex]
Replace n with 10 to find the 10th term.
[tex]\displaystyle \frac{10+2}{2(10)^2 +3(10)-2}[/tex]
Evaluate.
[tex]\displaystyle \frac{12}{2(100) +30-2}[/tex]
[tex]\displaystyle \frac{12}{200 +30-2}[/tex]
[tex]\displaystyle \frac{12}{228}[/tex]
Simplify.
[tex]\displaystyle \frac{1}{19}[/tex]