Answer: $30
Step-by-step explanation:
Answer:
$30
Step-by-step explanation:
10% of 600 = 60
5% of 600 = 30
Graph the first six terms of a sequence where a_1=4 and r=2
Step-by-step explanation: The standard formula for geometric sequence is an = a1 * r^(n-1) where r is the geometric factor and n is an integer. In this problem, upon substitution, an = 4*2^(n-1).
Calculate the next 3 terms and write the formula for the nth term for the following sequences. 24,11,-2
Answer:
next 3 terms are -15, -28, -41. The formula would be n= (n-1)-13 to get the nth term
Step-by-step explanation:
In a survey of adults aged 57 through 85 years, it was found that 86.6% of them used at least one prescription medication. Complete parts (a) through (c) below.
a. How many of the 3149 subjects used at least one prescription medication?
(Round to the nearest integer as needed.)
b. Construct a 90% confidence interval estimate of the percentage of adults aged 57 through 85 years who use at least one prescription medication.
(Round to one decimal place as needed.)
Answer:
a) 272 used at least one prescription medication.
b) The 90% confidence interval estimate of the percentage of adults aged 57 through 85 years who use at least one prescription medication is (85.6%, 87.6%).
Step-by-step explanation:
Question a:
86.6% out of 3149, so:
0.866*3149 = 2727.
272 used at least one prescription medication.
Question b:
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the z-score that has a p-value of [tex]1 - \frac{\alpha}{2}[/tex].
For this problem, we have that:
[tex]n = 3149, \pi = 0.866[/tex]
90% confidence level
So [tex]\alpha = 0.1[/tex], z is the value of Z that has a p-value of [tex]1 - \frac{0.1}{2} = 0.95[/tex], so [tex]Z = 1.645[/tex].
The lower limit of this interval is:
[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.866 - 1.645\sqrt{\frac{0.866*0.134}{3149}} = 0.856[/tex]
The upper limit of this interval is:
[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.866 + 1.645\sqrt{\frac{0.866*0.134}{3149}} = 0.876[/tex]
For the percentage:
0.856*100% = 85.6%
0.876*100% = 87.6%.
The 90% confidence interval estimate of the percentage of adults aged 57 through 85 years who use at least one prescription medication is (85.6%, 87.6%).
The number of subjects in the study who used at least one prescription medication is 2727 approx. The needed 90% confidence interval is: [0.8560, 0.8758] or in percentage as: 85.6% to 87.58%
How to construct confidence interval for population proportion based on the sample proportion?Suppose that we have:
n = sample size[tex]\hat{p}[/tex] = sample proportion[tex]\alpha[/tex] = level of significance = 1 - confidence interval = 100 - confidence interval in percentageThen, we get:
[tex]CI = \hat{p} \pm Z_{\alpha/2}\sqrt{\dfrac{\hat{p}(1-\hat{p})}{n}}[/tex]
where [tex]Z_{\alpha/2}[/tex] is the critical value of Z at specified level of significance and is obtainable from its critical value table(available online or in some books)
For this case, we have:
n = 3149confidence interval is of 90%[tex]\alpha[/tex] = level of significance = 100 - 90% = 10% = 0..10[tex]\hat{p}[/tex] = sample proportion = ratio of 86.6% of n to n (at the least)Part (a):
The number of subjects used at least one prescription medication is:
[tex]\dfrac{3149}{100} \times 86.6 \approx 2727[/tex]
Thus, the sample proportion we get is:
[tex]\hat{p} = \dfrac{2727}{3149} \approx 0.8659[/tex]
For level of significance 0.10, we get: [tex]Z_{\alpha/2} = 1.645[/tex]
Thus, the confidence interval needed is:
[tex]CI = \hat{p} \pm Z_{\alpha/2}\sqrt{\dfrac{\hat{p}(1-\hat{p})}{n}}\\CI \approx 0.8659\pm 1.645 \times \sqrt{\dfrac{0.8659(1-0.8659)}{3149}}\\\\\\CI \approx 0.8659 \pm 0.0099[/tex]
Thus, CI is [0.8659 - 0.0099, 0.8659 + 0.0099] = [0.8560, 0.8758]
Thus, the number of subjects in the study who used at least one prescription medication is 2727 approx. The needed 90% confidence interval is: [0.8560, 0.8758] or in percentage as: 85.6% to 87.58%
Learn more about population proportion here:
https://brainly.com/question/7204089
a mountain railway AB is of length 864m and rises at an angle of 120° to the horizontal.
A train is 856m above sea level when it is at A.
calculate the height above sea level of the train when it reaches B.
Answer:
The height above sea level at B is approximately 1,604.25 m
Step-by-step explanation:
The given length of the mountain railway, AB = 864 m
The angle at which the railway rises to the horizontal, θ = 120°
The elevation of the train above sea level at A, h₁ = 856 m
The height above sea level of the train when it reaches B, h₂, is found as follows;
Change in height across the railway, Δh = AB × sin(θ)
∴ Δh = 864 m × sin(120°) ≈ 748.25 m
Δh = h₂ - h₁
h₂ = Δh + h₁
∴ h₂ ≈ 856 m + 748.25 m = 1,604.25 m
The height above sea level of the train when it reaches B ≈ 1,604.25 m
Please I need help who want to earn 13 points ..
Answer:
Triangle ISK
Step-by-step explanation:
Answer:
Triangle ISK
Step-by-step explanation:
if the angles and sides of one triangle are equal to the corresponding sides and angles of the other triangle, they are congruent.
∠Q = ∠I
∠R = ∠S
∠S = ∠K
A line of best fit must pass through all data points of a graph.
True or False?
Friends, i need help with this question.
Answer:
Step-by-step explanation:
The answer is 4.
Once you add 4, you get:
x^2 -2x + 4 = 7.
The left side is factorable:
(x-2)^2 = 7.
There is your perfect square.
What the additional information fill in the blanks
Answer:
QXV=WXV
Step-by-step explanation:
Can someone help me I need it.
Answer:
C is the answer 3rd one...
which of the following is the x-coordinate of the solution to the system shown below
2x + y = 17
x - y = 4
———————————————
(1) x = 5
(2) x = 2
(3) x = 7
(4) x = 12
thank you in advance to ANYONE who answers this question:)))
Answer:
Step-by-step explanation:
HELPPP MEEEE OUTTTTTT ITS URGENTTTTT!!!!
Answer:
(x-12)^2+(y-2)^2=4
Step-by-step explanation:
Find the size of the angles marked by letters in the following diagram.
a=132°
b=20°
Answer:
Solution given:
a=132°[exterior angle of a cyclic quadrilateral is equal to the opposite interior angle]
again
In ∆ BCO is similar to ∆ BOE
so
b=20°[corresponding angle of similar triangle are equal]
Find the circumference and area of a circle with a diameter of 12 cm. (Use the approximation of 3.14 for )
Kristi finds a shirt for $27.99 at the store.
The sign says that it is 25% off the
original price. Kristi must also pay the 8.5%
sales tax. What is the cost of the shirt
after the sales tax?
Answer:
Kristi will pay $22.77 for the shirt.
Step-by-step explanation:
First, determine the sales price of the shirt. If the full price is $27.99, a 25% reduction is $7. Subtract the discount from the full price to get a sales price of $20.99 for the shirt.
Next, determine the amount of tax Kristi will pay for the shirt. In her state, the sales tax is 8.5% (0.085). Multiply $20.99 by 0.085 and you will see that the sales tax is $1.78. Add the amount of the tax, $1.78, to the sales price of the shirt, $20.99, and you will get $22.77 as the cost of the shirt after the sales tax is added.
Decrease £180 by 12.5%
Answer:
£ 157.5
Step-by-step explanation:
12.5 × 180 = 22.5
100
180 - 22.5 = 157.5
I hope this helps.
Find the missing length of the following trapezoid
Answer:
1) The length of [tex]DC[/tex] is 20.
2) The length of [tex]PS[/tex] is 17.
Step-by-step explanation:
1) If [tex]DR = RE[/tex] and [tex]CS = SB[/tex], then we can use the following proportionality ratio:
[tex]\frac{DE}{DR} = \frac{32 - x}{26 - x}[/tex] (1)
Where [tex]x[/tex] is the length of segment [tex]\overline{CD}[/tex].
If [tex]DE = 2\cdot DR[/tex], then the value of [tex]x[/tex] is:
[tex]2 = \frac{32-x}{26-x}[/tex]
[tex]52 - 2\cdot x = 32 - x[/tex]
[tex]20 = x[/tex]
The length of [tex]DC[/tex] is 20.
2) If [tex]QV = VP[/tex] and [tex]RW = WS[/tex], then we can use the following proportionality ratio:
[tex]\frac{QP}{QV} = \frac{x-7}{12-7}[/tex] (2)
Where [tex]x[/tex] is the length of segment [tex]\overline{PS}[/tex].
If [tex]QP = 2\cdot QV[/tex], then the value of [tex]x[/tex] is:
[tex]2 = \frac{x-7}{5}[/tex]
[tex]10 = x-7[/tex]
[tex]x = 17[/tex]
The length of [tex]PS[/tex] is 17.
if -2 is a zero the polynomial 3x^2+2x+k, find the value of k
Answer:
value of K =16
I hope it's helps you
What’s the answers ?
hope this helps! feel free to clarify if unsure
What is the measure of ∠
A. 60°
B. 6°
C. 42°
D. 49°
can someone please solve 3x^2+4x-7<13
Answer:
-10/3 < x < 2
so the answer is x<-10/3 or x>2
Step-by-step explanation:
:)
Evaluate this expression when a=9
Answer:
63
Step-by-step explanation:
a=9
7a
7(9)
63
What is tanA?
Triangle A B C. Angle C is 90 degrees. Hypotenuse A B is 17, adjacent A C is 8, opposite B C is 15.
a.
StartFraction 15 Over 17 EndFraction
c.
StartFraction 8 Over 15 EndFraction
b.
StartFraction 8 Over 17 EndFraction
d.
StartFraction 15 Over 8 EndFraction
Answer:
D. [tex] \frac{15}{8} [/tex]
Step-by-step explanation:
Recall: SOH CAH TOA
Thus,
Tan A = Opposite/Adjacent
Reference angle (θ) = A
Length of side Opposite to <A = 15
Length of Adjacent side = 8
Plug in the known values
[tex] Tan(A) = \frac{15}{8} [/tex]
i need help and nobody's helping me :(
Log5 =0,699 find log 0,5
Answer:
-0.301
Step-by-step explanation:
Correct Question :-
If log 2 = 0.301 , find log 0.5
Solution :-
We are here given that the value of log 5 is 0.699 . Here the base of log is 10 .
[tex]\rm\implies log_{10}2= 0.301 [/tex]
And we are supposed to find out the value of log 0.5 . We can write it as ,
[tex]\rm\implies log_{10}(0.5) = log _{10}\bigg( \dfrac{5}{10}\bigg)[/tex]
Simplify ,
[tex]\rm\implies log _{10}\bigg( \dfrac{1}{2}\bigg)[/tex]
This can be written as ,
[tex]\rm\implies log_{10} ( 2^{-1})[/tex]
Use property of log ,
[tex]\rm\implies -1 \times log_{10}2 [/tex]
Put the value of log 2 ,
[tex]\rm\implies -1 \times 0.301 =\boxed{\blue{-0.301}} [/tex]
Hence the value of log (0.5) is -0.301 .
*Note -
Here here there was no use of log 5 in the calculation .
i am thinking of a number.l take away 5. the result is 14 . what number did i think
Step-by-step explanation:
First sentence
Let the number be X
second sentence
X-5
Third sentence
X-5=14
X=19
The number is 19
Hi there!
»»————- ★ ————-««
I believe your answer is:
19
»»————- ★ ————-««
Here’s why:
⸻⸻⸻⸻
[tex]\text{"I am thinking of a number. l take away 5. The result is 14."}\\\\\text{5 taken away from 'said number' would be 14.}\\\\\boxed{n-5=14}\\\\\\\boxed{\text{Solving for 'n'...}} \\\\\rightarrow n - 5 + 5 = 14 + 5\\\\\rightarrow \boxed{n = 19}[/tex]
⸻⸻⸻⸻
»»————- ★ ————-««
Hope this helps you. I apologize if it’s incorrect.
There are 5 more girls than boys in a class. The girls are 60 percent
a. How many pupils are in the class?
Answer:
25.
Step-by-step explanation:
Let the number of pupils be x, then:
there are 0.6x girls and 0.4x boys.
From the given information:
0.6x - 0.4x = 5
0.2x = 5
x = 5/0.2
= 50/2
= 25.
A boardwalk game of chance costs 2 dollars to play. You have a 20% chance of winning 1 dollar, a 25% chance of winning back your entire 2 dollars, and a 35% chance to win 5 dollars. What is the expected value of playing the game if you lose your bet 20% of the time?
Answer:
For a give event with outcomes:
{x₁, x₂, ..., xₙ}
Each with probabilities:
{p₁, p₂, ..., pₙ}
The expected value is:
Ev = x₁*p₁ + ... + xₙ*pₙ
Here we have the outcomes and probabilities:
win $1, with a probability 20%/100% = 0.2
win $2, with a probability 25%/100% = 0.25
win $5, with a probability of 35%/100% = 0.35
do not win, with a probability of 20%/100% = 0.2
Then the expected value of the game is:
Ev = $1*0.2 + $2*0.25 + $5*0.35 + $0*0.2 = $2.45
And if we know that the game costs $2, then the expected value is:
Ev = $2.45 - $2 = $0.45
The expected value is $0.45
(-32ux+19u^2x^3-12u^6x^7) divided by (-4u^2x^3)
Answer:
\left(-32ux+19u^2x^3-12u^6x^7\right)\:divided\:by\:\left(-4u^2x^3\right)
Step-by-step explanation:
Factor the numerator and denominator and cancel the common factors.
\frac{8}{ux^2}\:-\frac{19}{4}+3u^4x^4
Find the center and radius of the circle with equation (x+3)^2+(3+ 1)^2= 9. Then graph the circle.
Answer:
See graph
[tex](x +3)^{2}[/tex] + [tex](y + 1)^{2}[/tex] = 9
(-3 , -1) is the center.
[tex]\sqrt{9}[/tex] = 3 = radius
Step-by-step explanation:
[tex](x - h)^{2} + (y - k)^{2} = r^{2}[/tex]
center (h,k)
radius = r
1) 18,27 – 9,756 =
2) 6 – 2,407 =
3) 18 – 5,432 =
4) 10 – 7,602 =
5) 13,013 – 12,5 =
6) 972,5 – 247,451 =
7) 83,12 – 90,2 + 12,3 =
8) 46,75 – 60,13 + 32,50 =
9) 254,0187 – 29,34682 =
10)1.015,568 – 123,712 =
no entiendo me ayudan
Answer:
1) -7929
2) -2401
3)-5414
4) -7592
5) 12888
6)-237726
7) 7287
8)-4588
9)-394495
10) 891856