Evaluate S_5 for 600 + 300 + 150 + … and select the correct answer below. A. 1,162.5 B. 581.25 C. 37.5 D. 18,600

Answers

Answer 1

Answer:

  A.  1,162.5

Step-by-step explanation:

Write the next two terms and add them up:

  S5 = 600 +300 +150 +75 +37.5 = 1162.5 . . . . matches choice A

Answer 2
Answer: Choice A 1,162.5

================================================

Explanation:

{600, 300, 150, ...} is a geometric sequence starting at a = 600 and has common ratio r = 1/2 = 0.5, this means we cut each term in half to get the next term. We could do this to generate five terms and then add them up. Or we could use the formula below with n = 5

Sn = a*(1-r^n)/(1-r)

S5 = 600*(1-0.5^5)/(1-0.5)

S5 = 1,162.5

-----------

Check:

first five terms = {600, 300, 150, 75, 37.5}

S5 = sum of the first five terms

S5 = 600+300+150+75+37.5

S5 = 1,162.5

Because n = 5 is relatively small, we can quickly confirm the answer. With larger values of n, a spreadsheet is the better option.


Related Questions

Use the order of operations to simplify this expression 1.2x3.5x4.1= What

Answers

[tex] 1.2\times3.5\times4.1=[(1+0.2)(3+0.5)](4+0.1)[/tex]

$=[1\times3+1\times0.5+0.2\times3+0.2\times0.5](4+0.1)$

$=(3+0.5+0.6+0.1)(4+0.1)$

$=(4.2)(4+0.1)=(4+0.2)(4+0.1)$

$=4\times4+4\times0.1+0.2\times4+0.2\times0.1$

$=16+0.4+0.8+0.02=17.22$

In a stable matching problem, if every man has a different highest-ranking woman on his preference list, and given that women propose, then it is possible that, for some set of women's preference lists, all men end up with their respective highest-ranking woman.a. Trueb. False

Answers

Answer:

True

Step-by-step explanation:

The statement given above in the question is correct. It is mentioned that men are free to create a list of women's according to their preferences. There will be order sequence of women and men places them in queue of their preference. The men proposes the women with highest ranking in the list then it is possible that all men gets their preferred choice.

A low-noise transistor for use in computing products is being developed. It is claimed that the mean noise level will be below the 2.5-dB level of products currently in use. It is believed that the noise level is approximately normal with a standard deviation of .8. find 95% CI

Answers

Answer:

The 95% CI is   [tex]2.108 < \mu < 2.892[/tex]

Step-by-step explanation:

From the question we are told that

   The  population mean [tex]\mu = 2.5[/tex]

    The standard deviation is  [tex]\sigma = 0.8[/tex]

Given that the confidence level is  95% then the level of confidence is mathematically evaluated as

          [tex]\alpha = 100 - 95[/tex]

   =>  [tex]\alpha = 5\%[/tex]

  =>    [tex]\alpha = 0.05[/tex]

Next we obtain the critical value of  [tex]\frac{\alpha }{2}[/tex] from the normal distribution table, the values is  [tex]Z_{\frac{\alpha }{2} } = 1.96[/tex]

Generally the margin of error is mathematically evaluated as

          [tex]E = Z_{\frac{\alpha }{2} } * \frac{\sigma}{\sqrt{n} }[/tex]

here we would assume that the sample size is  n =  16 since the person that posted the question did not include the sample size

  So    

               [tex]E = 1.96* \frac{0.8}{\sqrt{16} }[/tex]

               [tex]E = 0.392[/tex]

The  95% CI is mathematically represented as

              [tex]\= x -E < \mu < \= x +E[/tex]

substituting values

              [tex]2.5 - 0.392 < \mu < 2.5 + 0.392[/tex]

substituting values

              [tex]2.108 < \mu < 2.892[/tex]

       

Find the vector and parametric equations for the line through the point P(0, 0, 5) and orthogonal to the plane −1x+3y−3z=1. Vector Form: r

Answers

Answer:

Note that orthogonal to the plane means perpendicular to the plane.

Step-by-step explanation:

-1x+3y-3z=1 can also be written as -1x+3y-3z=0

The direction vector of the plane -1x+3y-3z-1=0 is (-1,3,-3).

Let us find a point on this  line for which the vector from this point to (0,0,5) is perpendicular to the given line. The point is x-0,y-0 and z-0 respectively

Therefore, the vector equation is given as:

-1(x-0) + 3(y-0) + -3(z-5) = 0

-x + 3y + (-3z+15) = 0

-x + 3y -3z + 15 = 0

Multiply through by - to get a positive x coordinate to give

x - 3y + 3z - 15 = 0

What are the solution(s) of the quadratic equation 98 - x2 = 0?
x = +27
Ox= +63
x = +7/2
no real solution

Answers

Answer:

±7 sqrt(2) = x

Step-by-step explanation:

98 - x^2 = 0

Add x^2 to each side

98 =x^2

Take the square root of each side

±sqrt(98) = sqrt(x^2)

±sqrt(49*2) = x

±7 sqrt(2) = x

Answer:

[tex]\huge \boxed{{x = \pm 7\sqrt{2} }}[/tex]

Step-by-step explanation:

[tex]98-x^2 =0[/tex]

[tex]\sf Add \ x^2 \ to \ both \ sides.[/tex]

[tex]98=x^2[/tex]

[tex]\sf Take \ the \ square \ root \ of \ both \ sides.[/tex]

[tex]\pm \sqrt{98} =x[/tex]

[tex]\sf Simplify \ radical.[/tex]

[tex]\pm \sqrt{49} \sqrt{2} =x[/tex]

[tex]\pm 7\sqrt{2} =x[/tex]

[tex]\sf Switch \ sides.[/tex]

[tex]x= \pm 7\sqrt{2}[/tex]

For lunch, Kile can eat a sandwich with either ham or a bologna and with or without cheese. Kile also has the choice of drinking water or juice with his sandwich. The total number of lunches Kile can choose is

Answers

Answer:

8

Step-by-step explanation:

Ham with or without cheese-2 choices

Bologna with or without cheese-2 choices

Bologna with cheese with water or juice-2 choices

Bologna without cheese with juice or water-2 choices

Ham with cheese with juice or water -2 choices

Ham without cheese with juice or water -2 choices

2+2+2+2=8

Kile has 8 choices for lunch

What is 1/3 of 675 is left

Answers

1/3 of 675 is 225
I hope that helps

Find the doubling time of an investment earning 8% interest if interest is compounded continuously. The doubling time of an investment earning 8% interest if interest is compounded continuously is ____ years.

Answers

Answer:

Step-by-step explanation:

Using FV = PV(1 + r)^n where FV = future value, PV = present value, r = interest rate per period, and n = # of periods

1/PV (FV) = (PV(1 + r^n)1/PV divide by PV

ln(FV/PV) = ln(1 + r^n) convert to natural log function

ln(FV/PV) = n[ln(1 + r)] by simplifying

n = ln(FV/PV) / ln(1 + r) solve for n

n = ln(2/1) / ln(1 + .08) solve for n, letting FV + 2, PV = 1 and rate = 8% or .08 compound annually

n = 9

n = ln(2/1) / ln(1 + .08/12) solve for n, letting FV + 2, PV = 1 and rate = .08/12 compound monthly

n = 104 months or 8.69 years

n = ln(2/1) / ln(1 + .08/365) solve for n, letting FV + 2, PV = 1 & rate = .08/365 compound daily

n = 3163 days or 8.67 years

Alternatively

A = P e ^(rt)

Given that r = 8%

= 8/100

= 0.08

2 = e^(0.08t)

ln(2)/0.08 = t

0.6931/0.08 = t

t= 8.664yrs

t = 8.67yrs

Which ever approach you choose to use,you will still arrive at the same answer.

A population of bacteria P is changing at a rate of dP/dt = 3000/1+0.25t where t is the time in days. The initial population (when t=0) is 1000. Write an equation that gives the population at any time t. Then find the population when t = 3 days.

Answers

Answer:

- At any time t, the population is:

P = 375t² + 3000t + 1000

- At time t = 3 days, the population is:

P = 13,375

Step-by-step explanation:

Given the rate of change of the population of bacteria as:

dP/dt = 3000/(1 + 0.25t)

we need to rewrite the given differential equation, and solve.

Rewriting, we have:

dP/3000 = (1 + 0.25t)dt

Integrating both sides, we have

P/3000 = t + (0.25/2)t² + C

P/3000 = t + 0.125t² + C

When t = 0, P = 1000

So,

1000/3000 = C

C = 1/3

Therefore, at any time t, the population is:

P/3000 = 0.125t² + t + 1/3

P = 375t² + 3000t + 1000

At time t = 3 days, the population is :

P = 375(3²) + 3000(3) + 1000

= 3375 + 9000 + 1000

P = 13,375

Jaclyn is one-fourth of a foot taller than John. John is 31/6 feet tall. How many feet tall is Jaclyn

Answers

Answer:

5 5/12

Step-by-step explanation:

31/6 feet + 1/4 foot

= 31/6 + 1/4

= [(31 * 4) / 6 * 4] + [(1 * 6) / 4 * 6]

=  [ 124/24 ] + [ 6/24 ]

= (124 + 6) / 24

= 130 / 24

= 5 10/24

= 5 5/12

Hope this helps!  Tell me if I'm wrong!

A rotating light is located 16 feet from a wall. The light completes one rotation every 2 seconds. Find the rate at which the light projected onto the wall is moving along the wall when the light's angle is 20 degrees from perpendicular to the wall.

Answers

Answer:

a

Step-by-step explanation:

answer is a on edg

Determine the convergence or divergence of the sequence with the given nth term. If the sequence converges, find its limit. (If the quantity diverges, enter DIVERGES.) an = 1/sqrt(n)

Answers

This sequence converges to 0.

Proof: Recall that

[tex]\displaystyle\lim_{n\to\infty}\frac1{\sqrt n}=0[/tex]

is to say that for any given [tex]\varepsilon>0[/tex], there is some [tex]N[/tex] for which [tex]\left|\frac1{\sqrt n}-0\right|=\frac1{\sqrt n}<\varepsilon[/tex] for all [tex]n>N[/tex].

Let [tex]N=\left\lceil\frac1{\varepsilon^2}\right\rceil[/tex]. Then

[tex]n>\left\lceil\dfrac1{\varepsilon^2}\right\rceil\ge\dfrac1{\varepsilon^2}[/tex]

[tex]\implies\dfrac1n<\varepsilon^2[/tex]

[tex]\implies\dfrac1{\sqrt n}<\varepsilon[/tex]

as required.

Write the equation of the line that passes through (−2, 6) and (2, 14) in slope-intercept form. (2 points)

Answers

Answer:

[tex]y = 4x + 14[/tex]

Step-by-step explanation:

Equation of a line is y = mx + c

where

m is the slope

c is the y intercept

To find the equation we must first find the slope of the line

Slope of the line using points (−2, 6) and (2, 14) is

[tex]m = \frac{14 - 6}{2 + 2} = \frac{8}{2} = 4[/tex]

Now we use the slope and any of the points to find the equation of the line.

Equation of the line using point ( - 2, 6) and slope 4 is

[tex]y - 6 = 4(x + 2) \\ y - 6 = 4x + 8 \\ y = 4x + 8 + 6[/tex]

We have the final answer as

[tex]y = 4x + 14[/tex]

Hope this helps you

A diameter that is perpendicular to a chord bisects the chord. True False

Answers

Answer:

[tex]\Large \boxed{\sf True}[/tex]

Step-by-step explanation:

[tex]\sf A \ diameter \ that \ is \ perpendicular \ to \ a \ chord \ bisects \ the \ chord.[/tex]

Answer:

True!!

I just did the assignment and got it right

For some postive value of Z, the probability that a standardized normal variable is between 0 and Z is 0.3770. The value of Z is

Answers

Answer:

1.16

Step-by-step explanation:

Given that;

For some positive value of Z, the probability that a standardized normal variable is between 0 and Z is 0.3770.

This implies that:

P(0<Z<z) = 0.3770

P(Z < z)-P(Z < 0) = 0.3770

P(Z < z) = 0.3770 + P(Z < 0)

From the standard normal tables , P(Z < 0)  =0.5

P(Z < z) = 0.3770 + 0.5

P(Z < z) =  0.877

SO to determine the value of z for which it is equal to 0.877, we look at the

table of standard normal distribution and locate the probability value of 0.8770. we advance to the  left until the first column is reached, we see that the value was 1.1.  similarly, we did the same in the  upward direction until the top row is reached, the value was 0.06.  The intersection of the row and column values gives the area to the two tail of z.   (i.e 1.1 + 0.06 =1.16)

therefore, P(Z ≤ 1.16 ) = 0.877

which expression have a value of 2/3
A: 8+(24 divided by 12) X 4
B:8+24 divided by (12X4)
C: 8+24 divided 12X4
D: (8+24) divided (12X4)

Answers

B is the correct answer!
32 / 48 =2/3

Please help with this

Answers

Answer:

B) x=80°

Step-by-step explanation:

This is a hexagon, so it has interior angles equaling 720°.  (N-2)*180

So the equation would be

78+134+136+132+2x+x=720

480+3x=720

3x=720-480

3x=240

x=80°

A table has five bowls. None of the quantities in the bowls are prime, though the last two bowls are empty. Two of the quantities are squares, and when added to the remaining number, the sum is 21. What are the amounts in the first three bowls?

Answers

Since two of the quantities are squares and the sum of all of three is equal 21, then the possible values of those two quantities are: 1,4,9,16

Let's consider each possibility

1 and 4

21-1-4=16, but 16 is also square and there can be only two square so NO

1 and 9

21-1-9=11, but 11 is prime, so NO

1 and 16

21-1-16=4... 4 is a square ,so NO

4 and 9

21-4-9=8 , 8 is not prime and not a square, so YES

4 and 16

21-4-16=1, but 1 is a square ,so NO

9 and 16

9+16=25>21 so.. NO

Therefore, the amounts in the first three bowls are 4,8,9.

tan inverse 1/4 +tan inverse 2/7 = 1/2 cos inverse 3/5​

Answers

Answer:

The equation is always false

Step-by-step explanation:

arctan1/4+arctan2/7=1/2arccos3/5

0.24497866+0.27829965=1/2(0.92729521)

0.52327832                 =0.46364760

not equivalent and will never be.

Each leg of a 45°-45°-90° triangle measures 12 cm.
What is the length of the hypotenuse?
Z
х
45°
45°
O 6 cm
12 cm
12 cm
O 672 cm
O 12 cm
O 122 cm

Answers

Answer:

The legs are 12 cm each, so the hypotenuse is

√(144+144)=12√2

Step-by-step explanation:

Applying the Pythagorean Theorem, the length of the hypotenuse is:  12√2 cm.

The Pythagorean TheoremWhere, a and b are two legs of a right triangle, and c is the hypotenuse, the Pythagorean Theorem states that, c² = a² + b².

Given the two legs of the right triangle to be 12 cm

Therefore:

c² = 12² + 12².

c² = 288

c = √288

c = 12√2 cm

Therefore, applying the Pythagorean Theorem, the length of the hypotenuse is:  12√2 cm.

Learn more about, the Pythagorean Theorem on:

https://brainly.com/question/654982

Find the derivative of the function f(x) = (x3 - 2x + 1)(x – 3) using the product rule.
then by distributing and make sure they are the same answer ​

Answers

Answer:

Step-by-step explanation:

Hello, first, let's use the product rule.

Derivative of uv is u'v + u v', so it gives:

[tex]f(x)=(x^3-2x+1)(x-3)=u(x) \cdot v(x)\\\\f'(x)=u'(x)v(x)+u(x)v'(x)\\\\ \text{ **** } u(x)=x^3-2x+1 \ \ \ so \ \ \ u'(x)=3x^2-2\\\\\text{ **** } v(x)=x-3 \ \ \ so \ \ \ v'(x)=1\\\\f'(x)=(3x^2-2)(x-3)+(x^3-2x+1)(1)\\\\f'(x)=3x^3-9x^2-2x+6 + x^3-2x+1\\\\\boxed{f'(x)=4x^3-9x^2-4x+7}[/tex]

Now, we distribute the expression of f(x) and find the derivative afterwards.

[tex]f(x)=(x^3-2x+1)(x-3)\\\\=x^4-2x^2+x-3x^3+6x-4\\\\=x^4-3x^3-2x^2+7x-4 \ \ \ so\\ \\\boxed{f'(x)=4x^3-9x^2-4x+7}[/tex]

Hope this helps.

Do not hesitate if you need further explanation.

Thank you

A sequence of 1 million iid symbols(+1 and +2), Xi, are transmitted through a channel and summed to produce a new random variable W. Assume that the probability of transmitting a +1 is 0.4. Show your work
a) Determine the expected value for W
b) Determine the variance of W

Answers

Answer:

E(w) = 1600000

v(w) = 240000

Step-by-step explanation:

given data

sequence = 1 million iid  (+1 and +2)

probability of transmitting a +1 =  0.4

solution

sequence will be here as

P{Xi = k } = 0.4              for k = +1

                  0.6              for k = +2

and define is

x1  + x2 + ................ + X1000000

so for expected value for W

E(w) = E( x1  + x2 + ................ +  X1000000 )   ......................1

as per the linear probability of expectation

E(w) = 1000000 ( 0.4 × 1 + 0.6 × 2)

E(w) = 1600000

and

for variance of W

v(w) = V ( x1  + x2 + ................ + X1000000 )    ..........................2

v(w) = V x1  + V x2 + ................  + V  X1000000

here also same as that xi are i.e d so cov(xi, xj ) = 0 and i ≠ j

so

v(w) = 1000000 ( v(x) )

v(w) = 1000000 ( 0.24)

v(w) = 240000

PLEASE HELPPPPP!!!!!!!!!!!!!!!Which relationships have the same constant of proportionality between y and x as the following graph?Choose two answers!!

Answers

Answer:

  B, E

Step-by-step explanation:

You can use these strategies to compare the given graph and the other representations.

  A & B) See if the point (x, y) = (8, 6) marked on the first graph works in the given equation.

A -- 6y = 8x   ⇒   6(6) = 8(8) . . . FALSE

B -- y = (3/4)x   ⇒   6 = (3/4)8 . . . True

__

  C) Compare this graph to the given graph. They don't match.

__

  D & E) Plot a point from the table on the given graph and see where it falls.

D -- The point (x, y) = (3, 4) lies above the line on the given graph.

E -- The point (x, y) = (4, 3) lies on the given graph.

_____

Choices B and E have the same constant of proportionality as shown in the given graph.

Answer:

B and E

Step-by-step explanation:

I will rate brainly if you answer this The number of weekly social media posts varies directly with the square root of the poster’s age and inversely with the cube root of the poster’s income. If a 16-year-old person who earns $8,000 makes 64 posts in a week, what is the value of k?

Answers

Answer:

[tex]\large \boxed{\sf \bf \ \ k=320 \ \ }[/tex]

Step-by-step explanation:

Hello,

The number of weekly social media posts varies directly with the square root of the poster’s age and inversely with the cube root of the poster’s income.

If a 16-year-old person who earns $8,000 makes 64 posts in a week, what is the value of k?

[tex]64=\dfrac{\sqrt{16}}{\sqrt[3]{8000}}\cdot k=\dfrac{4}{20}\cdot k=\dfrac{1}{5}\cdot k=0.2\cdot k\\\\k=64*5=320[/tex]

Hope this helps.

Do not hesitate if you need further explanation.

Thank you

k=320.

If a=age, m=income, and n=number of weekly posts:
The relationship can be modeled by
n=k * sqrt(a) / cbrt(m). sqrt(a) is in the numerator because it is directly proportional to n and cbrt(m) is in the denominator because it is inversely proportional to n.
Plugging in the given values, n=64, a=16, m=8000, 64=k* sqrt(16) / cbrt(8000). sqrt(16)=4, and cbrt(8000)=20, so 64=4k/20=k/5. So k=64*5= 320.

Factor.
x2 – 5x - 36

(x - 9)(x + 4)
(x - 12)(x + 3)
(x + 9)(x - 4)
(x + 12)(x - 3)

Answers

Answer:

The answer is option A

Step-by-step explanation:

x² - 5x - 36

To factor the expression rewrite -5x as a difference

That's

x² + 4x - 9x - 36

Factor out x from the expression

x( x + 4) - 9x - 36

Factor out -9 from the expression

x( x + 4) - 9( x+ 4)

Factor out x + 4 from the expression

The final answer is

( x - 9)( x + 4)

Hope this helps you

Answer:

[tex] \boxed{(x - 9) \: (x + 4) }[/tex]

Option A is the correct option.-

Step-by-step explanation:

( See the attached picture )

Hope I helped!

Best regards!

Question 2 Rewrite in simplest radical form 1 x −3 6 . Show each step of your process.

Answers

Answer:

√(x)

Step-by-step explanation:

(1)/(x^-(1/2)) that's 3 goes into -3 leaving 1 and goes into 6 leaving 2

1/2 is same as 2^-1

so therefore we can simplify the above as

x^-(-1/2)

x^(1/2)

and 4^(1/2)

is same as √(4)

so we conclude as

√(x)

Which geometric sequence has a first term equal to 55 and a common ratio of -5? {-55, 11, -2.2, 0.44, …} {55; 275; 1,375; 6,875; …} {55, 11, 2.2, 0.44, …} {55; -275; 1,375; -6,875; …}

Answers

Answer:

The answer is 55, -275, 1375, -6875......

Step-by-step explanation:

Chapter: Simple linear equations Answer in steps

Answers

Answer:

6x-3=21

6x=24

x=4

........

6x+27=39

6x=39-27

6x=12

x=2

........

8x-10=14

8x=24

x=3

.........

6+6x=22

6x=22-6

x=3

......

12x-2=28

12x=26

x=3

.....

8-4x=16

-4x=8

x=-2

.....

4x-24=3x-3

4x-3x=24-3

x=21

....

9x+6=6x+12

9x-6x=12-6

3x=6

x=2

Answer:

Step-by-step explanation:

1. 3(2x - 1) = 21

 = 6x - 3 = 21

 = 6x = 24

 = x = 24/6 = 4

------------------------------

2. 3(2x+9) = 39

   = 6x + 27 = 39

   = 6x = 39 - 27

   = 6x = 12

   = x = 12/6 = 2

--------------------------------

3. 2(4x - 5) = 14

  = 8x - 10 = 14

  = 8x = 14+10

 = x = 3

-------------------------------

One way to calculate the target heart rate of a physically fit adult during exercise is given by the formula h=0.8( 220−x ), where h is the number of heartbeats per minute and x is the age of the person in years. Which formula is equivalent and gives the age of the person in terms of the number of heartbeats per minute?

Answers

Answer:

The answer is:

C. [tex]\bold{x = -1.25h+220}[/tex]

Step-by-step explanation:

Given:

[tex]h=0.8( 220-x )[/tex]

Where [tex]h[/tex] is the heartbeats per minute and

[tex]x[/tex] is the age of person

To find:

Age of person in terms of heartbeats per minute = ?

To choose form the options:

[tex]A.\ x=176-h\\B.\ x=176-0.8h\\C.\ x=-1.25h+220\\D.\ x=h-0.8220[/tex]

Solution:

First of all, let us have a look at the given equation:

[tex]h=0.8( 220-x )[/tex]

It is value of [tex]h[/tex] in terms of [tex]x[/tex].

We have to find the value of [tex]x[/tex] in terms of [tex]h[/tex].

Let us divide the equation by 0.8 on both sides:

[tex]\dfrac{h}{0.8}=\dfrac{0.8( 220-x )}{0.8}\\\Rightarrow \dfrac{1}{0.8}h=220-x\\\Rightarrow 1.25h=220-x[/tex]

Now, subtracting 220 from both sides:

[tex]\Rightarrow 1.25h-220=220-x-220\\\Rightarrow 1.25h-220=-x[/tex]

Now, multiplying with -1 on both sides:

[tex]-1.25h+220=x\\OR\\\bold{x = -1.25h+220}[/tex]

So, the answer is:

C. [tex]\bold{x = -1.25h+220}[/tex]

8. When dividing polynomials using factorization, cancelling identical factors in the denominator and the numerator will give the _______.
A. remainder
B. dividend
C. quotient
D. divisor

Answers

●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●

          Hi my lil bunny!

❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙

When dividing polynomials using factorization, cancelling identical factors in the denominator and the numerator will give the remainder.

A. remainder

B. dividend

C. quotient

D. divisor

❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙

●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●

Hope this helped you.

Could you maybe give brainliest..?

❀*May*❀

Answer:

a. remainder

Step-by-step explanation:

took the test

dont leave your house without a vest

or you will get hit in the vital organs in your chest

Other Questions
musah stands at the center of a rectangular field . He first takes 50 steps north, then 25 step west and finally 50 steps on a bearing of 315. How far west and how far north is Musah final point from the center? A consumer plays the role of:A)a wage earner.B)a saver.C)a borrower.D)All of these choices are correct. What is the energy of a photon of electromagnetic radiation with a wavelength of 963.5 nm? (c = 3.00 108 m/s, h = 6.63 1034 J s subtract c from 7, then divide b by the result If f(x) = 32 +1 and g(x) = 1-, what is the value of (f-g)(2)?12143638 Which of the following elements has a complete outer shell of electrons? A. Iron (Fe) B. Hydrogen (H) C. Neon (Ne) D. Nitrogen (N) According to Aristotle, poetry is a form of _____ 6(x + 2) = 30Solve the following linear equation Discuss fivefive of component ofa map How has the work of chemists affected the environment over the years? WILL GIVE BRAINLY!!!!!!!!!!!!!!!!!!!!!!!!!!There were six traits of good character discussed in the lesson: respect, compassion, perseverance, courage, integrity, and trustworthiness. Which of the listed traits is the theme of the poem It Couldnt Be Done? In a paragraph of not less than five sentences, discuss your choice and give at least two quotes from the poem to justify your selection. Somebody said that it couldnt be done But he with a chuckle replied That maybe it couldnt, but he would be one Who wouldnt say so till hed tried. So he buckled right in with the trace of a grin On his face. If he worried he hid it. He started to sing as he tackled the thing That couldnt be done, and he did it! Somebody scoffed: Oh, youll never do that; At least no one ever has done it; But he took off his coat and he took off his hat And the first thing we knew hed begun it. With a lift of his chin and a bit of a grin, Without any doubting or quiddit, He started to sing as he tackled the thing That couldnt be done, and he did it. There are thousands to point out to you one by one, The dangers that wait to assail you. But just buckle in with a bit of a grin, Just take off your coat and go to it; Just start in to sing as you tackle the thing That cannot be done, and youll do it. Jon wants to buy carpet to cover his whole living room, except for the tiled floor. The tiled floorisoft by 3 1 ft. Find the area the carpet needs to cover. !1245tiled floorEntar AFind the value of x. Your answer must be exact.309 If a person had not drunk any water for 8 hours before collecting a sample, would you expect his/her urine to have a high or low specific gravity? Why? Summarize the central ideas of the article Freud's theory of the id, egi, and superego common lit? The radius of a sphere is measured as 7 centimeters, with a possible error of 0.025 centimeter. Required:a. Use differentials to approximate the possible propagated error, in cm3, in computing the volume of the sphere.b. Use differentials to approximate the possible propagated error in computing the surface area of the sphere. c. Approximate the percent errors in parts (a) and (b). A bicycle has a momentum of 36 kg m/s and a velocity of 4 m/s. What is the mass of the bicycle? 9 kg 32 kg 40 kg 144 kg There are resume templates available on the internet to help you get started ? True or false Little Tots Gym has a required rate of return of 13%. The gym is considering the purchase of $12,500 of new equipment. The internal rate of return on the project has been calculated to be 11%. This project:________ How do I solve 3(x+1)=5(x2)+7?