Experiment:
Part I: Voltaic Cell
Assume that you are provided with the following materials:
Strips of metallic zinc, metallic copper, metallic iron
1M aqueous solutions of ZnSO4, CuSO4, FeSO4, and aqueous iodine (I2)
Other required materials to create Voltaic cells such as beakers, porous containers, graphite rods, a voltmeter, and a few wires with alligator clips.
In this modified version of the lab, after thoroughly studying the lab hand out and watching the videos, identify 4 different combinations of Voltaic cells that are possible to be created with the above materials.
For each cell created, include the following details.
Which electrode was the anode and which was the Cathode?
The anode and cathode half reactions.
Balanced equation for each cell you propose to construct.
Calculated Eocell
Short hand notation (line notation) for each cell (be sure to include the inactive electrode if needed)

Answers

Answer 1

Answer:

Here are four possible voltaic cells.  

Explanation:

1. Standard reduction potentials

                                         E°/V

I₂(s) + 2e⁻ ⟶ 2I⁻(aq);        0.54

Cu²⁺(aq) + 2e⁻ ⟶ Cu(s);   0.34

Fe²⁺(aq) + 2e⁻ ⟶ Fe(s);   -0.41

Zn²⁺(aq) + 2e⁻ ⟶ Zn(s);   -0.76

2. Possible Voltaic cells

(a) Zn/I₂

                                                                       E°/V

Anode:     Zn(s) ⟶ Zn²⁺(aq) + 2e⁻;                 0.76

Cathode:  I₂(s) + 2e⁻ ⟶ 2I⁻(aq);                     0.54

Cell:         Zn(s) +  I₂(s) ⟶  Zn²⁺(aq) + 2I⁻(aq); 1.30

Zn(s)|Zn²⁺(aq)∥I⁻(aq)|I₂(s)|C(s, graphite)

Zn is the anode; graphite is the cathode.

(b) Zn/Cu²⁺

                                                                          E°/V

Anode:     Zn(s) ⟶ Zn²⁺(aq) + 2e⁻;                    0.76

Cathode:  Cu²⁺(aq) + 2e⁻ ⟶ Cu(s);                  0.34

Cell:          Zn(s) +  Cu²⁺(s) ⟶  Zn²⁺(aq) + Cu(s); 1.10

Zn(s)|Zn²⁺(aq)∥Cu²⁺(aq)|Cu(s)

Zn is the anode; Cu is the cathode.

(c) Zn/Fe²⁺

                                                                            E°/V

Anode:     Zn(s) ⟶ Zn²⁺(aq) + 2e⁻;                     0.76

Cathode:  Fe²⁺(aq) + 2e⁻ ⟶ Fe(s);                    -0.41

Cell:          Zn(s) +  Fe²⁺(s) ⟶  Zn²⁺(aq) + Fe(s);  0.35

Zn(s)|Zn²⁺(aq)∥Fe²⁺(aq)|Fe(s)

Zn is the anode; Fe is the cathode.

(d) Fe/I₂

                                                                         E°/V

Anode:     Fe(s) ⟶ Fe²⁺(aq) + 2e⁻;                   0.41

Cathode: I₂(s) + 2e⁻ ⟶ 2I⁻(aq);                     0.54

Cell:         Zn(s) +  I₂(s) ⟶  Zn²⁺(aq) + 2I⁻(aq); 0.95

Fe(s)|Fe²⁺(aq)∥I⁻(aq)|I₂(s)|C(s, graphite)

Fe is the anode; graphite is the cathode.

 


Related Questions

A chemist fills a reaction vessel with 0.978 g aluminum hydroxide AlOH3 solid, 0.607 M aluminum Al+3 aqueous solution, and 0.396 M hydroxide OH− aqueous solution at a temperature of 25.0°C.
Under these conditions, calculate the reaction free energy ΔG for the following chemical reaction:
Al(OH)3(s) = A1+ (aq) +30H (aq)
Use the thermodynamic information in the ALEKS Data tab. Round your answer to the nearest kilojoule.
KJ

Answers

Answer: [tex]\Delta G^{0}[/tex] = 168.12 kJ

Explanation: Gibbs Free Energy, at any time, is defined as the enthalpy of the system minus product of temperature and entropy of the reaction, i.e.:

[tex]\Delta G^{0} = \Delta H^{0} - T.\Delta S^{0}[/tex]

Enthalpy is defined as internal heat existent in the system. It is calculated as:

[tex]\Delta H^{0} = \Sigma H^{0}_{product} - \Sigma H^{0}_{reagent}[/tex]

Using Enthalpy Formation Table:

[tex]\Delta H^{0} = [3*(-299.9)+(-524.7)] - (-1277)[/tex]

[tex]\Delta H^{0} = 62,6 kJ[/tex]

Entropy is the degree of disorder in the system. It is found by:

[tex]\Delta S^{0} = \Sigma S^{0}_{products} - \Sigma S^{0}_{reagents}[/tex]

Calculating:

[tex]\Delta S^{0} = (-321.7) + 3(-10.8) - 0[/tex]

[tex]\Delta S^{0} = -354.1J[/tex]

And so, Gibbs Free energy will be:

[tex]\Delta G^{0} = \Delta H^{0} - T.\Delta S^{0}[/tex]

[tex]\Delta G^{0} = 62600 - [298.(-354.1)][/tex]

[tex]\Delta G^{0} = 168121.8 J[/tex]

Rounding to the nearest kJ:

[tex]\Delta G^{0}[/tex] = 168.12 kJ

A solution is known to contain only one type of cation. Addition of Cl1- ion to the solution had no apparent effect, but addition of (SO4)2- ion resulted in a precipitate. Which cation is present

Answers

Answer:

We can have: Calcium, strontium, or barium

Explanation:

In this case, we have to remember the solubility rules for sulfate [tex]SO_4~^-^2[/tex] and the chloride [tex]Cl^-[/tex]:

Sulfate

All sulfate salts are SOLUBLE-EXCEPT those also containing: Calcium, silver, mercury (I), strontium, barium or lead.([tex]Ca^+^2~,Ag^+~,Hg_2^+^2~,Sr^+2~,Ba^+^2~,Pb^+^2[/tex]), which are NOT soluble.

Chloride

All chloride salts as SOLUBLE-EXCEPT those also containing: lead, silver, or mercury (I). ([tex]Pb^+^2~,Ag^+~,Hg_2~^+^2[/tex]), which are NOT soluble.

If we the salt formed a precipitated with the sulfate anion, we will have as possibilities "Calcium, silver, mercury (I), strontium, barium or lead". If We dont have any precipitated with the Chloride anion we can discard "Silver, mercury (I),  lead" and our possibilities are:

"Calcium, strontium, or barium".

I hope it helps!

What is the formula of a compound if a sample of the compound contains 0.492 mol X, 0.197 mol Y, and 0.295 mol Z?

Answers

Answer:

X₅Y₂Z₃

Explanation:

The formula of a compound is determined as the whole number ratio between moles of each element present in the molecule.

The molecule is made from X, Y and Z. To fin the ratio we will divide the given moles in the moles of Y (0.197 moles), because is the element with the low number of moles.

X = 0.492 moles / 0.197 moles = 2.5

Y = 0.197 moles / 0.197 moles = 1

Z = 0.295 moles / 0.197 moles = 1.5

But, as the formula is given just with whole numbers, if we multiply each number twice:

X = 2.5*2 = 5

Y = 1*2 = 2

Z = 1.5*2 = 3

The formula is:

X₅Y₂Z₃

Consider the reaction: C(s) + O2(g)CO2(g) Write the equilibrium constant for this reaction in terms of the equilibrium constants, Ka and Kb, for reactions a and b below: a.) C(s) + 1/2 O2(g) CO(g) Ka b.) CO(g) + 1/2 O2(g) CO2(g) Kb

Answers

Answer:

A. Ka = [CO2] / [C] [O2]^1/2

B. Kb = [CO2] / [CO] [O2]^1/2

Explanation:

Equilibrium constant is simply defined as the ratio of the concentration of the products raised to their coefficient to the concentration of the reactants raised to their coefficient.

Now, we shall obtain the expression for the equilibrium constant for the reaction as follow:

A. Determination of the expression for equilibrium constant Ka.

This is illustrated below:

C(s) + 1/2 O2(g) <==> CO(g)

Ka = [CO2] / [C] [O2]^1/2

B. Determination of the expression for equilibrium constant Kb.

This is illustrated below:

CO(g) + 1/2 O2(g) <==> CO2(g)

Kb = [CO2] / [CO] [O2]^1/2


Zeros laced at the end of the significant number are...

Answers

Answer:

Zeros located at the end of significant figures are significant.

Explanation:

Hope it will help :)

An atom of 108Te has a mass of 107.929550 amu. Calculate the binding energy per MOLE in kJ. Use the values: mass of 1H atom

Answers

Answer:

The binding energy = 8.64972649×10¹⁰ kJ/mole

Explanation:

Given that:

An atom of 108Te has a mass of 107.929550 amu.

In a 108 Te atom, there are 52 protons and 56 neutrons

where;

mass of proton= 1.007825 amu

mass of neutron= 1.008665 amu

Similarly; The atomic number of Te = 52

the mass of 52 protons = 52 ×  1.007825  amu

the mass of 52 protons = 52.4069 amu

the mass of 56 neutrons = 56 ×  1.008665 amu

the mass of 56 neutrons = 56.48524 amu

The total mass can now be = the mass of 52 protons + the mass of 56 neutrons

The total mass = 52.4069 amu +  56.48524 amu

The total mass = 108.89214  amu

Recall  : it is given that An atom of 108Te has a mass of 107.929550 amu.

Therefore, the mass defect will be = 108.89214  amu - 107.929550 amu

the mass defect = 0.96259amu

where 1 amu = 1.66× 10⁻²⁷ kg

Therefore, 0.96259amu = (0.96259  × 1.66× 10⁻²⁷) kg

= 1.5978994 × 10⁻²⁷kg

The binding energy = mass defect × (speed of light)²

where;

speed of light c = 2.99792 × 10⁸ m/s

The binding energy = 1.5978994 × 10⁻²⁷kg  ×  2.99792 × 10⁸ m/s

The binding energy = 1.43611597 × 10⁻¹⁰  J

The binding energy =  1.43611597 × 10⁻¹³ kJ/atom

since 1 mole = 6.023 × 10²³ atom (avogadro's constant)

Then;

The binding energy = ( 1.43611597 × 10⁻¹³ )× (6.023 × 10²³)  kJ/mole

The binding energy = 8.64972649×10¹⁰ kJ/mole

Consider the bond dissociation energies listed below in kcal/mol. CH3-Br 70 CH3CH2-Br 68 (CH3)2CH-Br 68 (CH3)3C-Br 65 These data show that the carbon-bromine bond is weakest when bromine is bound to a __________.

Answers

Answer:

The answer is "Tertiary carbon".

Explanation:

Accent to the results, the carbon-bromine bond is weak, whenever, the bromine is connected to tertiary carbon so, bonding energy is separation for methyl-carbon, which is connected to the bromine = 70 kcal/mol and for the primary energy to the secondary energy is=  68 kcal/mol, and for tertiary CO2 = 65 kcal/mol.

The stronger the energy dissociating connection and the weaker, its power dissociation connection and its weaker bond becomes connecting with a tertiary carbon, that's why "Tertiary carbon" is the correct answer.

The new hybrid car can get 51.5 km/gal. It has a top speed of 40000.00 cm/min and is 4m long. How fast can the car go in m/hr?


Answers

Answer:

The anawer of this question is 0.024 m/h

Explanation:

Other explanations of the question are additional.

g Does a reaction occur when aqueous solutions of barium hydroxide and aluminum sulfate are combined

Answers

Answer:

3BaO + Al₂(SO₄)₃  →  Al₂O₃+ 3BaSO₄

Explanation:

Yes! A reactiin occurs between barium hydroxide and auminium sulphate.

barium sulfate (BaSO4) and aluminum hydroxide (Al(OH)3) are the products obtained in this reaction.

The reaction is given by the equation below;

3BaO + Al₂(SO₄)₃  →  Al₂O₃+ 3BaSO₄

Calculate the molality of a solution containing 141.5 g of glycine (NH2CH2COOH) dissolved in 4.456 kg of H2O

Answers

Answer:

0.423 m.

Explanation:

The following data were obtained from the question:

Mass of glycine (NH2CH2COOH) = 141.5 g

Mass of water = 4.456 kg

Molality =.?

Next, we shall determine the number of mole in 141.5 g of glycine (NH2CH2COOH.

This is illustrated below:

Mass of glycine (NH2CH2COOH) = 141.5 g

Molar mass of glycine (NH2CH2COOH) = 14 + (2x1) + 12 + (2x1) + 12 + 16 + 16 + 1 = 75 g/mol

Mole of glycine (NH2CH2COOH) =.?

Mole = mass /Molar mass

Mole of glycine (NH2CH2COOH) = 141.5/75

Mole of glycine (NH2CH2COOH) = 1.887 moles

Finally, we shall determine the molality of the solution as follow:

Molality is simply defined as the mole of solute per kilogram of water. Mathematically it is expressed as:

Molality = mole / mass (kg) of water

With the above formula, we can obtain the molality of the solution as follow:

Mole of glycine (NH2CH2COOH) = 1.887 moles

Mass of water = 4.456 kg

Molality =.?

Molality = mole /mass (kg) of water

Molality =1.887/4.456

Molality = 0.423 m

Therefore, the molality of the solution is 0.423 m

which of the following is an example of precipitate a. liquid evaporating into gas b. a solid form from a frozen liquid c. a chunky solid form from 2 liquids combining d. a liquid solution that contains 2 substances

Answers

Answer:

B and C

Explanation:

The google definition of precipitate is "a solid formed by a change in a solution, often due to a chemical reaction or change in temperature that decreases solubility of a solid". So in this case, the "solid formed from a frozen liquid" and "a chunky solid form from 2 liquids combining" are both examples of a precipitate.

The correct answer is C, a chunky solid form from 2 liquids combining.

In the laboratory, we usually mix two chemicals. When we mix the chemicals, we expect them to interact in one way or another. The interaction of those chemicals is known as a chemical reaction.

When we mix two liquid chemicals and they interact with each other to yield a solid product, we say that a chemical reaction has occurred and that such chemical reaction has produced a precipitate.

https://brainly.com/question/24276721

How do covalent bonds form? A Sharing valence electrons between atoms. B Donating and receiving valence electrons between atoms. C Opposite slight charges attract each other between compounds. D Scientists are still not sure how they form.

Answers

Answer:

A. Sharing valence electrons between atoms.

Explanation:

This is the definition of a covalent bond. Option B describes ionic bonds, Option C describes intermolecular forces, and Option D is wrong because then there wouldn't be any mention of them in our high school chemistry textbooks :).  

What is the density of a 10 kg mass that occupies 5 liters?
( pls need help)

Answers

Answer: d=2000 g/L

Explanation:

Density is mass/volume. The units are g/L. Since we are given mass and volume, we can divide them to find density. First, we need to convert kg to g.

[tex]10kg*\frac{1000g}{1kg} =10000 g[/tex]

Now that we have grams, we can divide to get density.

[tex]d=\frac{10000g}{5 L}[/tex]

d=2000g/L

What type of bond would form between two atoms of phosphorus? A. Single covalent bond B. Single ionic bond C. Triple covalent bond D. Double covalent bond

Answers

Answer:

A double bond is formed when two pairs of electrons are shared between the two participating atoms. It is represented by two dashes (=). It is represented by two dashes (=). Double covalent bonds are much stronger than a single bond, but they are less stable

Explanation:

What's the concentration of hydronium ions if a water-base solution has a temperature of 25°C (Kw = 1.0×10–14), with a concentration of hydroxide ions of 2.21×10–6 M? answer options: A) 2.8×10–8 M B) 4.52 ×10–9 M C) 1.6×10–9 M D) 3.1×10–6 M

Answers

Answer:

ITS NOT D. ITS B. 4.52x10^-9 M

Explanation:

Answer:

4.52 ×10–9 M

Explanation:

whts the ph of po4 9.78

Answers

Answer:

4.22

Explanation:

We know from the question, that the pOH of the solution is 9.78. Now the pOH is defined as -log [OH^-].

If the pOH of a solution is given, one may obtain the pH of such solution from the formula;

pH + pOH =14

Hence we can write;

pH = 14-pOH

pH = 14 - 9.78 = 4.22

Hence the pH of the solution is 4.22.

For each bond, show the direction of polarity by selecting the correct partial charges. _________ Si-P _________ _________ Si-Cl _________ _________ Cl-P _________ The most polar bond is _______

Answers

Answer:

Siδ⁺ -- Pδ⁻⁻

Clδ⁻⁻ -- Pδ⁺

Siδ⁺ -- Clδ⁻⁻

Of the mentioned bonds the most polar bond is Si -- Cl

The polarity of the bond primarily relies upon the electronegativity difference between the two atoms that forms the bond. Therefore, if the electronegativity difference between the two atoms that forms the bond is more the bond will be more polar, and if it is less then the bond will be less polar. The electronegativity of the atoms mentioned is Si = 1.8 , P = 2.1 and Cl = 3.00.  

Therefore, the Si - Cl atoms exhibit more electronegativity difference, thus, the Si - Cl bond will be the most polar bond.  

Chemistry
What is a chemical reaction

Answers

Answer:

A process that involves rearrangement

Explanation:

A chemical reaction is the process that involves rearrangement of the molecular or ironic structure of a substance, as a distinct from a change in physical form or a nuclear reaction.

Answer:

Explanation:

Chemistry

The chemical reaction H2(g) + ½ O2(g) → H2O(l) describes the formation of water from its elements.

The reaction between iron and sulfur to form iron(II) sulfide is another chemical reaction, represented by the chemical equation:

8 Fe + S8 → 8 FeS

Explain your reasoning. Match each explanation to the appropriate blanks in the sentences on the right.
1. the atomic radius decreases
2. the number of gas molecules decreases
3. molar mass and structure complexity decreases
4. structure complexity decreases
5. molar mass decreases
6. each phase (gas, liquid, solid) becomes more ordered
A (I_2(g), Br_2 (g), Cl_2 (g), F_2 (B): The ranking can best be explained by the trend entropy decreases as______.
B (H_2O_2 (g), H_2S(g), H_2O(g): The ranking can best be explained by the decreases a trend entropy decreases as_______.
C. (C(s, amorphous), C(s, graphite), C(s, diamond): The ranking can best be explained by the trend entropy decreases as_______.

Answers

Answer:

A (I_2(g), Br_2 (g), Cl_2 (g), F_2 (B): The ranking can best be explained by the trend entropy decreases as 5. molar mass decreases.

B (H_2O_2 (g), H_2S(g), H_2O(g): The ranking can best be explained by the decreases a trend entropy decreases as 3. molar mass and structure complexity decreases.

C. (C(s, amorphous), C(s, graphite), C(s, diamond): The ranking can best be explained by the trend entropy decreases as 4. structure complexity decreases.

Explanation:

Hello.

In this case, we can understand a higher entropy when more disorder is present and a lower entropy when less disorder is present, thus:

A (I_2(g), Br_2 (g), Cl_2 (g), F_2 (B): The ranking can best be explained by the trend entropy decreases as 5. molar mass decreases since iodine has the greatest molar mass (254 g/mol) and fluorine the least molar mass (38 g/mol).

B (H_2O_2 (g), H_2S(g), H_2O(g): The ranking can best be explained by the decreases a trend entropy decreases as 3. molar mass and structure complexity decreases since hydrogen peroxide weights 34 g/mol as well as hydrogen sulfide but the peroxide has more bonds (more complex, higher entropy).

C. (C(s, amorphous), C(s, graphite), C(s, diamond): The ranking can best be explained by the trend entropy decreases as 4. structure complexity decreases since diamond has a well-ordered structure and amorphous carbon has a very disordered one.

Best regards.

1500 L has how many significants figures

Answers

Answer:

It has 2

Explanation:

The significant figures are 1 and 5!

Hope this helps:)

When the nuclide bismuth-210 undergoes alpha decay:
The name of the product nuclide is_____.
The symbol for the product nuclide is_____
Fill in the nuclide symbol for the missing particle in the following nuclear equation.
_____ rightarrow 4He+ 234Th
2 90
Write a balanced nuclear equation for the following:
The nuclide radium-226 undergoes alpha emission.

Answers

Explanation:

An atom undergoes alpha decay by losing a helium atom.

So when bismuth undergoes alpha decay, we have;

²¹⁰₈₃Bi --> ⁴₂He + X

Mass number;

210 = 4 + x

x = 206

Atomic number;

83 = 2 + x

x = 81

The element is Thallium. The symbol is Ti.

For the second part;

X --> ⁴₂He + ²³⁴₉₀Th

Mass number;

x = 4 + 234 = 238

Atomic Number;

x = 2 + 90 = 92

The balanced nuclear equation is;

²³⁸₉₂U --> ⁴₂He + ²³⁴₉₀Th

At a constant temperature, a sample of a gas in a balloon that originally had a volume of 5.00 L and pressure of 626 torr has its volume changed to 6.72 L. Calculate the new pressure in torr.

Answers

Answer:

466 torr

Explanation:

Step 1: Given data

Initial pressure (P₁): 626 torrInitial volume (V₁): 5.00 LFinal pressure (P₂): ?Final volume (V₂): 6.72 LConstant temperature

Step 2: Calculate the final pressure

Since we have a gas changing at a constant temperature, we can calculate the final pressure using Boyle's law.

P₁ × V₁ = P₂ × V₂

P₂ = P₁ × V₁ / V₂

P₂ = 626 torr × 5.00 L / 6.72 L

P₂ = 466 torr

243
Am
95
1. The atomic symbol of americium-243 is shown. Which of the following is correct?
• A. The atomic mass is 243 amu, and the atomic number is 95.
B. The atomic mass is 338 amu, and the atomic number is 95.
• C. The atomic mass is 95 amu, and the atomic number is 243.
D. The atomic mass is 243 amu, and the atomic number is 338.​

Answers

Answer:

A. The atomic mass is 243 amu, and the atomic number is 95.

Determine the oxidation state for each of the elements below. The oxidation state of ... silver ... in ... silver oxide Ag2O ... is ... ___ . The oxidation state of sulfur in sulfur dioxide SO2 is ___ . The oxidation state of iron in iron(

Answers

Answer:

The oxidation state of silver in [tex]\rm Ag_2O[/tex] is [tex]+1[/tex].

The oxidation state of sulfur in [tex]\rm SO_2[/tex] is [tex]+4[/tex].

Explanation:

The oxidation states of atoms in a compound should add up to zero.

Ag₂O

There are two silver [tex]\rm Ag[/tex] atoms and one oxygen [tex]\rm O[/tex] atom in one formula unit of [tex]\rm Ag_2O[/tex]. Therefore:

[tex]\begin{aligned}&\rm 2 \times \text{Oxidation state of $\rm Ag$}+ \rm 1 \times \text{Oxidation state of $\rm O$} = 0\end{aligned}[/tex].

The oxidation state of oxygen in most compounds (with the exception of peroxides and fluorides) is [tex]-2[/tex]. Silver oxide [tex]\rm Ag_2O[/tex] isn't an exception. Therefore:

[tex]\begin{aligned}&\rm 2 \times \text{Oxidation state of $\rm Ag$}+ \rm 1 \times \text{Oxidation state of $\rm O$} = 0\\ &\rm 2 \times \text{Oxidation state of $\rm Ag$}+ \rm 1 \times (-2) = 0\end{aligned}[/tex].

Solve this equation for the (average) oxidation state of [tex]\rm Ag[/tex]:

[tex]\text{Oxidation state of $\rm Ag$} = 1[/tex].

SO₂

Similarly, because there are one sulfur [tex]\rm S[/tex] atom and two oxygen [tex]\rm O[/tex] atoms in each [tex]\rm SO_2[/tex] molecules:

[tex]\begin{aligned}&\rm 1\times \text{Oxidation state of $\rm S$}+ \rm 2 \times \text{Oxidation state of $\rm O$} = 0\end{aligned}[/tex].

The oxidation state of [tex]\rm O[/tex] in [tex]\rm SO_2[/tex] is also [tex]-2[/tex], not an exception, either.

Therefore:

[tex]\begin{aligned}&\rm 1 \times \text{Oxidation state of $\rm S$}+ \rm 2 \times \text{Oxidation state of $\rm O$} = 0\\ &\rm 1 \times \text{Oxidation state of $\rm S$}+ \rm 2 \times (-2) = 0\end{aligned}[/tex].

Solve this equation for the oxidation state of [tex]\rm S[/tex] here:

[tex]\text{Oxidation state of $\rm S$} = 4[/tex].

Indicate the peptides that would result from cleavage by the indicated reagent: a. Gly-Lys-Leu-Ala-Cys-Arg-Ala-Phe by trypsin b. Glu-Ala-Phe-Gly-Ala-Tyr by chymotrypsin

Answers

Answer:

a. Gly-Lys + Leu-Ala-Cys-Arg + Ala-Phe

b. Glu-Ala-Phe + Gly-Ala-Tyr

Explanation:

In this case, we have to remember which peptidic bonds can break each protease:

-) Trypsin

It breaks selectively the peptidic bond in the carbonyl group of lysine or arginine.

-) Chymotrypsin

It breaks selectively the peptidic bond in the carbonyl group of phenylalanine, tryptophan, or tyrosine.

With this in mind in "peptide a", the peptidic bonds that would be broken are the ones in the "Lis" and "Arg" (See figure 1).

In "peptide b", the peptidic bond that would be broken is the one in the "Phe" (See figure 2). The second amino acid that can be broken is tyrosine, but this amino acid is placed in the C terminal spot, therefore will not be involved in the hydrolysis.

How does the spontaneity of the process below depend on temperature? PCl5(g)+H2O(g)→POCl3(g)+2HCl(g) ΔH=−126 kJ mol−1, ΔS=146 J K−1mol−

Answers

The given question is incomplete, the complete question is:

How does the spontaneity of the process below depend on temperature? PCI5(9)+H2O(g)POCI3(g) +2HCI(g) -126 kJ mol1, AS = 146 J K-'mol1 ΔΗ Select the correct answer below: nonspontaneous at all temperatures spontaneous at all temperatures spontaneous at high temperatures and nonspontaneous at low temperatures spontaneous at low temperatures and nonspontaneous at high temperatures

Answer:

The correct answer is spontaneous at all the temperatures.

Explanation:

Gibbs Free energy is an essential relation that determines the spontaneity of any reaction, that is, ΔG = ΔH - TΔS

When ΔG is less than zero, that is, negative, the reaction is considered to be in spontaneous state. Based on the given information, ΔH = -126 kJ/mol

= -126000 J/mol, it is negative

ΔS = 146 J/K/mol, it is positive

Now, ΔG = ΔH-TΔS

= (-ve) - T (+ve), Thus, when ΔH, is -ve, ΔS is +ve, -TΔS is -ve, the ΔG will be -ve. Therefore, reaction will be spontaneous at all the temperatures.  

An ice cube at 0.00C with a mass of 8.32g is placed Into 55g of water, initially at 25C. If no heat is lost to the surroundings, what is the final temperature of the entire water sample after all the ice is melted (answer must be in 3 sig figs)

Answers

Answer:

The final temperature of the entire water sample after all the ice is melted, is 12,9°C. We should realize that if there is no loss of heat in our system, the sum of lost or gained heat is 0.  It is logical to say that the temperature has decreased because the ice gave the water "heat" and cooled it

Thats all i know

The insoluble salts below are put into 0.10 M hydrochloric acid solution. Do you expect their solubility to be more, less, or about the same as in a pure water solution?
1. Zinc sulfide
2. Silver chloride
3. Lead iodide
4. Silver hydroxide

Answers

Answer:

1. Zinc sulfide : about the same solubility, no common ion is found.

2. Silver chloride : less solubility due to the presence of chloride ions provided by the 0.10 M hydrochloric acid.

3. Lead iodide  : about the same solubility, no common ion is found.

4. Silver hydroxide : about the same solubility, no common ion is found.

Explanation:

Hello,

In this case, we first must remember that adding a common ion (which is related with the dissolving solid) decreases the solubility of the insoluble solid due to the fact Le Chatelier's principle states the reaction will shift leftwards (reactants) to reestablish equilibrium, therefore, we have:

1. Zinc sulfide : about the same solubility, no common ion is found.

2. Silver chloride : less solubility due to the presence of chloride ions provided by the 0.10 M hydrochloric acid.

3. Lead iodide  : about the same solubility, no common ion is found.

4. Silver hydroxide : about the same solubility, no common ion is found.

Best regards.

A student mixed 50 ml of 1.0 M HCl and 50 ml of 1.0 M NaOH in a coffee cup calorimeter and calculate the molar enthalpy change of the acid-base neutralization reaction to be –54 kJ/mol. He next tried the same experiment with 100 ml of 1.0 M HCl and 100 ml of 1.0 M NaOH. The calculated molar enthalpy change of reaction for his second trial was:

Answers

Answer: The calculated molar enthalpy change of reaction for his second trial was -108 kJ.

Explanation:-

Molarity of a solution is defined as the number of moles of solute dissolved per Liter of the solution.

[tex]\text{no of moles}={\text{Molarity}\times {\text{Volume in L}}[/tex]

Thus [tex]\text{no of moles}of HCl={1.0M}\times {0.05L}=0.05moles[/tex]

Thus [tex]\text{no of moles}of NaOH={1.0M}\times {0.05L}=0.05moles[/tex]

[tex]HCl(aq)+NaOH(aq)\rightarrow NaCl(aq)+H_2O(l)[/tex]

Given for second trial:

[tex]\text{no of moles}of HCl={1.0M}\times {0.1L}=0.1moles[/tex]

[tex]\text{no of moles}of NaOH={1.0M}\times {0.1L}=0.1moles[/tex]

0.05 moles of [tex]HCl[/tex] reacts with 0.05 moles of [tex]NaOH[/tex] to release  heat = 54 kJ

0.1 moles of [tex]HCl[/tex] reacts with 0.05 moles of [tex]NaOH[/tex] to release  heat  =[tex]\frac{54}{0.05}\times 0.1=108kJ[/tex]

Thus calculated molar enthalpy change of reaction for his second trial was -108 kJ.

. You have two solutions, both with a concentration of 0.1M. Solution A contains a weak acid with a pKa of 5. ThepH of solution A is 3. Solution B contains a weak acid with a pKa of 9. The pH of solution B is:

Answers

Answer:

pH of solution B is 5

Explanation:

A weak acid, HA, is in equilibrium with water as follows:

HA(aq) + H₂O(l) ⇄ A⁻(aq) + H₃O⁺(aq)

Where Ka (10^-pKa = 1x10⁻⁹) is:

Ka = 1x10⁻⁹ = [A⁻] [H₃O⁺] / [HA]

Where concentrations of this species are equilibrium concentrations

As initial concentration of HA is 0.1M, the equilibrium concentrations of the species are:

[HA] = 0.1M - X

[A⁻] = X

[H₃O⁺] = X

Where X is the amount of HA that reacts until reach the equilibrium, X is reaction coordinate.

Replacing in Ka expression:

1x10⁻⁹ = [A⁻] [H₃O⁺] / [HA]

1x10⁻⁹ = [X] [X] / [0.1 - X]

1x10⁻¹⁰ - 1x10⁻⁹X = X²

1x10⁻¹⁰ - 1x10⁻⁹X - X² = 0

Solving for X:

X = -0.00001 → False solution, there is no negative concentrations.

X = 1x10⁻⁵ → Right solution.

As [H₃O⁺] = X

[H₃O⁺] = 1x10⁻⁵M

And pH = -log[H₃O⁺]

pH = 5

pH of solution B is 5
Other Questions
Which of the following is equivalent to 2i(6 7i)? Define enlightenment A. found of Buddhism B. wisdom C. the Buddha's word for release from selfishness and pain D. Nirvana Please answer quickly i will give you brainliest if its correct- it has to be a simplified fraction please How does the middle row of panels help develop the central idea of this page? How could the notion of maximum parsimony lead to an error in establishing an evolutionary relationship A__________produces finished-goods inventory in advance of customer demand using a forecast of sales. In the nation of Gondor, the EPA requires that half the new cars sold will meet a certain particulate emission standard a year later. A sample of 64 one-year-old cars revealed that only 24 met the particulate emission standard. The test statistic to see whether the proportion is below the requirement is Please HelpA skydiver jumps out of a hovering helicopter, so there is no forward velocity. Use this information to answer questions. Ignore wind resistance for this exercise. 3. What is the skydiver's velocity after one second? Show your work and include direction. Convert 7,348 grams to kilograms A poker hand consisting of 7 cards is dealt from a standard deck of 52 cards. Find the probability that the hand contains exactly 3 face cards. Leave your answer as a reduced fraction. 3. How many bytes of storage space would be required to store a 400-page novel in which each page contains 3500 characters if ASCII were used? How many bytes would be required if Unicode were used? Represent the answer in MB How does Sophocles manipulate different literary terms to enhance the theme of Oedipus Rex? The maximum tax rate on estates and gifts: Question 7 options: is gradually increasing. has remained constant. is gradually declining. has increased sharply. how did people become slaves in africa Given m = - 1/4 & the point (4, 5)which of the following is the point slope form of the equation? Your Vision for Social ChangeGiven everything that has happened in our countryand in our neighborhoods and our schools, what isyour vision of the future? The following income statement and additional year-end information is provided. SONAD COMPANY Income Statement For Year Ended December 31 Sales $1,647,000 Cost of goods sold 807,030 Gross profit 839,970 Operating expenses Salaries expense $225,639 Depreciation expense 39,528 Rent expense 44,469 Amortization expensesPatents 4,941 Utilities expense 18,117 332,694 507,276 Gain on sale of equipment 6,588 Net income $513,864Accounts receivable $29,000 increase Accounts payable $14,925 decrease Inventory 23,425 increase Salaries payable 5,000 decrease Prepare the operating activities section of the statement of cash flows using the indirect method. Draw a Venn diagram and use the given information to fill in the number of elements in each region. the title of this text is "Energy Efficiency".What could be another good title for this next time Which of the following statements about fractions is not true? a. Proper fractions have a greater numerator than denominator b. Improper fractions are percentages greater than 100% c. Mixed fractions can be written as improper fractions d. The product of a fraction and its reciprocal is 1