Find the maximum rate of change of f at the given point and the direction in which it occurs. f(x, y) = 8 sin(xy), (0, 9)

Answers

Answer 1

Answer:

The maximum rate of change of f at (0, 9) is 72 and the direction of the vector is  [tex]\mathbf{\hat i}[/tex]

Step-by-step explanation:

Given that:

F(x,y) = 8 sin (xy) at (0,9)

The maximum rate of change f(x,y) occurs in the direction of gradient of f which can be estimated as follows;

[tex]\overline V f (x,y) = \begin {bmatrix} \dfrac{\partial }{\partial x } (x,y) \hat i \ + \ \dfrac{\partial }{\partial y } (x,y) \hat j \end {bmatrix}[/tex]

[tex]\overline V f (x,y) = \begin {bmatrix} \dfrac{\partial }{\partial x } (8 \ sin (xy) \hat i \ + \ \dfrac{\partial }{\partial y } (8 \ sin (xy) \hat j \end {bmatrix}[/tex]

[tex]\overline V f (x,y) = \begin {bmatrix} (8y \ cos (xy) \hat i \ + \ (8x \ cos (xy) \hat j \end {bmatrix}[/tex]

[tex]| \overline V f (0,9) |= \begin {vmatrix} 72 \hat i + 0 \end {vmatrix}[/tex]

[tex]\mathbf{| \overline V f (0,9) |= 72}[/tex]

We can conclude that the  maximum rate of change of f at (0, 9) is 72 and the direction of the vector is  [tex]\mathbf{\hat i}[/tex]


Related Questions

Will Give Brainliest Please Answer Quick

Answers

Answer:

Option (2)

Step-by-step explanation:

If a perpendicular is drawn from the center of a circle to a chord, perpendicular divides the chord in two equal segments.

By using this property,

Segment MN passing through the center Q will be perpendicular to chords HI ans GJ.

By applying Pythagoras theorem in right triangle KNJ,

(KJ)² = (KN)² + (NJ)²

(33)² = (6√10)² + (NJ)²

NJ = [tex]\sqrt{1089-360}[/tex]

NJ = [tex]\sqrt{729}[/tex]

    = 27 units

Since, GJ = 2(NJ)

GJ = 2 × 27

GJ = 54 units

Option (2) will be the answer.

-4-(-1) answer the question

Answers

Answer:

-3

Step-by-step explanation:

Since you are subtracting a negative, it turns positive so it will be.

-4+1

-3

Answer:

-3

Step-by-step explanation:

-4-(-1) = -4 + 1 = -3

If vectors i+j+2k, i+pj+5k and 5i+3j+4k are linearly dependent, the value of p is what?​

Answers

Answer:

[tex]p = 2[/tex] if given vectors must be linearly independent.

Step-by-step explanation:

A linear combination is linearly dependent if and only if there is at least one coefficient equal to zero. If [tex]\vec u = (1,1,2)[/tex], [tex]\vec v = (1,p,5)[/tex] and [tex]\vec w = (5,3,4)[/tex], the linear combination is:

[tex]\alpha_{1}\cdot (1,1,2)+\alpha_{2}\cdot (1,p,5)+\alpha_{3}\cdot (5,3,4) =(0,0,0)[/tex]

In other words, the following system of equations must be satisfied:

[tex]\alpha_{1}+\alpha_{2}+5\cdot \alpha_{3}=0[/tex] (Eq. 1)

[tex]\alpha_{1}+p\cdot \alpha_{2}+3\cdot \alpha_{3}=0[/tex] (Eq. 2)

[tex]2\cdot \alpha_{1}+5\cdot \alpha_{2}+4\cdot \alpha_{3}=0[/tex] (Eq. 3)

By Eq. 1:

[tex]\alpha_{1} = -\alpha_{2}-5\cdot \alpha_{3}[/tex]

Eq. 1 in Eqs. 2-3:

[tex]-\alpha_{2}-5\cdot \alpha_{3}+p\cdot \alpha_{2}+3\cdot \alpha_{3}=0[/tex]

[tex]-2\cdot \alpha_{2}-10\cdot \alpha_{3}+5\cdot \alpha_{2}+4\cdot \alpha_{3}=0[/tex]

[tex](p-1)\cdot \alpha_{2}-2\cdot \alpha_{3}=0[/tex] (Eq. 2b)

[tex]3\cdot \alpha_{2}-6\cdot \alpha_{3} = 0[/tex] (Eq. 3b)

By Eq. 3b:

[tex]\alpha_{3} = \frac{1}{2}\cdot \alpha_{2}[/tex]

Eq. 3b in Eq. 2b:

[tex](p-2)\cdot \alpha_{2} = 0[/tex]

If [tex]p = 2[/tex] if given vectors must be linearly independent.

Need Help
Please Show Work​

Answers

Answer:

18 - 8 * n = -6 * n

The number is 9

Step-by-step explanation:

Let n equal the number

Look for key words such as is which means equals

minus is subtract

18 - 8 * n = -6 * n

18 -8n = -6n

Add 8n to each side

18-8n +8n = -6n+8n

18 =2n

Divide each side by 2

18/2 = 2n/2

9 =n

The number is 9

━━━━━━━☆☆━━━━━━━

▹ Answer

n = 9

▹ Step-by-Step Explanation

18 - 8 * n = -6 * n

Simple numerical terms are written last:

-8n + 18 = -6n

Group all variable terms on one side and all constant terms on the other side:

(-8n + 18) + 8n = -6n + 8n

n = 9

Hope this helps!

CloutAnswers ❁

━━━━━━━☆☆━━━━━━━

A company finds that the rate at which the quantity of a product that consumers demand changes with respect to price is given by the​ marginal-demand function Upper D prime (x )equals negative StartFraction 5000 Over x squared EndFraction where x is the price per​ unit, in dollars. Find the demand function if it is known that 1006 units of the product are demanded by consumers when the price is ​$5 per unit.

Answers

Answer:

q =  5000/x  + 6

Step-by-step explanation:

D´= dq/dx  =  - 5000/x²

dq = -( 5000/x²)*dx

Integrating on both sides of the equation we get:

q = -5000*∫ 1/x²) *dx

q = 5000/x + K   in this equation x is the price per unit and q demanded quantity and K integration constant

If when  1006 units are demanded when the rice is 5 then

x = 5     and   q = 1006

1006  =  5000/5 +K

1006 - 1000 = K

K = 6

Then the demand function is:

q =  5000/x  + 6

how to write this in number form The difference of 9 and the square of a number

Answers

Answer:

9-x^2

Step-by-step explanation:

The difference of means subtracting. the first number is 9 and the second is x^2, so you get 9-x^2

PLEASE HELP!!! TIMED QUESTION!!! FIRST CORRECT ANSWER WILL BE BRAINLIEST!!!

The bar graph shows the number or each item sold at a bake sale. Which statement about the graph is true?​

Answers

The answer is 2. You can see from the graph that 10 cookies were sold. If you take 1% of 10 and add it to 10, you get 11, which is exactly how many cupcakes were sold
Number 1 is correct.
Let me know if you need the working out. Hope it helps :)

A cube has an edge of 2 feet. The edge is increasing at the rate of 5 feet per minute. Express the volume of the cube as a function of m, the number of minutes elapsed.

Answers

Answer:

[tex]V(m) = (2 + 5m)^3[/tex]

Step-by-step explanation:

Given

Solid Shape = Cube

Edge = 2 feet

Increment = 5 feet per minute

Required

Determine volume as a function of minute

From the question, we have that the edge of the cube increases in a minute by 5 feet

This implies that,the edge will increase by 5m feet in m minutes;

Hence,

[tex]New\ Edge = 2 + 5m[/tex]

Volume of a cube is calculated as thus;

[tex]Volume = Edge^3[/tex]

Substitute 2 + 5m for Edge

[tex]Volume = (2 + 5m)^3[/tex]

Represent Volume as a function of m

[tex]V(m) = (2 + 5m)^3[/tex]

In tests of a computer component, it is found that the mean time between failures is 520 hours. A modification is made which is supposed to increase the time between failures. Tests on a random sample of 10 modified components resulted in the following times (in hours) between failures. 518 548 561 523 536 499 538 557 528 563 At the 0.05 significance level, test the claim that for the modified components, the mean time between failures is greater than 520 hours. Use the P-value method of testing hypotheses.
H0:
H1:
Test Statistic:
Critical Value:
Do you reject H0?
Conclusion:
If you were told that the p-value for the test statistic for this hypothesis test is 0.014, would you reach the same decision that you made for the Rejection of H0 and the conclusion as above?

Answers

Answer:

As the calculated value of t is greater than critical value reject H0. The tests supports the claim at ∝= 0.05

If the p-value for the test statistic for this hypothesis test is 0.014, then the critical region is t ( with df=9) for a right tailed test is 2.821

then we would accept H0. The test would not support the claim at ∝= 0.01

Step-by-step explanation:

Mean x`= 518 +548 +561 +523 + 536 + 499+  538 + 557+ 528 +563 /10

x`= 537.1

The Variance is  = 20.70

H0 μ≤ 520

Ha μ > 520

Significance level is set at ∝= 0.05

The critical region is t ( with df=9) for a right tailed test is 1.8331

The test statistic under H0 is

t=x`- x/ s/ √n

Which has t distribution with n-1 degrees of freedom which is equal to 9

t=x`- x/ s/ √n

t = 537.1- 520 / 20.7 / √10

t= 17.1 / 20.7/ 3.16227

t= 17.1/ 6.5459

t= 2.6122

As the calculated value of t is greater than critical value reject H0. The tests supports the claim at ∝= 0.05

If the p-value for the test statistic for this hypothesis test is 0.014, then the critical region is t ( with df=9) for a right tailed test is 2.821

then we would accept H0. The test would not support the claim at ∝= 0.01

(x−1)(x−7)=0 PLEASE HELP

Answers

Answer:

1, 7

Step-by-step explanation:

Because the product is 0, either (x-1) or (x-7) is equal to 0. That means that x = 1, or 7

In 2018, the population of a district was 25,000. With a continuous annual growth rate of approximately 4%, what will the
population be in 2033 according to the exponential growth function?
Round the answer to the nearest whole number.

Answers

Answer:

40,000 populations

Step-by-step explanation:

Initial population in 2018 = 25,000

Annual growth rate (in %) = 4%

Yearly Increment in population = 4% of 25000

= 4/100 * 25000

= 250*4

= 1000

This means that the population increases by 1000 on yearly basis.

To determine what the  population will be in 2033, we need to first know the amount of years we have between 2018 and 2033.

Amount of years we have between 2018 and 2033 = 2033-2018

= 15 years

After 15 years, the population will have increased by 15*1000 i.e 15,000 more than the initial population.

Hence the population in 2033 will be Initial population + Increment after 15years = 25,000+15000 = 40,000 population.

A manufacturer claims that the calling range (in feet) of its 900-MHz cordless telephone is greater than that of its leading competitor. A sample of 19 phones from the manufacturer had a mean range of 1160 feet with a standard deviation of 32 feet. A sample of 11 similar phones from its competitor had a mean range of 1130 feet with a standard deviation of 30 feet.

Required:
Do the results support the manufacturer's claim?

Answers

Complete question is;

A manufacturer claims that the calling range (in feet) of its 900-MHz cordless telephone is greater than that of its leading competitor. A sample of 19 phones from the manufacturer had a mean range of 1160 feet with a standard deviation of 32 feet. A sample of 11 similar phones from its competitor had a mean range of 1130 feet with a standard deviation of 30 feet. Required:

Do the results support the manufacturer's claim?

Let μ1 be the true mean range of the manufacturer's cordless telephone and μ2 be the true mean range of the competitor's cordless telephone. Use a significance level of α = 0.01 for the test. Assume that the population variances are equal and that the two populations are normally distributed

Answer:

We will fail to reject the null hypothesis as there is no sufficient evidence to support the manufacturers claim.

Step-by-step explanation:

For the first sample, we have;

Mean; x'1 = 1160 ft

standard deviation; σ1 = 32 feet

Sample size; n1 = 19

For the second sample, we have;

Mean; x'2 = 1130 ft

Standard deviation; σ2 = 30 ft

Sample size; n2 = 11

The hypotheses are;

Null Hypothesis; H0; μ1 = μ2

Alternative hypothesis; Ha; μ1 > μ2

The test statistic formula for this is;

z = (x'1 - x'2)/√[(σ1)²/n1) + (σ2)²/n2)]

Plugging in the relevant values, we have;

z = (1160 - 1130)/√[(32)²/19) + (30)²/11)]

z = 2.58

From the z-table attached, we have a p-value = 0.99506

This p-value is more than the significance value of 0.01,thus,we will fail to reject the null hypothesis as there is no sufficient evidence to support the manufacturers claim.

For the following graph, state the polar coordinate with a positive r and positive q (in radians). Explain your steps as to how you determined the coordinate (in your own words). I'm looking for answers that involve π, not degrees for your angles. State the polar coordinate with (r, -q). Explain how you found the new angle. State the polar coordinate with (-r, q). Explain how you found the new angle. State the polar coordinate with (-r, -q). Explain how you found the new angle.

Answers

Answer:

Points : ( 8, - 2π/3 ), ( - 8, π/3 ), ( - 8, - 5π/3 )

Step-by-step explanation:

For the first two cases, ( r, θ ) r would be > 0, where r is the directed distance from the pole, and theta is the directed angle from the positive x - axis.

So when r is positive, we can tell that this point is 8 units from the pole, so r is going to be 8 in either case,

( 8, 240° ) - because r is positive, theta would have to be an angle with which it's terminal side passes through this point. As you can see that would be 2 / 3rd of 90 degrees more than a 180 degree angle,or 60 + 180 = 240 degrees.

( 8, - 120° ) - now theta will be the negative side of 360 - 240, or in other words - 120

Now let's consider the second two cases, where r is < 0. Of course the point will still be 8 units from the pole. Again for r < 0 the point will lay on the ray pointing in the opposite direction of the terminal side of theta.

( - 8, 60° ) - theta will now be 2 / 3rd of 90 degrees, or 60 degrees, for - r. Respectively the remaining degrees will be negative, 360 - 60 = 300, - 300. Thus our second point for - r will be ( - 8, - 300° )

_________________________________

So we have the points ( 8, 240° ), ( 8, - 120° ), ( - 8, 60° ), and ( - 8, - 300° ). However we only want 3 cases, so we have points ( 8, - 120° ), ( - 8, 60° ), and ( - 8, - 300° ). Let's convert the degrees into radians,

Points : ( 8, - 2π/3 ), ( - 8, π/3 ), ( - 8, - 5π/3 )


[tex]4x - 2x = [/tex]

Answers

Answer:

2x

Step-by-step explanation:

These are like terms so we can combine them

4x-2x

2x

Answer:

2x

Explanation:

Since both terms in this equation are common, we can simply subtract them.

4x - 2x = ?

4x - 2x = 2x

Therefore, the correct answer should be 2x.

Use the following cell phone airport data speeds​ (Mbps) from a particular network. Find the percentile corresponding to the data speed 4.9 Mbps.

0.2 0.8 2.3 6.4 12.3 0.2 0.8 2.3 6.9 12.7 0.2 0.8 2.6 7.5 12.9 0.3 0.9 2.8 7.9 13.8
0.6 1.5 0.1 0.7 2.2 6.1 12.1 0.6 1.9 5.5 11.9 27.5 0.6 1.7 3.3 8.3 13.8 1.3 3.5 9.8
14.6 10.1 14.7 11.8 14.8

Answers

Answer:

Thus percentile lies between 53.3% and 55.6 %

Step-by-step explanation:

First we arrange the data in ascending order . Then find the number of the values corresponding to the given value. Then equate it with the number of observations and x and then multiply it to get the percentile. n= P/100 *N

where n is the ordinal rank of the given value

N is the number of values in ascending order.

The data in ascending order is

0.1 0.2 0.2 0.2 0.3 0.6 0.6 0.6 0.7 0.8 0.8 0.8 0.9 1.3

1.5 1.7 1.9 2.2 2.3 2.3 2.6 2.8 3.3 3.5 5.5 6.1 6.4 6.9 7.5 7.9 8.3 9.8 10.1 11.8 11.9 12.1 12.3 12.7 12.9 13.8 13.8 14.6 14.7 14.8 27.5

Number of observation = 45

4.9 lies between 3.3 and 5.5

x*n = 24 observation x*n = 25 observation

x*45= 24 x*45= 25

x= 0.533 x= 0.556

Thus percentile lies between 53.3% and 55.6 %

Which equation will solve the following word problem? Jared has 13 cases of soda. He has 468 cans of soda. How many cans of soda are in each case? 13(468) = c 468c = 13 468/13 = c 13 = c/468

Answers

Answer:

c = 468 / 13

Step-by-step explanation:

If c is the number of cans of soda in each case, we know that the number of cans in 13 cases is 13 * c = 13c, and since the number of cans in 13 cases is 468 and we know that "is" denotes that we need to use the "=" sign, the equation is 13c = 468. To get rid of the 13, we need to divide both sides of the equation by 13 because division is the opposite of multiplication, therefore the answer is c = 468 / 13.

Answer:

468/13 = c

Step-by-step explanation: Further explanation :

[tex]13 \:cases = 468\:cans\\1 \:case\:\:\:\:= c\: cans\\Cross\:Multiply \\\\13x = 468\\\\\frac{13x}{13} = \frac{468}{13} \\\\c = 36\: cans[/tex]

For the regression equation, Ŷ = +20X + 200 what can be determined about the correlation between X and Y?

Answers

Answer:

There is a positive correlation between X and Y.

Step-by-step explanation:

The estimated regression equation is:

[tex]\hat Y=20X+200[/tex]

The general form of a regression equation is:

[tex]\hat Y=b_{yx}X+a[/tex]

Here, [tex]b_{yx}[/tex] is the slope of a line of Y on X.

The formula of slope is:

[tex]b_{yx}=r(X,Y)\cdot \frac{\sigma_{y}}{\sigma_{x}}[/tex]

Here r (X, Y) is the correlation coefficient between X and Y.

The correlation coefficient is directly related to the slope.

And since the standard deviations are always positive, the sign of the slope is dependent upon the sign of the correlation coefficient.

Here the slope is positive.

This implies that the correlation coefficient must have been a positive values.

Thus, it can be concluded that there is a positive correlation between X and Y.

Find the area of the surface generated by revolving x=t + sqrt 2, y= (t^2)/2 + sqrt 2t+1, -sqrt 2 <= t <= sqrt about the y axis

Answers

The area is given by the integral

[tex]\displaystyle A=2\pi\int_Cx(t)\,\mathrm ds[/tex]

where C is the curve and [tex]dS[/tex] is the line element,

[tex]\mathrm ds=\sqrt{\left(\dfrac{\mathrm dx}{\mathrm dt}\right)^2+\left(\dfrac{\mathrm dy}{\mathrm dt}\right)^2}\,\mathrm dt[/tex]

We have

[tex]x(t)=t+\sqrt 2\implies\dfrac{\mathrm dx}{\mathrm dt}=1[/tex]

[tex]y(t)=\dfrac{t^2}2+\sqrt 2\,t+1\implies\dfrac{\mathrm dy}{\mathrm dt}=t+\sqrt 2[/tex]

[tex]\implies\mathrm ds=\sqrt{1^2+(t+\sqrt2)^2}\,\mathrm dt=\sqrt{t^2+2\sqrt2\,t+3}\,\mathrm dt[/tex]

So the area is

[tex]\displaystyle A=2\pi\int_{-\sqrt2}^{\sqrt2}(t+\sqrt 2)\sqrt{t^2+2\sqrt 2\,t+3}\,\mathrm dt[/tex]

Substitute [tex]u=t^2+2\sqrt2\,t+3[/tex] and [tex]\mathrm du=(2t+2\sqrt 2)\,\mathrm dt[/tex]:

[tex]\displaystyle A=\pi\int_1^9\sqrt u\,\mathrm du=\frac{2\pi}3u^{3/2}\bigg|_1^9=\frac{52\pi}3[/tex]

Triangle ABC has vertices A(0, 6) , B(−8, −2) , and C(8, −2) . A dilation with a scale factor of 12 and center at the origin is applied to this triangle. What are the coordinates of B′ in the dilated image? Enter your answer by filling in the boxes. B′ has a coordinate pair of ( , )

Answers

Answer:

[tex]B' = (-96,-24)[/tex]

Step-by-step explanation:

Given

[tex]A(0,6)[/tex]

[tex]B(-8,-2)[/tex]

[tex]C(8,-2)[/tex]

Required

Determine the coordinates of B' if dilated by a scale factor of 12

The new coordinates of a dilated coordinates can be calculated using the following formula;

New Coordinates = Old Coordinates * Scale Factor

So;

[tex]B' = B * 12[/tex]

Substitute (-8,-2) for B

[tex]B' = (-8,-2) * 12[/tex]

Open Bracket

[tex]B' = (-8 * 12,-2 * 12)[/tex]

[tex]B' = (-96,-24)[/tex]

Hence the coordinates of B' is [tex]B' = (-96,-24)[/tex]

Answer:

Bit late but the answer is (-4,-1)

Step-by-step explanation:

Took the test in k12

Consider the distribution of exam scores graded 0 from 100, for 79 students. When 37 students got an A, 24 students got a B and 18 students got a C. How many peaks would you expect for distribution?

Answers

Answer:

Three

Step-by-step explanation:

Assuming the grade score from 70 to 100 is A; for grade score from 60 to 69 is B and grade score from 50 to 59 is C. Well it is certain there are three peaks in the distribution of scores

Find an equation for the surface consisting of all points P in the three-dimensional space such that the distance from P to the point (0, 1, 0) is equal to the distance from P to the plane y

Answers

Answer:

x^2 +4y +z = 1

Step-by-step explanation:

Surface consisting of all points P to point (0,1,0) been equal to the plane y =1

given point, p (x,y,z ) the distance from P to the plane (y)

| y -1 |

attached is the remaining part of the solution

Convert 6 feet to miles ( round five decimal places

Answers

Answer:

0.00114

Step-by-step explanation:

Divide length value by 5280

Let A represent going to the movies on Friday and let B represent going bowling on Friday night. The P(A) = 0.58 and the P(B) = 0.36. The P(A and B) = 94%. Lauren says that both events are independent because P(A) + P(B) = P(A and B) Shawn says that both events are not independent because P(A)P(B) ≠ P(A and B) Which statement is an accurate statement? Lauren is incorrect because the sum of the two events is not equal to the probability of both events occurring. Shawn is incorrect because the product of the two events is equal to the probability of both events occurring. Lauren is correct because two events are independent if the probability of both occurring is equal to the sum of the probabilities of the two events. Shawn is correct because two events are independent if the probability of both occurring is not equal to the product of the probabilities of the two events.

Answers

Answer:

Shawn is correct because two events are independent if the probability of both occurring is equal to the product of the probabilities of the two events.

Step-by-step explanation:

We are given that A represent going to the movies on Friday and let B represent going bowling on Friday night. The P(A) = 0.58 and the P(B) = 0.36. The P(A and B) = 94%.

Now, it is stated that the two events are independent only if the product of the probability of the happening of each event is equal to the probability of occurring of both events.

This means that the two events A and B are independent if;

P(A) [tex]\times[/tex] P(B) = P(A and B)

Here, P(A) = 0.58, P(B) = 0.36, and P(A and B) = 0.94

So, P(A) [tex]\times[/tex] P(B) [tex]\neq[/tex] P(A and B)

      0.58 [tex]\times[/tex] 0.36 [tex]\neq[/tex] 0.94

This shows that event a and event B are not independent.

So, the Shawn statement that both events are not independent because P(A)P(B) ≠ P(A and B) is correct.

Answer:

Shawn is correct

Step-by-step explanation:

Raul and his friends each way 1/20 of a ton are standing on a truck scale . The total weight shown by the scale is 3/4 of a ton . How can I find the total number of people on the scale when Raul and his friends are weighed?

Answers

Answer: There are 15 friends.

Step-by-step explanation:

We know that there is N friends (N is the number that we are looking for)

Each friend weights 1/20 ton.

Now, the weight of the N friends together is N times 1/20 ton.

Then we have:

N*(1/20) ton = 3/4 ton

We solve this for N.

First multiply both sides by 20.

20*N*(1/20) = N = 20*(3/4) = 60/4 = 15

Answer:

I can find the total number of people by dividing the total weight by the weight of one person.

Step-by-step explanation:

What is the name of a geometric figure that looks an orange


A. Cube

B. Sphere

C. Cylinder

D. Cone

Answers

Answer:

b . sphere

Step-by-step explanation:

What is the value of x to the nearest tenth?

Answers

Answer:

x=9.6

Step-by-step explanation:

The dot in the middle represents the center of the circle, so therefore, the line that is represented by 16 is the radius. Since that is the radius, the side that is the hypotenuse of the small triangle is also 16, since they have the same distance.

The line represented by 25.6 with x as its bisector shows that when we divide it by 2, the other side of the triangle besides the hypotenuse is 12.8.

Now that we have the two sides of the triangle, we can find the last side (represented by x). Use pythagorean theorem:

[tex]a^2 +b^2=c^2\\x^2+(12.8)^2=16^2\\x^2+163.84=256\\x^2=92.16\\x=9.6[/tex]

WILLL GIVE ALL MY POINT PLUS MARK BRAILIEST PLS HELP ASAP TY <3

Answers

Answer:

The unknown integer that solves the equation is 6.

Step-by-step explanation:

In order to find the missing number, we can set up an equation as if we are solving for x.

x + (-8) = -2

Add 8 on both sides of the equation.

x = 6

So, the unknown integer is 6.

Answer:

6

Step-by-step explanation:

6 plus -8 is -2

2⁶ × 2⁵ how do i simplify this?​

Answers

Answer:

2^11

Step-by-step explanation:

since the bases are the same, we can add the exponents

a^b * a^c = a^(b+c)

2^6 * 2^5

2^(6+5)

2^11

Suppose a 99% confidence interval for the mean salary of college graduates in a town in Mississippi is given by [$34,393, $47,207]. The population standard deviation used for the analysis is known to be $14,900.

Required:
a. What is the point estimate of the mean salary for all college graduates in this town?
b. Determine the sample size used for the analysis.

Answers

Answer: a. $40,800 b. 36

Step-by-step explanation:

Given : a 99% confidence interval for the mean salary of college graduates in a town in Mississippi is given by [$34,393, $47,207].

[tex]\sigma= \$14,900[/tex]

a. Since Point estimate of of the mean = Average of upper limit and lower limit of the interval.

Therefore , the point estimate of the mean salary for all college graduates in this town = [tex]\dfrac{34393+47207}{2}=\dfrac{81600}{2}[/tex]

= 40,800

hence, the point estimate of the mean salary for all college graduates in this town = $40,800

b.  Since  lower limit = Point estimate - margin of error, where Margin of error is the half of the difference between upper limit and lower limit.

Margin of error[tex]=\dfrac{47207-34393}{2}=6407[/tex]

Also, margin of error = [tex]z\times\dfrac{\sigma}{\sqrt{n}}[/tex], where z= critical z-value for confidence level and n is the sample size.

z-value for 99% confidence level  = 2.576

So,

[tex]6407=2.576\times\dfrac{14900}{\sqrt{n}}\\\\\Rightarrow\ \sqrt{n}=2.576\times\dfrac{14900}{6407}=5.99\\\\\Rightarrow\ n=(5.99)^2=35.8801\approx 36[/tex]

The sample size used for the analysis =36

What is the x-value of point A?

Answers

━━━━━━━☆☆━━━━━━━

▹ Answer

x = 5

▹ Step-by-Step Explanation

The x-axis and y-axis are labeled on the graph. The x-axis is the horizontal axis. Between 4 and 6, there is a missing number. That number should be 5, leaving us with an x-value of 5 for Point A.

Hope this helps!

CloutAnswers ❁

━━━━━━━☆☆━━━━━━━

Answer:

The x value is 5

Step-by-step explanation:

The x value is the value going across

Starting where the two axis meet, we go 5 units to the right

That is the x value

Other Questions
A certain pole has a cylinder-like shape, where the base's radius is 10 centimeters and the height is 2 meters. What calculation will give us the estimated surface area of the pole in square centimeters? What is true about a scale (Music) Answer two questions about Equations A and B: A.5x=20 \ B.x=4 1) How can we get Equation B from Equation A? Choose 1 answer: (Choice A) Multiply/divide both sides by the same non-zero constant (Choice B,) Multiply/divide both sides by the same variable expression (Choice C) Add/subtract the same quantity to/from both sides (Choice D) Add/subtract a quantity to/from only one side Bob cycles 5.4 km every morning.how many feet are in 5.4 km, given that 1 mile=1.609 km and 1 mile=5,280 feet? Which is a category for mental health disorders Why do roosters hibernate? In a widely publicized dispute, William O'Hara refused to sell his land in Willamette County to the local school board. O'Hara believed that the price the school board offered for the land was not sufficient. If the school board wanted to pursue the matter in court, what proceeding would it institute to attempt to force O'Hara to sell the land? g Which ONE of the following pairs of organic compounds are NOT pairs of isomers? A) butanol ( CH3-CH2-CH2-CH2-OH ) and diethyl ether ( CH3CH2OCH2CH3 ) B) isopentane ( (CH3)2-CH-CH2-CH3 ) and neopentane ( (CH3)4C ) C) ethanolamine ( H2N-CH2-CH2-OH ) and acetamide ( CH3-CO-NH2 ) D) acrylic acid ( CH2=CH-COOH ) and propanedial ( OHCCH2CHO ) E) trimethylamine ( (CH3)3N ) and propylamine ( CH3-CH2-CH2-NH2 ) how do each of the following factors affect the productivity in this process of photosynthesis ? 1)Temperature 2) Water 3) carbondioxide In the figure shown, what is the measure of angle x? (5 points) 115 degrees 130 degrees 145 degrees 150 degrees In order to study the mean blood pressure of people in his town, Richard samples the population by dividing the residents by age and randomly selecting a proportionate number of residents from each age group. Which type of sampling is used? a. Convenience sampling b. Cluster sampling c. Stratified sampling d. Systematic sampling Jess receives a $15000 salary for working as an engineer. If Jess has to spend $6000 of her salary on expenses each year, then what percent of Jess's money does she have to spend? Round your answer to the nearest whole number if necessary. A terrarium is a small, enclosed ecosystem. If you change certain aspects of the terrarium, the climate that exists inside it will also change. Examine the image of a terrarium. Then identify one attribute of the terrarium that you could change to alter the climate inside. How would this change mimic the climate changes that we see on Earth? How many grams of H2O will be formed when 32.0 g H2 is mixed with 73.0 g of O2 and allowed to react to form water 1) To point the lens of a camera up or down is called:A) ArcB)DollyC)PanD)tilt the unit of energy is a derived unit A customer who has routinely traded securities through your firm has placed an order to buy a security that is only listed on the Malaysian Stock Exchange. To effect the transaction, your firm must use a correspondent broker-dealer located in Malaysia that charges large special handling fees to cover Malaysian securities transfer taxes. Which statement is TRUE What is the tangent ratio of KJL? (Question and answers provided in picture.) Which term describes a category of attacks that generally are conducted over short periods of time (lasting at most a few months), involve a smaller number of individuals, have little financial backing, and are accomplished by insiders or outsiders who do not seek collusion with insiders? The temperature in Anchorage, Alaska at 6:00 am was 2C. If the temperature drops 2 degrees each hour, what is the temperature in degrees celsius at 2:00 pm