Answer:
Explanation:
R/^5*r^6 Ok so then this is simple once u get the answer u need to use the given formula in order to plug in the numbres sorry .
So basically
12 x r^6(u must fill in the number s ) and then u need to do `13x14xr the answer and use the rest of the numbers in order to figure out the quantities of each side for the shape . Then ur answer would be the r^x + x = ???
So yeah hope this helped
I think
Kind of
K Thanks Bye
A beam consisting of five types of ions labeled A, B, C, D, and E enters a region that contains a uniform magnetic field as shown in the figure below. The field is perpendicular to the plane of the paper, but its precise direction is not given. All ions in the beam travel with the same speed. The table below gives the masses and charges of the ions. Note: 1 mass unit = 1.67 x 10â€"27 kg and e = 1.6 x 10â€"19 C
Which ion falls at position 2?
At position 2, ion B falls. It is less deflected because it has a lesser mass than ions C, D, and E and the same charge as ion A.
A force perpendicular to the charged particle's velocity and the magnetic field's direction is applied when it reaches the magnetic field. The right-hand rule asserts that the palm will face the direction of the force if the thumb of the right hand points in the direction of the particle's velocity and the fingers point in the direction of the magnetic field. The particle's charge, velocity, and magnetic field intensity all affect how much force is generated.
Since all ions are moving at the same speed in this scenario, the force exerted on each ion is proportional to its charge to mass ratio. Ion B has the smallest mass of all the ions, so the least force and is least deflected of the ions, falling at position 2.
learn more about mass here:
https://brainly.com/question/19694949
#SPJ4
an electron is moving parallel to an electric field (from higher to lower voltage). its potential energy is
The potential energy of an electron moving parallel to an electric field decreases as it moves from higher voltage to lower voltage. The work done by the electric field on the electron is equal to the decrease in potential energy. The potential energy of the electron is proportional to its charge and the voltage difference between the two points.
When an electron moves parallel to an electric field, its potential energy is conserved. The potential energy of an electron is proportional to its charge and the voltage through which it moves. As the electron moves from higher voltage to a lower voltage, its potential energy decreases. The work done by the electric field on the electron is equal to the decrease in potential energy. When the electron is at rest, it has a certain potential energy due to its position in the electric field. If the electron is allowed to move freely, it will accelerate towards the lower voltage region, gaining kinetic energy. As it moves, the electric field continues to do work on the electron, converting its potential energy into kinetic energy. If the electric field is uniform, the potential energy of the electron will be given by the equation U = -qV, where q is the charge of the electron and V is the voltage difference between the two points. The negative sign indicates that the potential energy decreases as the voltage difference decreases.
To learn more about Potential energy :
https://brainly.com/question/21175118
#SPJ11
3. Large amplitude vibrations produced when the of receiver of the applied forced vibration matches the
An object's amplitude dramatically increases when the frequency of the applied forced vibrations matches the object's natural frequency. Resonance describes this behavior.
Theory A wave's amplitude directly relates to the quantity of energy it can carry. A wave with a high amplitude carries a lot of energy, whereas one with a low amplitude carries only a little. A wave's strength is determined by the typical energy that moves through a given area in a certain amount of time and in a particular direction.The sound wave's amplitude grows in proportion to its strength. We perceive louder noises to be of higher intensity. Comparative sound intensities are frequently expressed using decibels (dB)For more information on amplitude of vibration kindly visit to
https://brainly.com/question/1380029
#SPJ1
imagine that the blue light and orange light from the source were blocked. what color would how be present in the spectrum of light observed
Everything but blue & orange would now be present in the spectrum of light observed.
Spectrum refers to a range of different wavelengths of electromagnetic radiation. Electromagnetic radiation is a form of energy that travels through space and includes different types such as radio waves, microwaves, infrared radiation, visible light, ultraviolet radiation, X-rays, and gamma rays. Each type of electromagnetic radiation has a different wavelength and frequency, and together they make up the electromagnetic spectrum.
The concept of spectrum is used in a variety of fields, including physics, astronomy, and telecommunications. The spectrum of electromagnetic radiation is essential for many technologies, such as radios and televisions, cell phones, and medical imaging devices, as they all rely on the transmission and reception of specific wavelengths of electromagnetic radiation.
To learn more about Spectrum visit here:
brainly.com/question/11837978
#SPJ4
Complete Question: -
Imagine that the blue light and orange light from the source were blocked. What color(s) would now be present in the spectrum of light observed?
Estimat the number and wattage of lamps. which would be required to illuminate a workshop space 60x1.5 meteres by means of lamps mounted 5 metres above the working Plane The average illumination required is about 100 wt. coefficient of utilisation = 0.4 luminous efficiency 16 lumens per watt. Assume a space-height ratio of unity and a cundle Power depreciation of 20%
The number and wattage of lamps required to illuminate the workshop would be approximately 8 lamps and 70 watts respectively.
Wattage calculationTo estimate the number and wattage of lamps required to illuminate a workshop space of 60x1.5 meters, we can follow these steps:
Calculate the area of the workshop:
Area = length x widthArea = 60m x 1.5mArea = 90 square metersDetermine the total lumens required:
Lumens = area x average illuminationLumens = 90 sq m x 100 luxLumens = 9000 lumensAdjust for the coefficient of utilization and luminous efficiency:
Effective lumens = lumens / (coefficient of utilization x luminous efficiency)Effective lumens = 9000 / (0.4 x 16)Effective lumens = 1406.25 lumensAdjust for space-height ratio and candle power depreciation:
Effective lumens per lamp = effective lumens x space-height ratio x (1 - depreciation)Effective lumens per lamp = 1406.25 x 1 x (1 - 0.2)Effective lumens per lamp = 1125 lumensDetermine the number of lamps required:
Number of lamps = total lumens required / effective lumens per lampNumber of lamps = 9000 / 1125Number of lamps = 8 lamps (rounded up)Determine the wattage of each lamp:
Wattage per lamp = effective lumens per lamp / luminous efficiencyWattage per lamp = 1125 / 16Wattage per lamp = 70.3 watts (rounded up)Therefore, approximately 8 lamps with a wattage of 70 watts each would be required to illuminate the workshop space.
More on wattage can be found here: https://brainly.com/question/14667843
#SPJ1
A metal wire, fixed at one end, has length l and cross-sectional area A. The wire extends a distance e which mass m is hung from the other end of the wire.What is an expression for the Young Modulus E of the metal?
The expression for the Young Modulus E of the metal is E = mgl / Ae. The Young Modulus E of the metal is calculated using the equation E = (F l) / (A e2 m), where F is the force applied to the wire.
To find the expression for the Young modulus E of a metal wire with length l, cross-sectional area A, and mass m hung from the other end of the wire, we need to use the following formula:Stress (σ) = Load (F) / Area (A)Strain (ε) = Extension (Δl) / Original length (l)Young Modulus (E) = Stress (σ) / Strain (ε)We know that the metal wire is fixed at one end and the wire extends a distance e when a mass m is hung from the other end of the wire. Therefore, the extension Δl is equal to e.
Let's assume that g is the acceleration due to gravity. Therefore, the load F is equal to m * g.Substituting the values of F, A, and Δl in the above formula, we get:Stress (σ) = F / A = (m * g) / AStrain (ε) = Δl / l = e / lYoung Modulus (E) = Stress (σ) / Strain (ε)= (m * g) / (A * e / l) = mgl / AeTherefore, an expression for the Young Modulus E of the metal is E = mgl / Ae.
For more such questions on metal
https://brainly.com/question/10537765
#SPJ11
125cm³ of a gas was collected at 15 °C and 755 mm of mercury pressure. Calculate the volume of the gas that will be collected at standard temperature and pressure
Answer:
119,2 см³
Explanation:
по формуле Клопейрона (P1×V1):T1=(P2×V2):T2
если из этой формулы найти V2, ответ будет равен примерно на 119,2 см³