Without resorting to L'Hopitâl's rule,
[tex]\displaystyle\lim_{x\to9}\frac{x-9}{x^2-81}=\lim_{x\to9}\frac{x-9}{(x-9)(x+9)}=\lim_{x\to9}\frac1{x+9}=\frac1{18}[/tex]
With the rule, we get the same result:
[tex]\displaystyle\lim_{x\to9}\frac{x-9}{x^2-81}=\lim_{x\to9}\frac1{2x}=\frac1{18}[/tex]
coefficient of 8x+7y
Answer:
8
Step-by-step explanation:
Identify the exponents on the variables in each term, and add them together to find the degree of each term.
8x→1
7y→1
The largest exponent is the degree of the polynomial.
1
The leading term in a polynomial is the term with the highest degree.
8x
The leading coefficient of a polynomial is the coefficient of the leading term.
____________________________________________________________
The leading term in a polynomial is the term with the highest degree.
8x
The leading coefficient in a polynomial is the coefficient of the leading term.
8
List the results.
Polynomial Degree: 1
Leading Term: 8x
Leading Coefficient: 8
Hope This Helps!!!
a lottery offers one $1000 prize one $500 and two $50 prizes. one thousand tickets are sold at $2.50. what is the expectived profit
Answer:
$900
Step-by-step explanation:
To begin with let us estimate the total cash value of the prices
$1000 x 1= 1000
$500 x 1= 500
$50 x 2= 100
Total = $1600
Now let us calculate the total cost of tickets sold at $2.50 per tickets for 1000 tickets
2.5*1000= $2,500
Assuming worse case that the lottery had winners in all three categories and i.e the total prices given out is $1600
Then the expected profit is = $2,500-$1600= $900
Given the following hypotheses: H0: μ = 490 H1: μ ≠ 490 A random sample of 15 observations is selected from a normal population. The sample mean was 495 and the sample standard deviation 9. Using the 0.01 significance level:
a.) State the decision rule.
b.) Compute the value of the test statistic.
c.) What is your decision regarding the null hypothesis?
Answer:
We conclude that the population mean is equal to 490.
Step-by-step explanation:
We are given that a random sample of 15 observations is selected from a normal population. The sample mean was 495 and the sample standard deviation 9.
Let [tex]\mu[/tex] = population mean.
So, Null Hypothesis, [tex]H_0[/tex] : [tex]\mu[/tex] = 490 {means that the population mean is equal to 490}
Alternate Hypothesis, [tex]H_A[/tex] : [tex]\mu\neq[/tex] 490 {means that the population mean is different from 490}
The test statistics that will be used here is One-sample t-test statistics because we don't know about population standard deviation;
T.S. = [tex]\frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }[/tex] ~ [tex]t_1_4[/tex]
where, [tex]\bar X[/tex] = sample mean = 495
s = sample standard deviation = 9
n = sample of observations = 15
So, the test statistics = [tex]\frac{495-490}{\frac{9}{\sqrt{15} } }[/tex] ~ [tex]t_1_4[/tex]
= 2.152
The value of t-test statistics is 2.152.
Now, at a 0.01 level of significance, the t table gives a critical value of -2.977 and 2.977 at 14 degrees of freedom for the two-tailed test.
Since the value of our test statistics lies within the range of critical values of t, so we have insufficient evidence to reject our null hypothesis as the test statistics will not fall in the rejection region.
Therefore, we conclude that the population mean is equal to 490.
Which expression is equal to (1+6i)−(7+3i) ?
Answer:
- 6+3iStep-by-step explanation:
[tex](1+6i)-(7+3i) ?\\Group\:the\:real\:part\:and\:the\:imaginary\\\:part\:of\:the\:complex\:number\\\left(a+bi\right)\pm \left(c+di\right)=\left(a\:\pm \:c\right)+\left(b\:\pm \:d\right)i\\=\left(1-7\right)+\left(6-3\right)i\\1-7=-6\\6-3=3\\=-6+3i[/tex]
13,226 divided by 29
13226/29= 456.068965517
Which of the following correlation values represents a perfect linear relationship between two quantitative
variables? Select all that apply.
A. 0
B. 9
c. -1
D. 1
E. .5
Answer:
C. -1
D. 1
Step-by-step explanation:
A perfect linear relationship is indicated by a correlation with a magnitude of 1. The sign of the correlation coefficient is the sign of the slope of the line describing the relationship. It may be positive or negative.
The appropriate choices are ...
C. -1
D. 1
Answer:
c=-1
d=1
Step-by-step explanation:
algebra pyramid please answer !! be the first to be marked as a brainliest .
Answer:
The first pyramid:
63x
39x 24x
23x 16x 8x
The second pyramid:
162x
82x 80x
4x 78x 2x
The third pyramid:
12a+2b
9a+b 3a+b
9a b 3a
The fourth pyramid:
-19a
-5a -14a
3a -8a -6a
Step-by-step explanation:
All that an alegbra pyramid is is adding the two terms below it.
So you can see how I added the terms that lied below each number, such as in number 1: I added 23x and 16x to get me 39x, and I added 16x and 8x to get me 24.
Hope this helped!
Compute each matrix sum or product if it is defined. If an expression is undefined. Explain why. Let A = (3 4 0 -4 -1 4), B = (8 1 -4 -5 2 -4), C = (1 -1 3 1) and D = (3 -2 4 5).
- 2A, B - 2A, AC, CD
Compute the matrix product -2A.
A. -2A =
B. The expression-2A is undefined because A is not a square matrix.
C. The expression-2A is undefined because matrices cannot be multiplied by numbers.
D. The expression 2A is undefined because matrices cannot have negative coefficients.
Answer:
-2A = (-6, -8, 0, 8, 2, -8)
B - 2A = (2, -7, -4, 3, 4, -12)
AC is undefined.
CD = (3, 2, 12, 5)
Step-by-step explanation:
Given the matrices:
A = (3 4 0 -4 -1 4)
B = (8 1 -4 -5 2 -4)
C = (1 -1 3 1)
D = (3 -2 4 5)
We are required to compute the following
-2A, B - 2A, AC, CD
For -2A:
-2(3 4 0 -4 -1 4)
= (-6, -8, 0, 8, 2, -8)
For B - 2A:
Because B - 2A = B + (-2A), we have:
(8 1 -4 -5 2 -4) + (-6, -8, 0, 8, 2, -8)
(2, -7, -4, 3, 4, -12)
For AC:
(3 4 0 -4 -1 4)(1 -1 3 1)
This is undefined.
For CD:
(1 -1 3 1)(3 -2 4 5)
= (3, 2, 12, 5)
Translate and solve: 54 greater than x is greater than 216
Answer:
x >162
Step-by-step explanation:
x+54 > 216
Subtract 54 from each side
x+54-54 > 216 - 54
x >162
Answer:
[tex]\huge \boxed{{x>162}}[/tex]
Step-by-step explanation:
[tex]x+54 > 216[/tex]
[tex]\sf Subtract \ 54 \ from \ both \ parts.[/tex]
[tex]x+54 -54> 216-54[/tex]
[tex]x>162[/tex]
A parent increases a child’s monthly allowance by 20% each year. If the allowance is $8 per month now, in about how many years will it take to reach $20 per month? Use the equation 20 = 8(1.2)x to solve the problem. Round to the nearest year. 1 year 5 years 2 years 16 years
Answer:
6 years
Step-by-step explanation:
A parent increases a child’s monthly allowance by 20% each year. If the allowance is $8 per month now. This is an exponential function, An exponential function is given by:
[tex]y=ab^x[/tex]
Let x be the number of years and y be the allowance. The initial allowance is $8, this means at x = 0, y = 8
[tex]y=ab^x\\8=ab^0\\a=8[/tex]
Since it increases by 20% each year, i.e 100% + 20% = 1 + 0.2 = 1.2. This means that b = 1.2
Therefore:
[tex]y=ab^x\\y=8(1.2^x) \\[/tex]
To find the number of years will it take to reach $20 per month, we substitute y = 20 and find x
[tex]20=8(1.2)^x\\20/8=1.2^x\\1.2^x=2.5\\Taking \ natural\ log\ of \ both\ sides:\\ln(1.2^x)=ln2.5\\xln(1.2)=0.9163\\x=0.9163/ln(1.2)\\x=5.026[/tex]
x = 6 years to the nearest year
Answer:
5 years
Step-by-step explanation:444
What is the measure of FEG?
A. 30 degrees
B. 40 degrees
C. 50 degrees
D. 70 degrees
Please include ALL work!! <3
Answer:
C. 50 degrees
Step-by-step explanation:
Because 6x + 5x = 110° and x = 10
5×10 = FEG 50°
A group of fitness club members lose a combined total of 28 kilograms in 1 week. There are approximately 2.2 pounds in 1 kilogram. Assuming the weight loss happened at a constant rate, about how many pounds did the group lose each day?
Answer:
8.8 pounds
Step-by-step explanation:
Given the following :
Combined weight loss which occurred within a week = 28 kg
Number of days in a week = 7 days
1 kilogram (kg) = 2.2 pounds
Combined weight loss in pounds that occurs within a week:
Weight loss in kg × 2.2
28kg * 2.2 = 61.6 pounds
Assume weight loss occurred at a constant rate :
Weight lost by the group per day :
(Total weight loss / number of days in a week)
(61.6 pounds / 7)
= 8.8 pounds daily
Answer:
88
Step-by-step explanation:
Found the answer and I am doing the quiz rn lel
1. Determine whether the given procedure results in a binomial distribution. If not, state the reason why.
Rolling a single die 53 times, keeping track of the "fives" rolled.
A) Not binomial: there are too many trials.
B) Not binomial: there are more than two outcomes for each trial.
C) Not binomial: the trials are not independent.
D) Procedure results in a binomial distribution.
2. Determine whether the given procedure results in a binomial distribution. If not, state the reason why.
Spinning a roulette wheel 7 times, keeping track of the winning numbers.
A) Not binomial: there are more than two outcomes for each trial.
B) Procedure results in a binomial distribution.
C) Not binomial: there are too many trials.
D) Not binomial: the trials are not independent.
1. Not binomial: there are more than two outcomes for each trial.
Thus, option (B) is correct.
2. Procedure results in a binomial distribution.
Thus, option (B) is correct.
1. Not binomial: there are more than two outcomes for each trial.
In a binomial distribution, each trial can have only two outcomes (usually referred to as success and failure).
In this case, the procedure involves rolling a single die 53 times and keeping track of the "fives" rolled.
Since the outcome can be any number from 1 to 6 on each trial, it does not meet the criteria for a binomial distribution.
Thus, option (B) is correct.
2. Procedure results in a binomial distribution.
In this case, the procedure involves spinning a roulette wheel 7 times and keeping track of the winning numbers. The outcome of each trial is either a win or a loss, which satisfies the requirement for a binomial distribution.
Thus, option (B) is correct.
Learn more about Binomial Distribution here:
https://brainly.com/question/29163389
#SPJ6
What is the midline equation of the function h(x) = -4 cos(5x - 9) - 7?
Answer: Midline equation: y = -7
Step-by-step explanation: This function is a sinusoidal function of the form:
y = a.cos(b(x+c))+d
Midline is a horizontal line where the function oscillates above and below.
In the sinusoidal function d represents its vertical shift. Midline is not influenced by any other value except vertical shift. For that reason,
Midline, for the function: [tex]h(x) = -4cos(5x-9) - 7[/tex] is y=d, i.e., [tex]y=-7[/tex]
Answer:
y=-7
Step-by-step explanation:
WILL GIVE BRAINLEST PLEASE!!!!!!!! Jenny has some tiles in a bag. The tiles are of three different colors: purple, pink, and orange. Jenny randomly pulls a tile out of the bag, records the color, and replaces the tile in the bag. She does this 50 times. The results are recorded in the given table: Color of Tile Purple Pink Orange Number of times the tile is drawn 6 18 26 What is the experimental probability that Jenny will pull out a purple tile? fraction 6 over 50 fraction 44 over 50 fraction 6 over 44 fraction 18 over 44
Answer:
6/50
Step-by-step explanation:
There are 50 tiles
6 purple
18 pink
26 orange
P( purple) = purple/ total
= 6/50
Geometry pls help !!! Find the value of AB.
AB = [?]
Answer:
AB = 16 Units
Step-by-step explanation:
In the given figure, CD is the diameter and AB is the chord of the circle.
Since, diameter of the circle bisects the chord at right angle.
Therefore, AE = 1/2 AB
Or AB = 2AE...(1)
Let the center of the circle be given by O. Join OA.
OA = OD = 10 (Radii of same circle)
Triangle OAE is right triangle.
Now, by Pythagoras theorem:
[tex] OA^2 = AE^2 + OE^2 \\
10^2 = AE^2 + 6^2 \\
100= AE^2 + 36\\
100-36 = AE^2 \\
64= AE^2 \\
AE = \sqrt{64}\\
AE = 8 \\
\because AB = 2AE..[From \: equation\: (1)] \\
\therefore AB = 2\times 8\\
\huge \purple {\boxed {AB = 16 \: Units}} [/tex]
A paint machine dispenses dye into paint cans to create different shades of paint. The amount of dye dispensed into a can is known to have a normal distribution with a mean of 5 milliliters (ml) and a standard deviation of 0.4 ml. Answer the following questions based on this information. Find the dye amount that represents the 9th percentile of the distribution.
Answer:
4.464 ml
Step-by-step explanation:
Given that:
mean (μ) = 5 mm, standard deviation (σ) = 0.4 ml
The z score is a score in statistics used to determine by how many standard deviation the raw score is above or below the mean. If the z score is positive then the raw score is above the mean and if the z score is negative then the raw score is below the mean It is given by:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
From the normal distribution table, the 9th percentile (0.09) corresponds to a z score of -1.34
[tex]z=\frac{x-\mu}{\sigma}\\\\-1.34=\frac{x-5}{0.4}\\\\x-5=-0.536\\\\x=5-0.536\\\\x=4.464[/tex]
The dye amount that represents the 9th percentile of the distribution is 4.464 ml
PLEASE HELP ! (2/5) -50 POINTS -
Answer:
symmetric
Step-by-step explanation:
it kind of evenly falls to the left and right from the highest value in the middle
skewed would be different and would look like a straight line not a quadratic equation
Find the measure of A.
A. 50
B. 70
C. 100
D. 90
Answer:
D
Step-by-step explanation:
I don't know how to eliminate the wrong answers.
Two line segments which have one end at a diameter and the other end meeting at a common point, make a 90 degree angle.
A is made that way, so A is 90 degrees.
Answer:
Step-by-step explanation:
I believe it is 90
Find an exact value of sin(17pi/12)
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Hi my lil bunny!
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
[tex]\frac{(17)(3.141593)}{12}[/tex]
= [tex]\frac{53.407075}{12}[/tex]
= [tex]4.45059[/tex]
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
If this helped you, could you maybe give brainliest..?
Also Have a great day/night!
❀*May*❀
I have an answer and explanation but I can't type so search up the question you asked and you should get an answer and explanation from s0cratic.
Find the indicated complement. A certain group of women has a 0.12% rate of red/green color blindness. If a woman is randomly selected, what is the probability that she does not have red/green color blindness?
Answer:
the probability will be 0.
Step-by-step explanation:
0.12%= 0.0012= 3/2500.
Please answer quick!!! Find the range of the data set represented by this box plot.
80
76
40
56
Answer:
highest value (H)= 80
lowest value (L)= 40
range (R)=?
now using formula,
Range (R)=H-L
=80-40
=40
therefore range (R)=40
A new fast-food firm predicts that the number of franchises for its products will grow at the rate dn dt = 6 t + 1 where t is the number of years, 0 ≤ t ≤ 15.
Answer:
The answer is "253"
Step-by-step explanation:
In the given- equation there is mistype error so, the correct equation and its solution can be defined as follows:
Given:
[tex]\bold{\frac{dn}{dt} = 6\sqrt{t+1}}\\[/tex]
[tex]\to dn= 6\sqrt{t+1} \ \ dt.....(a)\\\\[/tex]
integrate the above value:
[tex]\to \int dn= \int 6\sqrt{t+1} \ \ dt \\\\\to n= \frac{(6\sqrt{t+1} )^{\frac{3}{2}}}{\frac{3}{2}}+c\\\\\to n= \frac{(12\sqrt{t+1} )^{\frac{3}{2}}}{3}+c\\\\[/tex]
When the value of n=1 then t=0
[tex]\to 1= \frac{12(0+1)^{\frac{3}{2}}}{3}+c\\\\ \to 1= \frac{12(1)^{\frac{3}{2}}}{3}+c\\\\\to 1-\frac{12}{3}=c\\\\\to \frac{3-12}{3}=c\\\\\to \frac{-9}{3}=c\\\\\to c=-3\\[/tex]
so the value of n is:
[tex]\to n= \frac{(12\sqrt{t+1} )^{\frac{3}{2}}}{3}-3\\\\[/tex]
when we put the value t= 15 then,
[tex]\to n= \frac{(12\sqrt{15+1} )^{\frac{3}{2}}}{3}-3\\\\\to n= \frac{(12\sqrt{16} )^{\frac{3}{2}}}{3}-3\\\\\to n= \frac{(12\times 64)}{3}-3\\\\\to n= (4\times 64)-3\\\\\to n= 256-3\\\\\to n= 253[/tex]
normal population has a mean of 63 and a standard deviation of 13. You select a random sample of 25. Compute the probability that the sample mean is: (Round your z values to 2 decimal places and final answers to 4 decimal places): Greater than 65.
Answer:
0.2207
Step-by-step explanation:
Here, we want to find the probability that the sample mean is greater than 25.
What we use here is the z-scores statistic
Mathematically;
z-score = (x-mean)/SD/√n
From the question;
x = 65, mean = 63, SD = 13 and n = 25
Plugging these values in the z-score equation, we have
Z-score = (65-63)/13/√25 = 2/13/5 = 0.77
So the probability we want to calculate is ;
P(z > 0.77)
This can be obtained from the standard normal distribution table
Thus;
P(z > 0.77) = 0.22065 which is 0.2207 to 4 d.p
find the area of this figure to the nearest hundredth. Use 3.14 to approximate pi.
Answer:
86.28 ft²
Step-by-step explanation:
The figure given consists of a rectangle and a semicircle.
The area of the figure = area of rectangle + area of semicircle
Area of rectangle = [tex] l*w [/tex]
Where,
l = 10 ft
w = 8 ft
[tex] area = l*w = 10*8 = 80 ft^2 [/tex]
Area of semicircle:
Area of semicircle = ½ of area of a circle = ½(πr²)
Where,
π = 3.14
r = ½ of 8 = 4 ft
Area of semi-circle = ½(3.14*4) = 6.28 ft²
Area of the figure = area of rectangle + area of semi-circle = 80 + 6.28 = 86.28 ft² (nearest hundredth)
Answer:
the area of the figrue is 105.12
Step-by-step explanation:
area of rectangle A= l · w10 x 8= 80area of simi-circle= 1/2(3.14 x r²)1/2 x 3.14 x 4²=25.1280+25.12=105.12 (nearest Hundredth)One of two small restaurants is chosen at random with equally likely probability, and then an employee is chosen at random from the chosen restaurant. Restaurant #1 has 10 full-timers and 6 part-timers. Restaurant #2 has 7 full-timers and 9 part-timers. What is the probability that Restaurant #1 was chosen at random, given that a full-time employee was chosen? Your answers should be rounded to 4 digits after the decimal.
Answer:
P(1 |F) = 10/17
Step-by-step explanation:
Let events
1 = restaurant 1
2 = restaurant 2
F = full-time worker chosen
P = part-time worken chosen
P(1 and F) = 1/2 * 10/16 = 5/16
P(2 and F) = 1/2 * 7/16 = 7/32
P( (1 or 2) and F ) = P(F) = 5/16+7/32 = 17/32
P(1 | F) Probability of choosing restaurant 1 given a full-time was chosen
= P(1 and F) / P(F)
= 5/16 / (17/32)
= 5/16 * 32/17
= 10 / 17
Find the missing term in the
geometric sequence.
13,[ ? ],208
Answer:
110.5
Step-by-step explanation:
208=13+(3-1)d
208=13+2d
-13. -13
195=2d
÷2. ÷2
97.5=d. (d means difference)
13(first term)+97.5=110.5
Answer: 676
Step-by-step explanation: r/13=208/r
r²=2704
r=52
13x52=676
x = 4: 3x3 - 2x2 +10
Answer:
170
Step-by-step explanation:
3(4)³ - 2(4)² + 10
192 - 32 + 10 = 170
What are the slope and y-intercept of the equation 2x - 5y = -10?
Answer:
Step-by-step explanation:
y=2/5x+2
x= 5/2y-5
hopefully this works
the coefficient of 6x
Answer:
The coefficient is 6
Step-by-step explanation:
The coefficient is the number in front of the variable
The variable is x
The coefficient is 6
Answer:
6
Step-by-step explanation: The coefficient of this would be the real number that is in front of a variable that is not a variable like x, and that number is 6. So, the coefficient of 6x is 6.