Fill the blank with a number to make the expression a perfect square v^2-10v+

Answers

Answer 1

9514 1404 393

Answer:

  25

Step-by-step explanation:

To make this expression into a perfect square trinomial, we must add the square of half the coefficient of the linear term.

  v^2 -10v +(-10/2)^2 = v^2 -10v +25

The missing constant is 25.


Related Questions

a triangle has sides of 6 m 8 m and 11 m is it a right-angled triangle?​

Answers

Answer:

No

Step-by-step explanation:

If we use the Pythagorean theorem, we can find if it is a right triangle. To do that, set up an equation.

[tex]6^{2}+8^{2}=c^2[/tex]

If the triangle is a right triangle, c would equal 11

Solve.

[tex]36+64=100[/tex]

Then find the square root of 100.

The square root of 100 is 10, not 11.

So this is not a right triangle.

I hope this helps!

The water works commission needs to know the mean household usage of water by the residents of a small town in gallons per day. They would like the estimate to have a maximum error of 0.14 gallons. A previous study found that for an average family the standard deviation is 2 gallons and the mean is 16 gallons per day. If they are using a 95% level of confidence, how large of a sample is required to estimate the mean usage of water

Answers

Answer:

A sample of 784 is required to estimate the mean usage of water.

Step-by-step explanation:

We have that to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:

[tex]\alpha = \frac{1 - 0.95}{2} = 0.025[/tex]

Now, we have to find z in the Z-table as such z has a p-value of [tex]1 - \alpha[/tex].

That is z with a pvalue of [tex]1 - 0.025 = 0.975[/tex], so Z = 1.96.

Now, find the margin of error M as such

[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]

In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.

The standard deviation is 2 gallons

This means that [tex]\sigma = 2[/tex]

They would like the estimate to have a maximum error of 0.14 gallons. How large of a sample is required to estimate the mean usage of water?

This is n for which M = 0.14. So

[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]

[tex]0.14 = 1.96\frac{2}{\sqrt{n}}[/tex]

[tex]0.14\sqrt{n} = 1.96*2[/tex]

[tex]\sqrt{n} = \frac{1.96*2}{0.14}[/tex]

[tex](\sqrt{n})^2 = (\frac{1.96*2}{0.14})^2[/tex]

[tex]n = 784[/tex]

A sample of 784 is required to estimate the mean usage of water.

The administration conducted a survey to determine the proportion of students who ride a bike to campus. Of the 123 students surveyed 5 ride a bike to campus. Which of the following is a reason the administration should not calculate a confidence interval to estimate the proportion of all students who ride a bike to campus. Which of the following is a reason the administration should not calculate a confidence interval to estimate the proportion of all students who ride a bike to campus? Check all that apply.

a. The sample needs to be random but we don’t know if it is.
b. The actual count of bike riders is too small.
c. The actual count of those who do not ride a bike to campus is too small.
d. n*^p is not greater than 10.
e. n*(1−^p)is not greater than 10.

Answers

Answer:

b. The actual count of bike riders is too small.

d. n*p is not greater than 10.

Step-by-step explanation:

Confidence interval for a proportion:

To be possible to build a confidence interval for a proportion, the sample needs to have at least 10 successes, that is, [tex]np \geq 10[/tex] and at least 10 failures, that is, [tex]n(1-p) \geq 10[/tex]

Of the 123 students surveyed 5 ride a bike to campus.

Less than 10 successes, that is:

The actual count of bike riders is too small, or [tex]np < 10[/tex], and thus, options b and d are correct.

Graph the inequality.
7 <= y - 2x < 12

Answers

Answer:

X(-12,-7)

Step-by-step explanation:

This is the answer to your problem. I hope it helps. I don't know how to explain it sorry.

Below are the heights (in inches) of students in a third-grade class. Find the median height. 39, 37, 48, 49, 40, 42, 48, 53, 47, 42, 49, 51, 52, 45, 47, 48

Answers

Given:

The heights (in inches) of students in a third-grade class are:

39, 37, 48, 49, 40, 42, 48, 53, 47, 42, 49, 51, 52, 45, 47, 48

To find:

The median height.

Solution:

The given data set is:

39, 37, 48, 49, 40, 42, 48, 53, 47, 42, 49, 51, 52, 45, 47, 48

Arrange the data set in ascending order.

37, 39, 40, 42, 42, 45, 47, 47, 48, 48, 48, 49, 49, 51, 52, 53

Here, the number of observations is 16. So, the median of the given data set is:

[tex]Median=\dfrac{\dfrac{n}{2}\text{th term}+\left(\dfrac{n}{2}+1\right)\text{th term}}{2}[/tex]

[tex]Median=\dfrac{\dfrac{16}{2}\text{th term}+\left(\dfrac{16}{2}+1\right)\text{th term}}{2}[/tex]

[tex]Median=\dfrac{8\text{th term}+9\text{th term}}{2}[/tex]

[tex]Median=\dfrac{47+48}{2}[/tex]

[tex]Median=\dfrac{95}{2}[/tex]

[tex]Median=47.5[/tex]

Therefore, the median height of the students is 47.5 inches.

Suppose point (4, −9) is translated according to the rule (, ) → ( + 3, − 2). What are the coordinates of ′? Explain

Answers

Answer: I’m sorry I just need points..

Which side of the polygon is exactly 6 units long?

Answers

Answer:

AB is correct as It is the shorter parallel line

as the line measures 6 units.

Step-by-step explanation:

The polygon is a trapezoid / (trapezium Eng/Europe)

We see the given coordinates  (2, 6) - (-4, 6) = x-6 y 0 = x = 6units

as x always is shown as x - 6  as  x= 6

We can also show workings as y2-y1/x2-x1 = 6-6/-4-2 0/-6

y = 0  x = 6 = 6 units as its horizontal line.

when y is 6-6 = 0 then we know the line is horizontal for y = 0.

The difference of the measures -4 to 2 is 6units so if no workings we just add on from -4 to 2 and find the answer is 6 units long.

When looking at diagonal lines we still group the x's and y's and make the fraction whole.

When looking for solid vertical lines that aren't shown here we use the y values if showing workings and show x =0 to cancel out.

2/3y = 1/4 what does y equal?

Answers

Answer:

Step-by-step explanation:

2/3y=1/4 this means 3y=8 then you divide both sides by 8 you will get the value of y =8/3

The 8th term in the arithmetic sequence is 17, the 12th term is 25. Find the first term, and the sum of the first 20 terms.

Answers

Answer:

First term a = 3

Sum of first 20 term = 440

Step-by-step explanation:

Given:

8th term of AP = 17

12th term of AP = 25

Find:

First term a

Sum of first 20 term

Computation:

8th term of AP = 17

a + 7d = 17 ....... EQ1

12th term of AP = 25

a + 11d = 25 ...... EQ2

From EQ1 and EQ2

4d = 8

d = 2

a + 7d = 17

a + 7(2) = 17

First term a = 3

Sum of first 20 term

Sn = [n/2][2a + (n-1)d]

S20 = [20/2][(2)(3) + (20-1)2]

S20 = [10][(6) + 38]

S20 = [10][44]

S20 = 440

Sum of first 20 term = 440

6. Find average of the following
expressions (4-2x), (-7-3x), and
(11x+6)

Answers

Answer:

2x + 1.

Step-by-step explanation:

Average = sum of the expression / number of expressions

= [(4 - 2x) + (-7 - 3x) + (11x + 6)] / 3

= (-2x - 3x + 11x + 4 - 7 + 6) / 3

= 6x + 3 / 3

= 2x + 1

Answer:

2x+1

Step-by-step explanation:

(4-2x), (-7-3x),(11x+6)

Add the three expressions

(4-2x)+ (-7-3x)+(11x+6)

Combine like terms

-2x-3x+11x+4-7+6

6x+3

Divide by the number of expressions which was 3

(6x+3)/3

2x+1

The average is 2x+1

What is the value of x?



Enter your answer in the box.

units

Answers

Answer:

25

Step-by-step explanation:

40/24 = x/15

x = 15•40/24

x = 25

Answer:

25

Step-by-step explanation:

just use the facts that both triangles are similar

Suppose a sample of 1453 new car buyers is drawn. Of those sampled, 363 preferred foreign over domestic cars. Using the data, estimate the proportion of new car buyers who prefer foreign cars. Enter your answer as a fraction or a decimal number rounded to three decimal places

Answers

Answer:

"0.250" is the appropriate answer.

Step-by-step explanation:

Given:

New car sample,

= 1453

Preferred foreign,

= 363

Now,

The amount of new automobile purchasers preferring foreign cars will be approximated as:

= [tex]\frac{363}{1453}[/tex]

= [tex]0.250[/tex]

the point (-2,5) is reflected across the y-axis. which of these is the ordered pair of the image

Answers

Answer:(2,5)

Step-by-step explanation:   watch this video

https://youtu.be/l78P2Xi68-k

Write the standard form of the equation of the circle with center (−7,10) that passes through the point (−7,7)

Answers

Answer:

(x+7)^2+(y-10)^2=9

Step-by-step explanation:

The distance between the two points is sqrt((-7+7)^2+(10-7)^2)=3 which is in turn the radius of the circle

If $6^x = 5,$ find $6^{3x+2}$.

Answers

If 6ˣ = 5, then

(6ˣ)³ = 6³ˣ = 5³ = 125,

and

6³ˣ⁺² = 6³ˣ × 6² = 125 × 6² = 125 × 36 = 4500

40% of what number is 16.6?

Answers

Answer: 41.5

hope this helps!

What is the measure of F?
G
65
10
H H
10
A. Cannot be determined
B. 55
C. 75
D65

Answers

Answer:

D. 65°

Step-by-step explanation:

It is so because the triangle is isosceles, two identical sides and two equal angles.

A sprinter travels a distance of 200 m in a time of 20.03 seconds.
What is the sprinter's average speed rounded to 4 sf?

Answers

Given:

Distance traveled by sprinter = 200 m

Time taken by sprinter = 20.03 seconds

To find:

The sprinter's average speed rounded to 4 sf.

Solution:

We know that,

[tex]\text{Average speed}=\dfrac{\text{Distance}}{\text{Time}}[/tex]

It is given that, the sprinter travels a distance of 200 m in a time of 20.03 seconds.

[tex]\text{Average speed}=\dfrac{200}{20.03}[/tex]

[tex]\text{Average speed}=9.985022466[/tex]

[tex]\text{Average speed}\approx 9.985[/tex]

Therefore, the average speed of the sprinter is 9.985 m/sec.

Answer:

9.985

Step-by-step explanation:

Describe the transformation of f(x) to g(x). Pleaseee helllp thank youuuu!!!

Answers

The transformation set of [tex]y[/tex] values for function [tex]f[/tex] is [tex][-1,1][/tex] this is an interval to which sine function maps.

You can observe that the interval to which [tex]g[/tex] function maps equals to [tex][-2,0][/tex].

So let us take a look at the possible options.

Option A states that shifting [tex]f[/tex] up by [tex]\pi/2[/tex] would result in [tex]g[/tex] having an interval [tex][-1,1]+\frac{\pi}{2}\approx[0.57,2.57][/tex] which is clearly not true that means A is false.

Let's try option B. Shifting [tex]f[/tex] down by [tex]1[/tex] to get [tex]g[/tex] would mean that has a transformation interval of [tex][-1,1]-1=[-2,0][/tex]. This seems to fit our observation and it is correct.

So the answer would be B. If we shift [tex]f[/tex] down by one we get [tex]g[/tex], which means that [tex]f(x)=\sin(x)[/tex] and [tex]g(x)=f(x)-1=\sin(x)-1[/tex].

Hope this helps :)

If two marbles are selected in succession with replacement, find the probability that both marble is blue.

Answers

Answer:

1 / 9

Step-by-step explanation:

Choosing with replacement means that the first draw from the lot is replaced before another is picked '.

Number of Blue marbles = 2

Number of red marbles = 4

Total number of marbles = (2 + 4) = 6

Probability = required outcome / Total possible outcomes

1st draw :

Probability of picking blue = 2 / 6 = 1 /3

2nd draw :

Probability of picking blue = 2 / 6 = 1/3

P(1st draw) * P(2nd draw)

1/3 * 1/3 = 1/9

What is the complete factorization of the polynomial below?
x3 + 8x2 + 17x + 10
A. (x + 1)(x + 2)(x + 5)
B. (x + 1)(x-2)(x-5)
C. (x-1)(x+2)(x-5)
O D. (x-1)(x-2)(x + 5)

Answers

Answer: A (x+1)(x+2)(x+5)

Step-by-step explanation:

Pleaseee Help. What is the value of x in this simplified expression?
(-1) =
(-j)*
1
X
What is the value of y in this simplified expression?
1 1
ky
y =
-10
K+m
+
.10
m т

Answers

9514 1404 393

Answer:

  x = 7

  y = 5

Step-by-step explanation:

The applicable rule of exponents is ...

  a^-b = 1/a^b

__

For a=-j and b=7,

  (-j)^-7 = 1/(-j)^7   ⇒   x = 7

For a=k and b=-5,

  k^-5 = 1/k^5   ⇒   y = 5

(4-1) + (6 + 5) = help plz

Answers

The right answer is D!

The polynomial equation x cubed + x squared = negative 9 x minus 9 has complex roots plus-or-minus 3 i. What is the other root? Use a graphing calculator and a system of equations. –9 –1 0 1

Answers

9514 1404 393

Answer:

  (b)  -1

Step-by-step explanation:

The graph shows the difference between the two expressions is zero at x=-1.

__

Additional comment

For finding solutions to polynomial equations, I like to put them in the form f(x)=0. Most graphing calculators find zeros (x-intercepts) easily. Sometimes they don't do so well with points where curves intersect. Also, the function f(x) is easily iterated by most graphing calculators in those situations where the root is irrational or needs to be found to best possible accuracy.

Answer:

The answer is b: -1

Step-by-step explanation:

good luck!

As one once said Another one

Answers

Answer:

f

Step-by-step explanation:

Answer:

S = 62.9

Step-by-step explanation:

Since this is a right triangle, we can use trig functions

tan S = opp side / adj side

tan S = sqrt(42)/ sqrt (11)

tan S = sqrt(42/11)

Taking the inverse tan of each side

tan ^ -1( tan S) =  tan ^-1(sqrt(42/11))

S=62.89816

Rounding to the nearest tenth

S = 62.9

Prove the following identities : i) tan a + cot a = cosec a sec a​

Answers

Step-by-step explanation:

[tex]\tan \alpha + \cot\alpha = \dfrac{\sin \alpha}{\cos \alpha} +\dfrac{\cos \alpha}{\sin \alpha}[/tex]

[tex]=\dfrac{\sin^2\alpha + \cos^2\alpha}{\sin\alpha\cos\alpha}=\dfrac{1}{\sin\alpha\cos\alpha}[/tex]

[tex]=\left(\dfrac{1}{\sin\alpha}\right)\!\left(\dfrac{1}{\cos\alpha}\right)=\csc \alpha \sec\alpha[/tex]

Question :

tan alpha + cot Alpha = cosec alpha. sec alpha

Required solution :

Here we would be considering L.H.S. and solving.

Identities as we know that,

[tex] \red{\boxed{\sf{tan \: \alpha \: = \: \dfrac{sin \: \alpha }{cos \: \alpha} }}}[/tex][tex] \red{\boxed{\sf{cot \: \alpha \: = \: \dfrac{cos \: \alpha }{sin \: \alpha} }}}[/tex]

By using the identities we gets,

[tex] : \: \implies \: \sf{ \dfrac{sin \: \alpha }{cos \: \alpha} \: + \: \dfrac{cos \: \alpha }{sin \: \alpha} }[/tex]

[tex]: \: \implies \: \sf{ \dfrac{sin \: \alpha \times sin \: \alpha }{cos \: \alpha \times sin \: \alpha} \: + \: \dfrac{cos \: \alpha \times cos \: \alpha }{sin \: \alpha \times \: cos \: \alpha } } [/tex]

[tex] : \: \implies \: \sf{ \dfrac{sin {}^{2} \: \alpha }{cos \: \alpha \times sin \alpha} \: + \: \dfrac{cos {}^{2} \: \alpha }{sin \: \alpha \times \: cos \: \alpha } } [/tex]

[tex]: \: \implies \: \sf{ \dfrac{sin {}^{2} \: \alpha }{cos \: \alpha \: sin \alpha} \: + \: \dfrac{cos {}^{2} \: \alpha }{sin \: \alpha \: cos \: \alpha } } [/tex]

[tex]: \: \implies \: \sf{ \dfrac{sin {}^{2} \: \alpha \: + \: cos {}^{2} \alpha}{cos \: \alpha \: sin \alpha} } [/tex]

Now, here we would be using the identity of square relations.

[tex]\red{\boxed{ \sf{sin {}^{2} \alpha \: + \: cos {}^{2} \alpha \: = \: 1}}}[/tex]

By using the identity we gets,

[tex] : \: \implies \: \sf{ \dfrac{1}{cos \: \alpha \: sin \alpha} }[/tex]

[tex]: \: \implies \: \sf{ \dfrac{1}{cos \: \alpha } \: + \: \dfrac{1}{sin\: \alpha} }[/tex]

[tex]: \: \implies \: \bf{sec \alpha \: cosec \: \alpha}[/tex]

Hence proved..!!

According to the National Association of Theater Owners, the average price for a movie in the United States in 2012 was $7.96. Assume the population st. dev. is $0.50 and that a sample of 30 theaters was randomly selected. What is the probability that the sample mean will be between $7.75 and $8.20

Answers

Answer:

0.985 = 98.5% probability that the sample mean will be between $7.75 and $8.20.

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal Probability Distribution

Problems of normal distributions can be solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.

Central Limit Theorem

The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

The average price for a movie in the United States in 2012 was $7.96. Assume the population st. dev. is $0.50.

This means that [tex]\mu = 7.96, \sigma = 0.5[/tex]

Sample of 30:

This means that [tex]n = 30, s = \frac{0.5}{\sqrt{30}}[/tex]

What is the probability that the sample mean will be between $7.75 and $8.20?

This is the p-value of Z when X = 8.2 subtracted by the p-value of Z when X = 7.75.

X = 8.2

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

By the Central Limit Theorem

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{8.2 - 7.96}{\frac{0.5}{\sqrt{30}}}[/tex]

[tex]Z = 2.63[/tex]

[tex]Z = 2.63[/tex] has a p-value of 0.9957

X = 7.75

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{7.75 - 7.96}{\frac{0.5}{\sqrt{30}}}[/tex]

[tex]Z = -2.3[/tex]

[tex]Z = -2.3[/tex] has a p-value of 0.0107.

0.9957 - 0.0157 = 0.985

0.985 = 98.5% probability that the sample mean will be between $7.75 and $8.20.

X+34>55

Solve the inequality and enter your solution as an inequality comparing the variable to a number

Answers

Answer:

x > 21

General Formulas and Concepts:

Pre-Algebra

Equality Properties

Multiplication Property of Equality Division Property of Equality Addition Property of Equality Subtraction Property of Equality

Step-by-step explanation:

Step 1: Define

Identify

x + 34 > 55

Step 2: Solve for x

[Subtraction Property of Equality] Subtract 34 on both sides:                      x > 21

Assuming that the sample mean carapace length is greater than 3.39 inches, what is the probability that the sample mean carapace length is more than 4.03 inches

Answers

Answer:

The answer is "".

Step-by-step explanation:

Please find the complete question in the attached file.

We select a sample size n from the confidence interval with the mean [tex]\mu[/tex]and default [tex]\sigma[/tex], then the mean take seriously given as the straight line with a z score given by the confidence interval

[tex]\mu=3.87\\\\\sigma=2.01\\\\n=110\\\\[/tex]

Using formula:

[tex]z=\frac{x-\mu}{\frac{\sigma}{\sqrt{n}}}[/tex]  

The probability that perhaps the mean shells length of the sample is over 4.03 pounds is

[tex]P(X>4.03)=P(z>\frac{4.03-3.87}{\frac{2.01}{\sqrt{110}}})=P(z>0.8349)[/tex]

Now, we utilize z to get the likelihood, and we use the Excel function for a more exact distribution

[tex]=\textup{NORM.S.DIST(0.8349,TRUE)}\\\\P(z<0.8349)=0.7981[/tex]

the required probability: [tex]P(z>0.8349)=1-P(z<0.8349)=1-0.7981=\boldsymbol{0.2019}[/tex]

A day trading firm closely monitors and evaluates the performance of its traders. For each $10,000 invested, the daily returns of traders at this company can be modeled by a Normal distribution with mean = $830 and standard deviation = $1,781.
(a) What is the probability of obtaining a negative daily return, on any given day? (Use 3 decimals.)
(b) Assuming the returns on successive days are independent of each other, what is the probability of having a negative daily return for two days in a row? (Use 3 decimals.)
(c) Give the boundaries of the interval containing the middle 80% of daily returns: (use 3 decimals) ( , )
(d) As part of its incentive program, any trader who obtains a daily return in the top 2% of historical returns receives a special bonus. What daily return is needed to get this bonus? (Use 3 decimals.)

Answers

Answer:

a) 0.321 = 32.1% probability of obtaining a negative daily return, on any given day.

b) 0.103 = 10.3% probability of having a negative daily return for two days in a row.

c) (-$1449.68, $3109.68)

d) A bonus of $4,488.174 is needed.

Step-by-step explanation:

Normal Probability Distribution

Problems of normal distributions can be solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.

Normal distribution with mean = $830 and standard deviation = $1,781.

This means that [tex]\mu = 830, \sigma = 1781[/tex]

(a) What is the probability of obtaining a negative daily return, on any given day?

This is the p-value of Z when X = 0, so:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{0 - 830}{1781}[/tex]

[tex]Z = -0.466[/tex]

[tex]Z = -0.466[/tex] has a p-value 0.321.

0.321 = 32.1% probability of obtaining a negative daily return, on any given day.

(b) Assuming the returns on successive days are independent of each other, what is the probability of having a negative daily return for two days in a row?

Each day, 0.3206 probability, so:

[tex](0.321)^2 = 0.103[/tex]

0.103 = 10.3% probability of having a negative daily return for two days in a row.

(c) Give the boundaries of the interval containing the middle 80% of daily returns

Between the 50 - (80/2) = 10th percentile and the 50 + (80/2) = 90th percentile.

10th percentile:

X when Z has a p-value of 0.1, so X when Z = -1.28.

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]-1.28 = \frac{X - 830}{1781}[/tex]

[tex]X - 830 = -1.28*1781[/tex]

[tex]X = -1449.68[/tex]

90th percentile:

X when Z has a p-value of 0.9, so X when Z = 1.28.

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]1.28 = \frac{X - 830}{1781}[/tex]

[tex]X - 830 = 1.28*1781[/tex]

[tex]X = 3109.68[/tex]

So

(-$1449.68, $3109.68)

d) As part of its incentive program, any trader who obtains a daily return in the top 2% of historical returns receives a special bonus. What daily return is needed to get this bonus?

The 100 - 2 = 98th percentile, which is X when Z has a p-value of 0.98, so X when Z = 2.054.

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]2.054 = \frac{X - 830}{1781}[/tex]

[tex]X - 830 = 2.054*1781[/tex]

[tex]X = 4488.174 [/tex]

A bonus of $4,488.174 is needed.

Other Questions
If the formula for the area of a polygon is 1/2 (perimeter)(apothem), the area of the hexagon is ___ 3 square units Given that line AB is the angle bisector or When will Mara get love too ? Which shows the following expression after the negative exponents have been eliminated? If f(x)f(x) is an exponential function where f(1.5)=5f(1.5)=5 and f(7.5)=79f(7.5)=79, then find the value of f(3)f(3), to the nearest hundredth. Describe action taken in the first New Deal. Sometimes in lab we collect the gas formed by a chemical reaction over water . This makes it easy to isolate and measure the amount of gas produced. Suppose the CO, gas evolved by a certain chemical reaction taking place at 50.0C is collected over water, using an apparatus something like that in the sketch, and the final volume of gas in the collection tube is measured to be 132. mL. Calculate the mass of CO, that is in the collection tube. Round your answer to 2 significant digits. The space shuttle Endeavor is launched to altitude of 500,000 m above the surface of the earth. The shuttle travels at an average rate of 700 m/s. How long will it take for Endeavor to reach its orbit? {(5,2), (-2,4), (2, -7)}Domain:Range: The mortgage on your new house is $180,000. Your monthly mortgage payment is $839 for 30 years. How much interest will be paid if the house is kept for the full 30 years? Fuente, Inc., has identified an investment project with the following cash flows. Year Cash Flow 1 $ 1,070 2 1,300 3 1,520 4 2,260 a. If the discount rate is 8 percent, what is the future value of these cash flows in Year 4 Which relates the wavelength and frequency of a wave? The frequency is the number of wavelengths that pass a fixed point in a second.A wavelength is the distance on a wave between one frequency and the next.The time it takes for one wavelength to pass a fixed point is the frequency.The speed at which a wavelength travels is the frequency of the wave. Consider a uniform density curve defined from x = 0 to x = 8. What percent of observations fall between 1 and 5?a) 0.20b) 0.50c) 0.62d) 0.13e) 0.63f) None of the above What is the definition of empirical evidence?Empirical evidence is evidence based on personal experience.Empirical evidence is evidence based on scientific research.Empirical evidence is evidence based on accepted truths.Empirical evidence is evidence based on historical facts. Use the distributive property to write equivalent expressions. Someone please help ty! Which is the graph of the following inequality The width of a rectangle measures (7k-2m)(7k2m) centimeters, and its length measures (5k-m)(5km) centimeters. Which expression represents the perimeter, in centimeters, of the rectangle? When the polynomial is written in standard form, what are the values of the leading coefficient and the constant?5x + 2 3x2 The height of Mt.Whitney is approximately 14,490 feet. What is a rounded form of this number written in scientific notation? Please answer as best as you can.What would give Massachusetts the most power?