To see if there is a significant difference in the costs of airline flights between the west and east coasts to Lincoln, Nebraska, one can use a two-sample t-test. It is okay to perform the inference procedure, but the following assumptions and conditions must be checked.
Assumptions: Independence: The airfares for each coast should be independent of each other. Normality: The populations of airfares for both coasts should be approximately normally distributed .Equal variances: The population variances for both coasts should be equal.
Conditions: Sample sizes: Both samples should be large enough so that the Central Limit Theorem applies. Rule of thumb for t-tests is that the sample size should be at least 30.Random sampling: Both samples should be random .To test if the conditions are met, one can create a boxplot for each coast, check the normal probability plots, perform the F-test to check for equal variances, and check the sample sizes. If the assumptions and conditions are met, a two-sample t-test can be used to determine if there is a significant difference in the costs of airline flights between the west and east coasts to Lincoln, Nebraska.
for such more questions on Central Limit Theorem
https://brainly.com/question/13652429
#SPJ11
HELP PLS combine the like terms 3x+5-x+3+4x
Answer:
3x, 4x | 5, 3
Step-by-step explanation:
The equation and graph show the distance traveled by a covertible and a limousine in miles, y, as a function of time in hours, x.
The rate of change of the distance for limousine is less than the rate of change of the convertible.
What is rate of change?How much a quantity changes over a specific time period or interval is the subject of the mathematical notion of rate of change. Several real-world occurrences are described using this basic calculus notion.
In mathematics, the ratio of a quantity change to a time change or other independent variable is used to indicate the rate of change. For instance, the rate at which a location changes in relation to time is called velocity, and the rate at which a velocity changes in relation to time is called acceleration.
The equation of the distance travelled by the convertible is given as:
y = 35x
The equation of the limousine can be calculated using the coordinates of the graph (1, 30) and (2, 60).
The slope is given as:
slope = (change in y) / (change in x) = (60 - 30) / (2 - 1) = 30
Using the point slope form:
y - 30 = 30(x - 1)
y = 30x
So the equation of the limousine is y = 30x.
Comparing the rates, that is the slope we observe that, the rate of change of the limousine is lower than the rate of change of the convertible.
Hence, the rate of change of the limousine is less than the rate of change of the convertible.
Learn more about rate of change here:
https://brainly.com/question/29181502
#SPJ1
Triangle ABC has coordinates A(4,1), B(5,9),and C (2,7). If the triangle is translated 7 units to left, what are the coordinates of B'?
Answer:
(-2,9)
Step-by-step explanation:
when moving it 5 units left on the x axis it would be 5-7
So in turn you would be given (-2,9)
Because the y stays the same you would still have (?,9)
I need some help with this
Answer:
12
Step-by-step explanation:
i think its right
kernel composition rules 2 1 point possible (graded) let and be two vectors of the same dimension. use the the definition of kernels and the kernel composition rules from the video above to decide which of the following are kernels. (note that you can use feature vectors that are not polynomial.) (choose all those apply. )
a. 1
b. x.x’
c. 1+ x.x’
d. (1+ x.x’)^2
e. exp (x+x’), for x.x’ ER
f. min (x.x’) for x.x’ E Z
Answer:
Step-by-step explanation:
kernel composition rules 2 1 point possible (graded) let and be two vectors of the same dimension. use the the definition of kernels and the kernel composition rules from the video above to decide which of the following are kernels. (note that you can use feature vectors that are not polynomial.) (choose all those apply. )
AP STATS
Burping (also known as "belching" or "eructation") is one way the human body expels excess gas in your digestive system. It occurs when your stomach fills with air, which can be caused by swallowing food and liquids. Drinking carbonated beverages, such as soda, is known to increase burping because its bubbles have tiny amounts of carbon dioxide in them.
As an avid soda drinker and statistics student, you notice you tend to burp more after drinking root beer than you do after drinking cola. You decide to determine whether there is a difference between the number of burps while drinking a root beer and while drinking a cola. To determine this, you select 20 students at random from high school, have each drink both types of beverages, and record the number of burps. You randomize which beverage each participant drinks first by flipping a coin. Both beverages contain 12 fluid ounces. Here are the results:
Part A: Based on these results, what should you report about the difference between the number of burps from drinking root beer and those from drinking cola? Give appropriate statistical evidence to support your response at the α = 0.05 significance level.
Part B: How much of a difference is there when an individual burps from drinking root beer than from drinking cola? Construct and interpret a 95% confidence interval.
Part C: Describe the conclusion about the mean difference between the number of burps that might be drawn from the interval. How does this relate to your conclusion in part A?"
The mean number of burps after drinking root beer is between 0.66 and 4.24 burps fewer than after drinking cola.
What is the definition of a mean number?Mean: The "average" number obtained by adding all data points and dividing the total number of data points by the total number of data points.
Part A: A paired t-test can be used to see if there is a significant difference in the number of burps after drinking root beer versus cola. The null hypothesis states that there is no difference in the mean number of burps between the two beverages, whereas the alternative hypothesis states that there is. Using a two-tailed test with a significance level of = 0.05, we find that the t-value is -3.365 and the p-value is 0.003. We reject the null hypothesis because the p-value is less than the significance level and conclude that there is a significant difference in the mean number of burps between root beer and cola.
Part B: We can use the paired t-test formula to generate a 95% confidence interval for the difference in the mean number of burps between root beer and cola:
(xd - d) / (sd / n) t
where xd represents the sample mean difference, d represents the hypothesised population mean difference (which is 0), sd represents the sample standard deviation of the differences, and n represents the sample size.
We calculate the sample mean difference to be -2.45 and the sample standard deviation of the differences to be 2.69 using the data in the table. We get a t-value of -3.365 with 19 degrees of freedom after plugging in these values. The critical t-value for a 95% confidence interval with 19 degrees of freedom is 2.093, according to a t-distribution table.
As a result, the 95% CI for the true difference in the mean number of burps between root beer and cola is (-4.24, -0.66). This means that we are 95% certain that the true population mean difference is within this range.
To know more about Mean Number Visit:
https://brainly.com/question/21800892
#SPJ1
4. A parking lot in the shape of a trapezoid has an area of 2,930.4 square meters. The length of one base is 73.4 meters, and the length of the other base is 3760 centimeters. What is the width of the parking lot? Show your work.
The parking lot has a width of around [tex]0.937[/tex] meters.
Are meters used in English?This same large percentage of govt, company, and industry use metric measurements, but imperial measurements are still frequently used for fresh milk sales and are marked with the metric equiv for journey distances, vehicle speeds, and sizes of returnable milk canisters, beer glasses, and cider glasses.
How much in math are meters?100 centimeters make up one meter. Meters are able to gauge a building's length or a playground's dimensions. 1000 meters make up one kilometer.
[tex]3760 cm = 37.6 m[/tex]
Solve for the width,
[tex]area = (1/2) * (base1 + base2) * height[/tex]
where,
base1 [tex]= 73.4 m[/tex]
base2 [tex]= 37.6 m[/tex]
area [tex]= 2,930.4[/tex] square meters
Let's solve for the height first,
[tex]height = 2 * area / (base1 + base2)[/tex]
[tex]height = 2 * 2,930.4 / (73.4 + 37.6)[/tex]
[tex]height = 2 * 2,930.4 / 111[/tex]
[tex]height = 56.16 m[/tex]
We nowadays can apply the algorithm to determine the width.
[tex]width = (area * 2) / (base1 + base2) * height[/tex]
[tex]width = (2 * 2,930.4) / (73.4 + 37.6) * 56.16[/tex]
[tex]width = 5856.8 / 111 * 56.16[/tex]
[tex]width = 5856.8 / 6239.76[/tex]
[tex]width = 0.937[/tex]
Therefore, the width of the parking lot is approximately [tex]0.937[/tex] meters.
To know more about meters visit:
https://brainly.com/question/22552981
#SPJ1
Suppose a tank of water is a cylinder. The tank has a diameter of 14 inches and is filled
to a height of 9 inches. A fish tank decoration is placed in the tank and the water rises
by 2 inches with the decoration being completely covered by water. Find the volume of
the decoration to the nearest tenth of a cubic inch.
The decoration's volume, to the closest tenth of an inch cubic, is: 308.9 cubic inches make up V.
what is volume ?The quantity of space that an object or substance occupies is measured by its volume. Usually, it is expressed in cubic measures like cubic metres, cubic feet, or cubic inches. By multiplying an object's length, width, and height, or by applying a formula unique to the shape of the object, one can determine the volume of the object.
given
The cylinder's radius is equal to half of its diameter, or 14/2, or 7 inches. The new water level is 9 + 2 = 11 inches because the initial water level was 9 inches and the decoration raised the water level by 2 inches.
The decoration's volume is equivalent to the volume of water it removed from the area.
We can determine the volume of the ornamentation by using the following formula: V = r2h.
V = (72/2), which equals 98 cubic inches.
The decoration's volume, to the closest tenth of an inch cubic, is: 308.9 cubic inches make up V.
To know more about volume visit :-
https://brainly.com/question/13338592
#SPJ1
this question has several parts that must be completed sequentially. if you skip a part of the question, you will not receive any points for the skipped part, and you will not be able to come back to the skipped part. tutorial exercise use the trapezoidal rule and simpson's rule to approximate the value of the definite integral for the given value of n. round your answers to four decimal places and compare the results with the exact value of the definite integral. integral 0 - 4 for x2 dx, n=4
The Simpson's rule gives a more accurate approximation of the definite integral.
The question requires you to use both the trapezoidal rule and Simpson's rule to approximate the value of a definite integral for the given value of n. Then, you should round your answers to four decimal places and compare the results with the exact value of the definite integral.Integral: 0 - 4 for x^2 dx, n=4Using Trapezoidal Rule:The Trapezoidal rule is a numerical integration method used to calculate the approximate value of a definite integral. The rule involves approximating the region under the graph of the function as a trapezoid and calculating its area. The formula for Trapezoidal Rule is given by:∫baf(x)dx≈h2[f(a)+2f(a+h)+2f(a+2h)+……+f(b)]whereh=b−anUsing n = 4, we get, h = (b-a)/n = (4-0)/4 = 1Therefore,x0 = 0, x1 = 1, x2 = 2, x3 = 3 and x4 = 4f(x0) = 0, f(x1) = 1, f(x2) = 4, f(x3) = 9, and f(x4) = 16∫4.0x^2 dx = (1/2)[f(x0) + 2f(x1) + 2f(x2) + 2f(x3) + f(x4)](1/2)[0 + 2(1) + 2(4) + 2(9) + 16] = 37
Using Simpson's Rule:Simpson's rule is a numerical integration method that is similar to the Trapezoidal Rule, but the function is approximated using quadratic approximations instead of linear approximations. The formula for Simpson's Rule is given by:∫baf(x)dx≈h3[ f(a)+4f(a+h)+2f(a+2h)+4f(a+3h)+….+f(b)]whereh=b−an, and n is even.Using n = 4, we get, h = (b-a)/n = (4-0)/4 = 1Therefore, x0 = 0, x1 = 1, x2 = 2, x3 = 3 and x4 = 4f(x0) = 0, f(x1) = 1, f(x2) = 4, f(x3) = 9, and f(x4) = 16∫4.0x^2 dx = (1/3)[f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + f(x4)](1/3)[0 + 4(1) + 2(4) + 4(9) + 16] = 20Comparing the results with the exact value of the definite integral, we have:Integral 0 - 4 for x^2 dx = ∫4.0x^2 dx = [x^3/3]4.0 - [x^3/3]0 = 64/3 ≈ 21.3333Thus, using Trapezoidal Rule, we get an approximation of 37, which has an error of 15.6667, while using Simpson's Rule, we get an approximation of 20, which has an error of 1.3333. Therefore, Simpson's rule gives a more accurate approximation of the definite integral.
Learn more about Approximation
brainly.com/question/30707441
#SPJ11
The difference between two numbers is eight.
if the smaller number is n to the third power
what is the greater number?
The greater number is [tex]$n^3+8$[/tex]
Let x be the greater number and y be the smaller number. We know that x-y=8.
We are also given that the smaller number is n³.
So we can set up the equation:
x = y + 8
x = n³ + 8
Therefore, the greater number is [tex]$n^3+8$[/tex].
The greater number is given as n³ + 8. If the smaller number we get is represented by the n³, then by adding 8 to that value gives the greater number. The difference between the two numbers is always going to be 8, regardless of the value of n.
Learn more about numbers
https://brainly.com/question/25734188
#SPJ4
A relation contains the points (1, -4), (3, 2), (4, -3), (x, 7), and (-4, 6). For which values of x will the relation be a function?
In response to the stated question, we may state that To conclude, the function problem's relation is a function for all x values except x between 3 and 4.
what is function?In mathematics, a function is a connection between two sets of numbers in which each member of the first set (known as the domain) corresponds to a single element in the second set (called the range). In other words, a function takes inputs from one set and produces outputs from another. Inputs are commonly represented by the variable x, whereas outputs are represented by the variable y. A function can be described using an equation or a graph. The equation y = 2x + 1 represents a linear function in which each value of x yields a distinct value of y.
If and only if each input has precisely one output, a relation is a function. To determine whether the connection stated in the issue is a function, we must examine whether any x values have more than one output.
We may achieve this by putting the specified points on a graph and looking for vertical lines that cross the graph more than once. If so, the relationship is not a function.
We may create the following graph with the supplied points:
|
8 |
|
7 | ●
|
6 | ●
|
5 |
|
4 | ●
|
3 | ●
|
2 | ●
|
1 |
|
0 |
|
-1 |
|
-2 |
|
-3 |
|
-4 |
|
|_____________________
-4 -3 -2 -1 0 1 2 3 4
Apart for the line travelling through the points (3, 2) and (4, 2), there is no vertical line that intersects the graph in more than one spot (4, -3). As a result, if x is between 3 and 4, the relation specified in the issue is not a function.
To conclude, the problem's relation is a function for all x values except x between 3 and 4.
To know more about function visit:
https://brainly.com/question/28193995
#SPJ1
5x-2=3(x+4)
What is the value of X
Answer:
[tex]\large\boxed{\textsf{x = 7}}[/tex]
Step-by-step explanation:
[tex]\textsf{For this problem, we are asked to find the value of x.}[/tex]
[tex]\textsf{We should simply isolate the x so that it's only on one side.}[/tex]
[tex]\large\underline{\textsf{How?}}[/tex]
[tex]\textsf{Simply use the Distributive Property for the right side of the equation.}[/tex]
[tex]\textsf{Simplify the equation to where x is by itself.}[/tex]
[tex]\large\underline{\textsf{What is the Distributive Property?}}[/tex]
[tex]\textsf{The Distributive Property is a Property that allow us to distribute expressions further.}[/tex]
[tex]\textsf{Commonly, the form is a(b+c); Where b and c are multiplied by a.}[/tex]
[tex]\large\underline{\textsf{Use the Distributive Property;}}[/tex]
[tex]\mathtt{5x-2=3(x+4)}[/tex]
[tex]\mathtt{5x-2=(3 \times x)+(3 \times 4)}[/tex]
[tex]\mathtt{5x-2=3x+12}[/tex]
[tex]\large\underline{\textsf{Add 2 to Both Sides of the Equation;}}[/tex]
[tex]\mathtt{5x-2 \ \underline{+ \ 2}=3x+12 \ \underline{+ \ 2}}[/tex]
[tex]\mathtt{5x=3x+14}[/tex]
[tex]\large\underline{\textsf{Subtract 3x from Both Sides of the Equation;}}[/tex]
[tex]\mathtt{5x-3x=3x-3x+14}[/tex]
[tex]\mathtt{2x=14}[/tex]
[tex]\large\underline{\textsf{Divide the Whole Equation by 2;}}[/tex]
[tex]\mathtt{\frac{2x}{2} = \frac{14}{2} }[/tex]
[tex]\large\boxed{\textsf{x = 7}}[/tex]
Answer:
[tex] \sf \: x = 7[/tex]
Step-by-step explanation:
Now we have to,
→ Find the required value of x.
The equation is,
→ 5x - 2 = 3(x + 4)
Then the value of x will be,
→ 5x - 2 = 3(x + 4)
→ 5x - 2 = 3(x) + 3(4)
→ 5x - 2 = 3x + 12
→ 5x - 3x = 12 + 2
→ 2x = 14
→ x = 14 ÷ 2
→ [ x = 7 ]
Hence, the value of x is 7.
The value of 5^2000+5^1999/5^1999-5^1997
Answer:
We can simplify the expression as follows:
5^(2000) + 5^(1999)
5^(1999) - 5^(1997)
= 5^(1999) * (1 + 1/5)
5^(1997) * (1 - 1/25)
= (5/4) * (25/24) * 5^(1999)
= (125/96) * 5^(1999)
Therefore, the value of the expression is (125/96) * 5^(1999).
Step-by-step explanation:
a committee of 7 members is to be chosen from 6 artists, 4 singers and 5 writers. in how many ways can this be done if in the committee there must be at least one member from each group and at least 3 artists ?
There are 1124 ways to choose a committee of 7 members with at least one member from each group and at least 3 artists.
Here, we have to solve this problem, we can use the concept of combinations, which involves counting the ways to choose a specific number of items from a larger set without regard to the order of selection.
Given the conditions that at least one member must be chosen from each group (artists, singers, writers) and there must be at least 3 artists, we can break down the problem into cases.
Case 1: Choosing 1 artist, 1 singer, and 5 members from the remaining groups (writers).
Case 2: Choosing 2 artists, 1 singer, and 4 members from the remaining groups (writers).
Case 3: Choosing 3 artists, 1 singer, and 3 members from the remaining groups (writers).
For each case, we will calculate the number of ways to choose members and then sum up the results from all three cases to get the total number of ways.
Let's calculate the number of ways for each case:
Case 1:
Number of ways to choose 1 artist: 6C1 (6 ways)
Number of ways to choose 1 singer: 4C1 (4 ways)
Number of ways to choose 5 writers: 5C5 (1 way)
Total ways for case 1: 6C1 * 4C1 * 5C5 = 6 * 4 * 1 = 24
Case 2:
Number of ways to choose 2 artists: 6C2 (15 ways)
Number of ways to choose 1 singer: 4C1 (4 ways)
Number of ways to choose 4 writers: 5C4 (5 ways)
Total ways for case 2: 6C2 * 4C1 * 5C4 = 15 * 4 * 5 = 300
Case 3:
Number of ways to choose 3 artists: 6C3 (20 ways)
Number of ways to choose 1 singer: 4C1 (4 ways)
Number of ways to choose 3 writers: 5C3 (10 ways)
Total ways for case 3: 6C3 * 4C1 * 5C3 = 20 * 4 * 10 = 800
Now, add up the total ways from all three cases:
Total ways = 24 + 300 + 800 = 1124
So, there are 1124 ways to choose a committee of 7 members with at least one member from each group and at least 3 artists.
To learn more about combination:
brainly.com/question/15015700
#SPJ12
in fig. 8-25, a block slides along a track that descends through distance h.the track is frictionless except for the lower section. there the block slides to a stop in a certain distance d because of friction. (a) if we decrease h,will the block now slide to a stop in a distance that is greater than, less than, or equal to d? (b) if, instead, we increase the mass of the block, will the stopping distance now be greater than, less than, or equal to d?
a block slides along a track that descends through distance h. The track is frictionless except for the lower section. There the block slides to a stop in a certain distance d because of friction. If we decrease h, will the block now slide to a stop in a distance that is greater than, less than, or equal to d?As per the given information, when a block slides along a track that descends through a distance h, the track is frictionless except for the lower section. There the block slides to a stop in a certain distance d because of friction. Now if we decrease h, then the distance covered by the block before it comes to rest will also decrease. So the block will slide to a stop in a distance that is less than d. Hence the answer is less than d.If we increase the mass of the block, will the stopping distance now be greater than, less than, or equal to d?
As the mass of the block increases, the force of friction acting on the block will also increase. Hence the stopping distance will also increase. So the stopping distance now will be greater than d. Hence the answer is greater than d.In conclusion, the answer to (a) is less than d, and the answer to (b) is greater than d.
for such more questions on conclusion
https://brainly.com/question/26093731
#SPJ11
A cylindrical tin filled with oil has a diameter of 12cm and a height of 14cm. The oil is then poured in rectangular tin 16cm long and 11cm wide. What is the depth of the oil in the tin
The volume of cylindrical tin is 1584 [tex]cm^3[/tex]. The depth of the oil in the tin is 9cm.
[tex]V_1 =[/tex] VOLUME OF CYLINDRICAL TIN
[tex]= \pi r^2 h[/tex]
[tex]=\frac{22}{7}[/tex] x 6 x 6 x 14
= 44 x 36
= 1584 [tex]cm^3[/tex]
[tex]V_2 =[/tex] VOLUME OF RECTANGULAR TIN
= lbh = 1584
= (16)(11)(h) = 1584
= 176h =1584
= h = 1584 / 176
= h = 9 cm
A cylinder is a three-dimensional shape that consists of a circular base and a curved surface that extends upward to meet at a point known as the apex. The volume of a cylinder is the amount of space occupied by the shape and is given by the formula V = πr²h, Once we have calculated the area of the circular base, we can multiply it by the height of the cylinder to get the volume.
To calculate the volume of a cylinder, we need to know its dimensions, which are the radius and height. The radius is the distance from the center of the circular base to the edge, while the height is the distance between the two circular bases.
To learn more about Volume of cylindrical visit here:
brainly.com/question/30981845
#SPJ4
How do I solve this?
Answer:
X+4
Step-by-step explanation:
Area = l *b
x^2 + 13x + 36 = (X+9) * b
x^2 + 9x + 4x + 36 = (X+9) * b
X(X+9) + 4(X+9) = (X+9) * b
(X+4) (X+9) = (X+9) * b
b = (X+4)
Find the angle measures for m∠QRS and m∠SRT.
Answer:
its 126 and 54 hope this helps
A sphere is to be designed with a radius of 72 in. Use differentials to estimate the maximum error when measuring the volume of the sphere if the possible error in measuring the radius is 0.5 in. 4 (Hint: The formula for the volume of a sphere is V(r) = ²³.) O 452.39 in ³ O 16,286.02 in ³ O 65,144.07 in ³ O 32,572.03 in ³
By using differentials to estimate the maximum error when measuring the volume of the sphere if the possible error in measuring the radius is 0.5. It will be 32,572.03 in³. Which is option (d).
How to measure the maximum error while measuring the volume of a sphere?The possible error in measuring the radius of the sphere is 0.5 in
The formula for the volume of a sphere is given by V(r) = 4/3πr³
The volume of the sphere when r=72 in is given by V(72) = 4/3π(72)³
When r= 72 + 0.5 in= 72.5 in, the volume of the sphere can be calculated using the formula:
V(72.5) = 4/3π(72.5)³
The difference between these two volumes, V(72) and V(72.5), gives us the maximum error while measuring the volume of a sphere. It can be calculated as follows:
V(72.5) - V(72) = 4/3π(72.5)³ - 4/3π(72)³= 4/3π [ (72.5)³ - (72)³ ]= 4/3π [ (72 + 0.5)³ - 72³ ]= (4/3)π [ 3(72²)(0.5) + 3(72)(0.5²) + 0.5³ ]≈ (4/3)π [ 777.5 ]= 3.28 × 10⁴ in³
Therefore, the maximum error while measuring the volume of a sphere with a radius of 72 in, where the possible error in measuring the radius is 0.5 in, is approximately 3.28 × 10⁴ in³ or 32,572.03 in³. Therefore coorect option is (D).
To know more about the maximum error: https://brainly.com/question/13370015
#SPJ11
question 962946: if a triangle with all sides equal length has a perimeter of 15x 27, what is an expression for the length of one of it's sides?
If a triangle with all sides of equal length has a perimeter of 15x + 27, the expression for the length of one of the sides is (5x + 9).
How to find the expression for the length of one of the sides of a triangle?The perimeter of a triangle is the sum of the lengths of all three sides. If all the sides of the triangle are equal, you can find the length of one side by dividing the perimeter by 3. Here, the perimeter is given as 15x + 27.
Therefore, the length of one side will be (15x + 27) / 3 = 5x + 9. Hence, an expression for the length of one of the sides is (5x + 9).
Learn more about expression here: brainly.com/question/1859113.
#SPJ11
Complete the following activity by identifying the location of the muscles, bones, and sensory organs.
Part One
1. Label each of the following body parts on the two pictures below: muscles, bones, and sensory
organs.
2. In the space provided, describe the function of each body part you labeled.
Name: Date:
Lesson 13.04: Building Muscles
Lesson Assessment: Building Muscles
Muscles:
Bones:
Sensory organs:
Muscles:
Part Two
In the space provided, describe how the bones, muscles, and sensory organs all work together.
I can give you with a general explanation of the functions of muscles, bones, and sensitive organs, as well as how they work together.
Muscles are responsible for movement and give the force needed to move bones. They're attached to bones via tendons and work in dyads or groups to produce coordinated movement. Muscles are also responsible for maintaining posture and generating heat.
Bones give a rigid frame for the body, cover internal organs, and serve as attachment points for muscles. They also store minerals similar as calcium and produce blood cells in the bone gist.
sensitive organs, similar as the eyes, cognizance, nose, and skin, descry and respond to stimulants in the terrain. They transmit information to the brain, which processes the information and generates an applicable response.
All three body corridor work together in the musculoskeletal system to produce movement, maintain posture, and respond to external stimulants. Muscles attach to bones and work together to produce coordinated movement. sensitive organs descry stimulants in the terrain and transmit information to the brain, which coordinates muscle movement and generates a response. Bones give the rigid frame and attachment points for muscles, as well as cover internal organs.
find three positive numbers whose product is 115 such that their sum is as small as possible. provide your answer below:
Three numbers have a product of 115 and a sum of 3(√115), which is the smallest possible sum.
What is positive number?In mathematics, a positive number is any number that is greater than zero. This includes all numbers that are written without a minus sign or are explicitly denoted as positive, such as 1, 2, 3, 4, 5, and so on
According to question:To find three positive numbers whose product is 115 and whose sum is as small as possible, we can use the AM-GM inequality. In other words, if we have three positive numbers x, y, and z, then:
(x + y + z)/3 ≥ (xyz)^(1/3)
If we rearrange this inequality, we get:
x + y + z ≥ 3(√(xyz))
Now, let's apply this inequality to the given problem. We want to find three positive numbers x, y, and z whose product is 115 and whose sum is as small as possible. Therefore, we want to minimize x + y + z while still satisfying the condition xyz = 115.
Using the AM-GM inequality, we have:
x + y + z ≥ 3(√(xyz)) = 3(√115) ≈ 16.75
Therefore, the sum of the three numbers is at least 16.75. To find three numbers that achieve this minimum sum, we can use trial and error or solve the system of equations:
xyz = 115
x + y + z = 3(√115)
One solution to this system is:
x = √(115/3)
y = √(115/3)
z = 3(√(115/3)) / 5
These three numbers have a product of 115 and a sum of 3(√115), which is the smallest possible sum.
To know more about positive numbers visit:
https://brainly.com/question/1149428
#SPJ1
The complete question is Find three positive numbers whose product is 115.
Find the real part of the particular solution Find the real part of the particular solution to the differential equation dạy 3 dt2 dy +5 + 7y =e3it dt in the form y=Bcos(3t) + C sin(3t) where B, C are real fractions. = Re(y(t)) = = symbolic expression ?
The real part of the particular solution to the differential equation is [tex](1/30)Re(e^(3it))(sin(3t) - cos(3t))[/tex]
The real part of the particular solution to the differential equation:
[tex]\frac{d^2y}{dt^2} +3\frac{dy}{dt} +7y = e^(3it)[/tex]
First, we assume a particular solution of the form:
[tex]y(t) = Bcos(3t) + Csin(3t)[/tex]
where B and C are real fractions.
Taking the first and second derivatives of y(t), we get:
[tex]\frac{dy}{dt} = -3Bsin(3t) + 3Ccos(3t)[/tex]
[tex]\frac{d^2y}{dt2} = -9Bcos(3t) - 9Csin(3t)[/tex]
Substituting these into the differential equation, we get:
[tex](-9Bcos(3t) - 9Csin(3t)) + 3(-3Bsin(3t) + 3Ccos(3t)) + 7(Bcos(3t) + Csin(3t)) = e^(3it)[/tex]
Simplifying and collecting terms, we get:
[tex](-9B + 21C)*cos(3t) + (-9C - 9B)*sin(3t) = e^(3it)[/tex]
Comparing the coefficients of cos(3t) and sin(3t), we get:
[tex]-9B + 21C = Re(e^(3it))[/tex]
[tex]-9C - 9B = 0[/tex]
Solving for B and C, we get:
[tex]B = -C[/tex]
[tex]C = (1/30)*Re(e^(3it))[/tex]
Therefore, the particular solution is:
[tex]y(t) = -Ccos(3t) + Csin(3t) = (1/30)Re(e^(3it))(sin(3t) - cos(3t))[/tex]
A differential equation is a mathematical equation that relates a function to its derivatives. It is a powerful tool used in many fields of science and engineering to describe how physical systems change over time. The equation typically includes the independent variable (such as time) and one or more derivatives of the dependent variable (such as position, velocity, or temperature).
Differential equations can be classified based on their order, which refers to the highest derivative present in the equation, and their linearity, which determines whether the equation is a linear combination of the dependent variable and its derivatives. Solving a differential equation involves finding a function that satisfies the equation. This can be done analytically or numerically, depending on the complexity of the equation and the available tools.
To learn more about Differential equation visit here:
brainly.com/question/14620493
#SPJ4
Theorem: "If a and m are relatively prime integers and m > 1, then an inverse of a modulo m exists. Furthermore, this inverse is unique modulo m. (That is, there is a unique positive integer a less than m that is an inverse of a modulo m and every other inverse of a modulo m is congruent to a modulo m.)"Question: Explain why the terms a and m have to be relatively prime integers?
The reason why the terms a and m have to be relatively prime integers is that it is the only way to make sure that ax≡1 (mod m) is solvable for x within the integers modulo m.
Theorem:"If a and m are relatively prime integers and m > 1, then an inverse of a modulo m exists. Furthermore, this inverse is unique modulo m. (That is, there is a unique positive integer a less than m that is an inverse of a modulo m and every other inverse of a modulo m is congruent to a modulo m.)"If a and m are relatively prime integers and m > 1, then an inverse of a modulo m exists. Furthermore, this inverse is unique modulo m. (That is, there is a unique positive integer a less than m that is an inverse of a modulo m and every other inverse of a modulo m is congruent to a modulo m.)The inverse of a modulo m is another integer, x, such that ax≡1 (mod m).
This theorem has an interesting explanation: if a and m are not co-prime, then there is no guarantee that ax≡1 (mod m) has a solution in Zm. The reason for this is that if a and m have a common factor, then m “absorbs” some of the factors of a. When this happens, we lose information about the congruence class of a, and so it becomes harder (if not impossible) to undo the multiplication by .This is the reason why the terms a and m have to be relatively prime integers.
To know more about function click here :
https://brainly.com/question/12976257
#SPJ11
Can anyone solve this ???
The result (recurrent value), A = sum j=1 to 89 ln(j), is true for every n. This is the desired result.
How do you depict a relationship of recurrence?As in T(n) = T(n/2) + n, T(0) = T(1) = 1, a recurrence or recurrence relation specifies an infinite sequence by explaining how to calculate the nth element of the sequence given the values of smaller members.
We can start by proving the base case in order to demonstrate the first portion through recurrence. Let n = 1. Next, we have:
Being true, ln(a1) = ln(a1). If n = k, let's suppose the formula is accurate:
Sum j=1 to k ln = ln(prod j=1 to k aj) (aj)
Prod j=1 to k aj * ak+1 = ln(prod j=1 to k+1 aj)
(Using the logarithmic scale) = ln(prod j=1 to k aj) + ln(ak+1)
Using the inductive hypothesis, the property ln(ab) = ln(a) + ln(b)) = sum j=1 to k ln(aj) + ln(ak+1) = sum j=1 to k+1 ln (aj)
(b), we can use the just-proven formula:
A = ln(1, 2,...) + ln + ln (89)
= ln(j=1 to 89) prod
sum j=1 to 89 ln = ln(prod j=1 to 89 j) (j).
To know more about hypothesis visit:-
https://brainly.com/question/29519577
#SPJ1
The expression tan(0) cos(0) simplifies to sin(0) . Prove it
Help asap please
Two numbers have a sum of 1022. They have a difference of 292. What are the two numbers
Answer:
The answer is 657 and 365.
Step-by-step explanation:
Let the two numbers be x and y respectively
In first case,
x+y=1022
x=1022-y----------- eqn i
In second case
x-y=292
1022-y-y=292 [From eqn i]
1022-2y=292
1022-292=2y
730=2y
730/2=y
y=365
Substituting the value of y in eqn i
x=1022-y
x=1022-365
x=657
Hence two numbers are 657 and 365.
Pls mark me as brainliest if you got the answer
a) Find the approximations T8 and M8 for the integral Integral cos(x^2) dx between the limits 0 and 1. (b) Estimate the errors in the approximations of part (a). (C) How large do we have to choose n so that the approximation Tn and Mn to the integral in part (a) are accurate to within 0.0001?
(a) Using the Trapezoidal rule, T8 = (1/16)[cos(0) + 2cos(1/16) + 2cos(2/16) + ... + 2cos(7/16) + cos(1)].
Using the Midpoint rule, M8 = (1/8)[cos(1/16) + cos(3/16) + ... + cos(15/16)].
(b) The error in the Trapezoidal rule is bounded by (1/2880)(1-0)^3(max|f''(x)|), where f''(x) = -4x^2sin(x^2) and 0 <= x <= 1. Therefore, the error in T8 is approximately 0.00014. The error in the Midpoint rule is bounded by (1/1920)(1-0)^3(max|f''(x)|), which gives an approximate error of 0.00011 for M8.
(c) Let n be the number of intervals in the approximation.
Then, the error bound for the Trapezoidal rule is (1/2880)(1-0)^3(max|f''(x)|)(1/n^2), and the error bound for the Midpoint rule is (1/1920)(1-0)^3(max|f''(x)|)(1/n^2).
Setting these equal to 0.0001 and solving for n, we get n >= 129 and n >= 160 for the Trapezoidal and Midpoint rules, respectively. Therefore, we should choose n >= 160 to ensure that both approximations are accurate to within 0.0001.
For more questions like Midpoint rule click the link below:
https://brainly.com/question/17218343
#SPJ11
If θ = 1 π 6 , then find exact values for the following: sec ( θ ) equals csc ( θ ) equals tan ( θ ) equals cot ( θ ) equals Add Work
If θ = 1π/6 then six trigonometric functions of θ are: sec(θ), cos(θ), tan(θ), cot(θ), is [tex]((2 \sqrt{(3)})[/tex], [tex]\sqrt(3)/2[/tex], [tex]\sqrt{(3)}/3[/tex], and [tex]\sqrt{(3)[/tex], respectively.
To find the exact values of sec(θ), cos(θ), tan(θ), and cot(θ) when θ = π/6 radians, we can use the unit circle and the basic trigonometric ratios.
First, we locate the point on the unit circle corresponding to θ = π/6, which has coordinates[tex](\sqrt{(3)}/2, 1/2).[/tex]
Then, we can use the definitions of the trigonometric ratios to calculate their exact values:
sec(θ) = 1/cos(θ) = [tex]2\sqrt3 = (2 \sqrt{(3)})[/tex]
cos(θ) = adjacent/hypotenuse =[tex]\sqrt{(3)}/2[/tex]
tan(θ) = opposite/adjacent = [tex]\sqrt{(3)}/3[/tex]
cot(θ) = adjacent/opposite = [tex]\sqrt(3)[/tex]
Therefore, the exact values of sec(θ), cos(θ), tan(θ), and cot(θ) when θ = π/6 are [tex]((2 \sqrt{(3)})[/tex], [tex]\sqrt(3)/2[/tex], [tex]\sqrt{(3)}/3[/tex], and [tex]\sqrt{(3)[/tex], respectively.
To learn more about 'trigonometric functions':
https://brainly.com/question/25618616
#SPJ11
The graph of f(t) = 7•2^t shows the value of a rare coin in year t. What is the meaning of the y-intercept?
Answer:
When it was purchased (year 0) the coin was worth $7
Step-by-step explanation:
we have
[tex]f(t) = 7(2)^t[/tex]
This is a exponential function of the form
[tex]y=a(b)^x[/tex]
where
a is the initial value
b is the base
In this problem we have
[tex]a=\$7[/tex]
[tex]b=2[/tex]
[tex]b=1+r[/tex]
so
[tex]2=1+r[/tex]
[tex]r=1[/tex]
[tex]r=100\%[/tex]
The y-intercept is the value of the function when the value of x is equal to zero
In this problem
The y-intercept is the value of a rare coin when the year t is equal to zero
[tex]f(0)=7(2)^0[/tex]
[tex]f(0)=\$7[/tex]
therefore
The meaning of y-intercept is
When it was purchased (year 0) the coin was worth $7
Answer:
Value of the coin when it was first released
-------------------------------
The y-intercept is the value of f(0).
Substitute t = 0 and find the y-intercept:
f(0) = 7 · 2⁰ = 7 · 1 = 7This is representing the value of the coin when it was released.