CO₂ is nonpolar molecule, CH₄ is a nonpolar molecule, N₂ is a nonpolar molecule, and H₂O is a polar molecule.
What are Polar and non-polar molecules?Non polar molecules are the molecules which are symmetric with no unshared electrons in the structure. Polar molecules are the asymmetric molecules, which are either containing lone pairs of electrons on a central atom or having atoms with different electronegativities bonded to each other.
The linear CO₂ molecule is polar molecule due to the difference in electronegativity between the Carbon and Oxygen atoms. The tetrahedral CH₄ molecule is nonpolar since all the atoms have the same electronegativities. The linear N₂ molecule is nonpolar since it has a symmetrical linear shape. Finally, the bent H₂O molecule is polar due to the difference in electronegativity between the Hydrogen and Oxygen atoms.
Learn more about Molecules here:
https://brainly.com/question/15173422
#SPJ11
write the full electron configuration for a k− ion.
A k− ion is a potassium ion that has lost one electron, therefore the full electron configuration is 1s² 2s² 2p² 3s² 3p⁶
How to write an electron configuration?To write an electron configuration, follow these steps:
Write the symbol of the element or ion you are interested in.Determine the total number of electrons based on the atomic number or ion charge.Write the electron configuration using the Aufbau principle, which states that electrons fill orbitals starting from the lowest energy level.Use the Pauli exclusion principle, which states that each orbital can hold a maximum of two electrons with opposite spins.Use Hund's rule, which states that electrons will occupy orbitals of the same energy level with parallel spins before pairing up in the same orbital.The electron configuration for a neutral potassium atom is:
1s² 2s² 2p⁶ 3s² 3p⁶ 4s¹
When one electron is removed from the outermost shell, the electron configuration becomes:
1s² 2s² 2p⁶ 3s² 3p⁶
Learn more on electron configuration here: https://brainly.com/question/26084288
#SPJ1
write a list of rules for recognizing and naming binary molecular compounds from their chemical formulas
The following are the rules for recognizing and naming binary molecular compounds from their chemical formulas:
1. The first element in the chemical formula will be the name of the first element in the compound.
2. The second element in the chemical formula will be the name of the second element in the compound.
3. If the first element is a metal, the second element will end in “-ide”.
4. If the first element is a nonmetal, the second element will end in “-ate” or “-ite”.
5. The prefixes “mono-, di-, tri-, tetra-, penta-, and hexa-” are used to indicate the number of atoms of each element in the compound.
6. When the prefixes are not used, the number of atoms of each element is implied by the subscript.
7. If the subscript is written as a fraction, the fraction is changed to a whole number when forming the compound name.
Learn more about molecular compounds at brainly.com/question/30328923
#SPJ4
The rules for recognizing and naming binary molecular compounds are written focusing on the lower groups and the higher groups.
The rules for recognizing and naming binary molecular compounds from their chemical formulas are as follows:
1. The element with the lower group number is written first in the formula, and its full name is used.
2. The element with the higher group number is written second in the formula, and its stem name is used along with the suffix -ide.
3. The prefixes mono-, di-, tri-, tetra-, penta-, and so on are used to indicate the number of atoms present for each element in the molecule.
4. The prefix mono- is omitted for the first element in the formula.
5. The ending -a or -o in the prefix is omitted if the element name begins with a vowel, and only the vowel of the prefix is used in the compound name.
To learn more about compounds, click here:
https://brainly.com/question/26487468
#SPJ11
A photon of light has a wavelength of 0. 050 cm. Calculate its energy
A photon of light has an energy of 3.977 x [tex]10^{-19}[/tex] joules and a wavelength of 0.050 centimetres.
The energy of a photon is related to its wavelength by the formula E = hc/λ, where E is the energy, h is Planck's constant (6.626 x [tex]10^{-34}[/tex] joule seconds), c is the speed of light (2.998 x [tex]10^{8}[/tex] meters per second), and λ is the wavelength of the photon.
To use this formula, we need to convert the wavelength of the photon from centimeters to meters, since c is given in meters per second. We can do this by dividing 0.050 cm by 100, which gives us 5.0 x [tex]10^{-4}[/tex]meters.
Now we can plug in the values we have into the formula: E = (6.626 x [tex]10^{-34}[/tex] joule seconds) x (2.998 x [tex]10^{8}[/tex] meters per second) / (5.0 x [tex]10^{-4}[/tex]meters)
Simplifying the equation, we get:
E = 3.977 x [tex]10^{-19}[/tex] joules
Therefore, a photon of light with a wavelength of 0.050 cm has an energy of 3.977 x [tex]10^{-19}[/tex] joules. It is important to note that photons are the smallest quantifiable packets of electromagnetic energy, and their energy is directly proportional to their frequency and inversely proportional to their wavelength.
To learn more about wavelength refer to:
brainly.com/question/27353508
#SPJ4
when combined, solutions of silver nitrate and hydroiodic acid produce a precipitate. what are the spectator ions in this reaction?
The spectator ions in the reaction between silver nitrate and hydroiodic acid are nitrate ions (NO₃₋) and hydrogen ions (H⁺).
In order to identify the spectator ions in this reaction, we need to first write out the balanced chemical equation for the reaction:
AgNO₃(aq) + HI(aq) → AgI(s) + HNO₃(aq)
In this equation, the silver nitrate (AgNO₃) reacts with hydroiodic acid (HI) to produce a precipitate of silver iodide (AgI) and nitric acid (HNO₃).
The spectator ions are those ions that do not participate in the reaction, but remain in the solution unchanged. In this case, the nitrate ions (NO₃₋) from silver nitrate and the hydrogen ions (H⁺) from hydroiodic acid are the spectator ions, as they are present on both the reactant and product side of the equation.
In other words, the nitrate ions and hydrogen ions are not involved in the formation of the precipitate of silver iodide, and do not undergo any chemical change themselves.
Learn more about chemical reaction: https://brainly.com/question/11231920
#SPJ11
Which organelle breaks down chemicals in the cell?
The organelle that breaks down chemicals in the cell is the lysosome.
Lysosomes are membrane-bound organelles that contain digestive enzymes that are responsible for breaking down various biomolecules, such as proteins, nucleic acids, carbohydrates, and lipids, into their constituent building blocks. These enzymes are able to break down these molecules through hydrolysis, where water is used to break the chemical bonds. Lysosomes play a crucial role in maintaining cellular homeostasis by removing unwanted or damaged cellular components, recycling macromolecules, and its defending against invading microorganisms. Dysfunction of lysosomes can lead to a variety of diseases known as lysosomal storage disorders.
To know more about Lysosomes, here
brainly.com/question/28202356
#SPJ4
Which equation represents energy being absorbed as a
bond is broken?
A) H+H + H2 + energy
B) H+H+ energy H2
C) H2 + H+H+ energy
D) H2 + energy + H+H
The reaction demonstrates that energy is needed to dissociate the hydrogen atoms from one another, and as a result energy is consumed.
When a chemical bond is broken, energy is required to break the bond, and thus energy is absorbed. The equation that represents energy being absorbed as a bond is broken is option D, which is:
H2 + energy → 2H
In this equation, the energy is shown as a reactant on the left-hand side of the arrow, indicating that it is required for the reaction to proceed. The H2 molecule on the left-hand side represents a molecule with a covalent bond between two hydrogen atoms. When energy is added to the molecule, the bond between the two hydrogen atoms is broken, and the atoms become separated. This results in the formation of two hydrogen atoms on the right-hand side of the arrow, each with one unpaired electron.
Overall, the reaction shows that energy is required to break the bond between the hydrogen atoms, and thus energy is absorbed during the process.
To learn more about energy refer to:
brainly.com/question/626780
#SPJ4
rank the relative rates of the alkyl halides in an sn1 reaction.H3C-1 CH3 CH3 CH₂ H₂C Fastest SN 1 reaction Slowest SN 1 reaction Answer Bank CH3 H3C. CH3 H3C. H₂C₂ CH3 CH3
The relative rates of alkyl halides from fastest sn 1 to slowest sn1 mechanism is CH3 H3C. CH3 H3C. H₂C₂ CH3 CH3.
Alkyl halides can go through one of two different sorts of significant reactions: substitution or elimination.
Nucleophilic Substitution reaction occurs when the halogen at the alpha-carbon is replaced by a nucleophile after the electrophilic alkyl halide forms a new bond with it.
The SN1 reaction mechanism proceeds step-by-step, starting with the formation of the carbocation through the elimination of the leaving group. The nucleophile then attacks the carbocation. Ultimately, the protonated nucleophile is deprotonated to produce the desired product.
Alkenes are formed by the E1 mechanism while substitution products are produced by the Sn1 process.
The rate law in an SN1 reaction is first order. In other words, the concentration of just one component—the alkyl halide—determines the reaction rate.
To know about mechanism
https://brainly.com/question/27921705
#SPJ4
please answer that,
Each of the functions in column A will be performed by their respective hormones. Each of the hormones in the human body has a different function.
What is a hormone?A hormone is a chemical substance that is produced by a gland or a group of cells and is transported by the bloodstream to target cells or organs in the body. They are produced by endocrine glands.
To answer your question:
1. Needed by the body tor water reabsorption - Parathormone2. Needed by the body to increase blood calcium level - Calcitonin3 . Needed by the body to increase one's height - Somatotropin4. Needed by the body to combat insomnia - Endorphin5 . Needed by the body to shield the body from UV rays - Melanocyte SH6 . Needed by the body for proper metabolism - Thyroxine7 . Needed by the body to reduce physical pain or injury - Endorphin8 . Needed by the body to reduce symptoms of stress - Melatonin9 . Needed by the body to develop boy's sex characteristics - Androgen1 0 . Needed by the body to lower blood sugar level - Glucagon
To know more about hormones, visit:
https://brainly.com/question/24383458
#SPJ1
both the cno cycle and the proton-proton chain combine 4 h nuclei to produce 1 he nucleus. would those two processes release the same amount of energy per he nucleus produced? why or why not?
The CNO cycle and the proton-proton chain don't release the same amount of energy per He nucleus produced.
Let's understand this in detail:
1. The CNO cycle produces more energy than the proton-proton chain per He nucleus produced. The proton-proton chain and CNO cycle produce energy by nuclear fusion in the sun's core.
2. In the core of the Sun, the proton-proton chain occurs. It converts four hydrogen nuclei (protons) into one helium nucleus via a series of nuclear reactions. This reaction liberates a significant amount of energy through gamma rays and neutrinos.
3. The CNO cycle also takes four hydrogen nuclei, producing one helium nucleus. The key difference between these two processes is the method in which helium is produced.
4. In the proton-proton chain, two protons combine to form deuterium. This then combines with another proton to form helium-3, and two helium-3 nuclei combine to form helium-4.
5. In the CNO cycle, hydrogen is fused with carbon, nitrogen, and oxygen isotopes to create helium. The CNO cycle releases more energy than the proton-proton chain per He nucleus produced because it has more intermediate steps.
5. The CNO cycle requires more heat and pressure to function because it involves carbon, nitrogen, and oxygen isotopes, which are heavier elements. The proton-proton chain is simpler because it only involves hydrogen and doesn't require as much energy.
Learn more about CNO cycle: What is the net equation for CNO cycle? https://brainly.com/question/19469825
#SPJ11
Will the following reaction result in a precipitate? If so, identify the precipitate.K3PO4 + Cr(NO3)+ 3 KNO3 + CrPO4A. No, a precipitate will not formB. Yes, CrPO4 will precipitateC. Yes, KNO3 will precipitate
Answer: B. Yes, CrPO4 will precipitate. In the given reaction: K3PO4 + Cr(NO3)3 → 3 KNO3 + CrPO4A precipitate is formed when two aqueous solutions are mixed that resulting in the formation of an insoluble compound.
The insoluble compound is called a precipitate. In the given reaction, K3PO4 and Cr(NO3)3 are the reactants. On mixing the two reactants, we can see that there are no common ions present in the reactants that could result in the formation of an insoluble compound. So, no precipitate is formed.
Based on solubility rules, CrPO4 is an insoluble compound. When K3PO4 reacts with Cr(NO3)3, it forms CrPO4. So, the precipitate that is formed is CrPO4. Hence, the correct option is B. Yes, CrPO4 will precipitate.
Read more about the topic of precipitation:
https://brainly.com/question/13877944
#SPJ11
Which best completes the following analogy?
Right brain music = Left brain :
A shapes
B. speech
C colors
D. art
In the given figure, red litmus paper is inserted in solution and colour remains unchanged then what may be contained in vessel among acid, base and salt solution? How can it be further tested to confirm it?
Answer:
Explanation: If the red litmus paper is inserted into the solution and the color remains unchanged, it indicates that the solution is likely a neutral solution or a solution with a pH close to 7. This means that it may contain either water or a salt solution.
To further confirm whether the solution contains a salt or water, we can perform a simple test using blue litmus paper. We can dip a blue litmus paper into the solution, and if it turns red, it indicates that the solution is acidic. If it remains blue, it indicates that the solution is basic.
If the blue litmus paper also does not change its color, it means that the solution is neutral or has a pH close to 7, which supports the possibility that the solution may contain either water or a salt solution.
To further test whether the solution contains a salt or not, we can perform a flame test. We can take a small amount of the solution and place it on a platinum wire loop and hold it in a Bunsen burner flame. If the flame produces a characteristic color, it indicates that the solution contains a salt. The characteristic color of the flame will depend on the metal ion present in the salt.
Overall, based on the initial test with the red litmus paper, the solution is likely neutral or close to neutral, and additional tests with blue litmus paper and flame test can be used to confirm whether the solution contains a salt or water.
Which of the following bonds would be the most polar without being considered ionic?a. F-Hb. Na-Fc. S-Hd. Cl-He. O-H
The most polar bond without being considered ionic would be O-H.
Ionic bonds are the bond formed by the sharing of electrons between nonmetals to create a molecule that is neutral, while a covalent bond is a bond formed by the sharing of electrons between metals and nonmetals to create a molecule that is neutral.
Polar covalent bonds happen when there is an uneven distribution of electrons between two atoms that are bonded together. This is usually because the electrons are more strongly attracted to one atom over the other.
As a result, one atom will have a partial negative charge, and the other atom will have a partial positive charge.
In the water molecule, the O-H bond is polar because oxygen is more electronegative than hydrogen. Since the difference in electronegativity between hydrogen and oxygen is more significant than between the other atoms in the other bonds, the O-H bond is the most polar.
Learn more about polar bonds here:
https://brainly.com/question/29144393
#SPJ11
What correlates with metallic behavior
Answer:
large atomic size and low ionization energy.
Explanation:
Metallic behavior correlates with large atomic size and low ionization energy. Thus, metallic behavior increases down a group and decreases from left to right across a period. Elements in Groups 1A(1) and 2A(2) are strong reducing agents; nonmetals in Groups 6A(16) and 7A(17) are strong oxidizing agents.
write the rate law for each of the following elementary steps and tell whether the reaction unimolecular, bimolecular or termolecular a) o3 cl --> o2 clo b) no2 no2 --> no3 no c) 2no h2 --> h2o2 n2
a. The rate law for the elementary step [tex]O_{3} + Cl[/tex] --> [tex]O_{2} + ClO[/tex] is k[[tex]O_{3}[/tex]][Cl], indicating that the reaction is bimolecular.
b. The rate law for the elementary step [tex]NO_{2}[/tex] + [tex]NO_{2}[/tex] --> [tex]NO_{3}[/tex] + NO is k[[tex]NO_{2}[/tex]]2, indicating that the reaction is termolecular.
c. The rate law for the elementary step 2NO + [tex]H_{2}[/tex] --> [tex]H_{2}O_{2}[/tex] + [tex]N_{2}[/tex] is k[NO][[tex]H_{2}[/tex]], indicating that the reaction is bimolecular.
The moleculаrity of а reаction refers to the number of reаctаnt pаrticles involved in the reаction. Becаuse there cаn only be discrete numbers of pаrticles, the moleculаrity must tаke аn integer vаlue. Moleculаrity cаn be described аs unimoleculаr, bimoleculаr, or termoleculаr. А unimoleculаr reаction occurs when а molecule reаrrаnges itself to produce one or more products. Аn exаmple of this is rаdioаctive decаy, in which pаrticles аre emitted from аn аtom.
А bimoleculаr reаction involves the collision of two pаrticles. Bimoleculаr reаctions аre common in orgаnic reаctions such аs nucleophilic substitution. А termoleculаr reаction requires the collision of three pаrticles аt the sаme plаce аnd time. This type of reаction is very uncommon becаuse аll three reаctаnts must simultаneously collide with eаch other, with sufficient energy аnd correct orientаtion, to produce а reаction.
For more information about rate law refers to the link: https://brainly.com/question/8327819
#SPJ11
complete the lewis structure for this species: co2 e
nter the total number of valence electrons in the box.
valence electrons:
The Lewis structure for CO2 is:
O = C = O
The "e" notation typically refers to an electron, so it's unclear what is meant by "CO2 e". However, the total number of valence electrons for CO2 is 16.
In the pictured cell, the side containing zinc is the_________ and the side containing copper is the __________. The purpose of the Na2SO4 is to _________
In the pictured cell, the side containing zinc is the anode and the side containing copper is the cathode. The purpose of the Na2SO4 is to facilitate the transfer of electrons from the anode to the cathode.
A cell is a unit of life that is the smallest and most simple living organism, it can be classified as a complete organism, with all of the components that make up a living being, including DNA, membranes, and organelles. A voltaic cell is a device that converts chemical energy into electrical energy, it is also known as a galvanic cell or a Daniell cell. It is made up of two different metals that are submerged in an electrolyte solution that enables the transfer of electrons from one electrode to the other. The anode is the electrode that oxidizes and loses electrons during a redox reaction, this electrode is negatively charged, as it is the site of the oxidation reaction that releases electrons and generates an electrical current.
A cathode is an electrode that is reduced and gains electrons in a redox reaction, this electrode is positively charged and acts as a sink for electrons, absorbing them and using them to create a reduction reaction that generates an electrical current. The Na2SO4 in the pictured cell is an electrolyte solution that facilitates the transfer of electrons from the anode to the cathode. The salt dissociates into Na+ and SO42- ions, which then migrate toward the anode and cathode, respectively, where they can participate in redox reactions that generate an electrical current. This flow of ions helps to maintain a balance of charge in the cell and enables the transfer of electrons to occur more efficiently.
Learn more about anode at:
https://brainly.com/question/17109743
#SPJ11
2. For each of the reactions below, write a structural reaction equation (which need not be balanced) by
drawing the structures of the reactant & product and name the product formed.
a) ethanol + K,Cr₂O, / H / reflux
b) ethanol + K₂Cr₂O, / H / distil
c) propan-1-ol + K,Cr₂O,/H. / reflux
d) propan-2-ol + K,Cr,O,/ H / reflux
e) 3-methylbutan-1-ol + K,Cr₂O, / H / reflux
f) 4-chloropentan-1-ol + K₂Cr₂O,/ H / distil
Answer:
a) Ethanol + K2Cr2O7 / H+ / Reflux → Acetaldehyde
CH3CH2OH + [O] → CH3CHO
b) Ethanol + K2Cr2O7 / H+ / Distil → Ethene
CH3CH2OH + [O] → CH2=CH2 + H2O
c) Propan-1-ol + K2Cr2O7 / H+ / Reflux → Propanal
CH3CH2CH2OH + [O] → CH3CH2CHO
d) Propan-2-ol + K2Cr2O7 / H+ / Reflux → Propanone (acetone)
(CH3)2CHOH + [O] → (CH3)2CO
e) 3-Methylbutan-1-ol + K2Cr2O7 / H+ / Reflux → 3-Methylbutanal
CH3CH(CH3)CH2CH2OH + [O] → CH3CH(CH3)CH2CHO
f) 4-Chloropentan-1-ol + K2Cr2O7 / H+ / Distil → 4-Chloropentanal
Cl(CH2)3CH2CH(OH)CH3 + [O] → Cl(CH2)3CH2CH=O + H2O
(please could you kindly mark my answer as brainliest)
b) which compound, a or b, was the limiting reagent in this reaction? compound b c) consider the lane that shows the reaction mixture. are the starting materials more or less polar than the reaction product? more polar
As per the information provided in the question, the compound that is the limiting reagent is "B". And the starting materials were "more polar" than the reaction product.
The limiting reagent is the one that gets consumed completely in the reaction. The other reactant is left behind in excess. The reaction's speed is determined by the amount of the limiting reagent present. In the given reaction, compound B is the limiting reagent. We can prove this by comparing the number of moles of compounds A and B. We can see that compound B has fewer moles. Therefore, it is the limiting reagent. 2 moles of compound A react with 1 mole of compound B. We have 2 moles of A and 1 mole of B in this reaction mixture. Hence, compound B is the limiting reagent. Starting materials are more polar than the reaction product. When a chemical reaction occurs, the reactants combine to form a new compound or product. The product's properties are often different from those of the starting materials. In this reaction, the starting materials are more polar than the reaction product. This can be seen by observing the reaction mixture's lane. We can see that the reaction product has moved ahead of the starting materials on the chromatogram. The starting materials are more polar than the reaction product.
For more information regarding this topic, you can click the below link
https://brainly.com/question/26905271
#SPJ11
In which situation are unbalanced forces acting on an object?(1 point)
An object is said to be acted upon by an unbalanced force only when there is an individual force that is not being balanced by a force of equal magnitude and in the opposite direction.
An unbalanced force refers to a situation where the net force acting on an object is not equal to zero, which causes the object to accelerate in a particular direction. In other words, when the forces acting on an object are unbalanced, the object will either speed up, slow down, or change direction.
According to Newton's Second Law of Motion, the acceleration of an object is directly proportional to the force applied to it and inversely proportional to its mass. Therefore, when an unbalanced force acts on an object, it will experience an acceleration proportional to the force applied. an unbalanced force is a force that causes an object to accelerate in a particular direction due to an imbalance in the forces acting on it.
To learn more about Unbalanced force visit here:
brainly.com/question/30459051
#SPJ4
describe the chemistry of biurets reagent, explaining how it works and, specifically, why you used absorbance of 550 nm to quantify protein concentration.
Biurets reagent is a solution of potassium hydroxide and copper sulfate used to measure the concentration of proteins. The reagent works by breaking down peptide bonds and creating a pink or purple solution when proteins are present. The absorbance of 550 nm is used to quantify the protein concentration because it is the wavelength that best corresponds to the color change of the solution.
Biurets reagent is a solution containing copper sulfate, sodium hydroxide, and potassium sodium tartrate. The copper ions in the biuret reagent combine with the peptide bonds present in proteins, forming a violet-colored complex. The intensity of the violet coloration is proportional to the concentration of proteins in the sample being analyzed. Absorbance at 550 nm is used to quantify protein concentration because this is the wavelength at which the violet color produced by the copper ion-peptide bond complex has maximum absorbance. By measuring the absorbance at this wavelength, the concentration of the protein in the sample can be determined through a standard curve that relates the absorbance values to known protein concentrations. The biuret test is commonly used to determine protein concentration in a variety of biological and chemical samples. The test is widely used because it is relatively simple and can be performed quickly. The biuret test is often used in combination with other analytical techniques to obtain more detailed information about protein samples.
For more information follow the link: https://brainly.com/question/4596250
#SPJ11
What would the potential of a standard hydrogen (S.H.E.) electrode be if it was under the following conditions?
[H+] = 0.77 M
PH2 = 1.4 atm
T = 298 K
The potential of a standard hydrogen (S.H.E.) electrode under the given conditions is -0.126V.
A standard hydrogen electrode (SHE) is a reference electrode used to estimate the standard electrode potentials (E°) of half-reactions. It is made up of a platinum electrode coated in platinum black (Pt) and a hydrogen (H2) electrode dipping into an acidic solution of HCl. The pressure of H2 is measured at 1.0 atm, and the concentration of H+ is maintained at 1.0 mol/L. The potential of the SHE is set to 0.000 V at all temperatures, and other electrode potentials are compared to it to determine their standard reduction potentials.
Using the Nernst equation, we can compute the potential of the SHE : E = E° - (RT/nF)lnQ, where E is the cell potential, E° is the standard cell potential, R is the gas constant, T is the temperature, n is the number of moles of electrons transferred in the redox reaction, F is the Faraday constant, and Q is the reaction quotient.
The given conditions[H+] = 0.77 MPH2 = 1.4 atm T = 298 K
We can use the Nernst equation to calculate the potential of the SHE under these conditions as follows:
E = E° - (RT/nF)lnQ,
where E° = 0.000 VR = 8.314 J/(mol*K)n = 2 F = 96,485 J/V*KpH2 = 1.4 atm
Q = [H+]2/[H2]E = E° - (RT/nF)lnQ= 0.000 - (8.314*298/2*96,485)*ln (0.77/1.4^2)= 0.000 - 0.000688= -0.126 V
Therefore, the potential of the standard hydrogen electrode (SHE) under the given conditions would be -0.126 V.
To know more about standard hydrogen (S.H.E.) electrode please visit :
https://brainly.com/question/12588341
#SPJ11
In the illustration, which solute will dissolve first? A) solute in tank B will dissolve first B) solute in tanks A and B will dissolve at equal rates C) solute in tank A will dissolve first
A) The solute in tank B will dissolve first, is the key response.Temperature, pressure, and concentration are only a few examples of the variables that affect a solute's solubility in a solvent. As the water in both tanks A and B is originally pure.
in this instance the solute in tank B will dissolve first due to its larger concentration than in tank A. The concentration gradient between the solute and the water narrows as the solute in tank B dissolves and diffuses into the surrounding water, slowing the rate of dissolution. The solute in tank A will also eventually dissolve, but because of its lower initial concentration, it will do so more gradually.I am unable to tell which solute will dissolve first because the relevant illustration is not given. However, a number of variables, including temperature, pressure, and the chemical makeup of the solute and solvent, affect how soluble a solute is in a solvent. The solute that is more soluble in the given solvent will often dissolve first. It is impossible to predict which solute will dissolve first without more details or context.
learn more about solute in tank here:
https://brainly.com/question/9589556
#SPJ4
at the concentration equilibrium constant for a certain reaction. here are some facts about the reaction: if the reaction is run at constant pressure, of heat are absorbed. some of the reactants are liquids and solids. the net change in moles of gases is .
To calculate the equilibrium constant for a reaction with heat absorbed, determine equilibrium concentrations and use the law of mass action.
At the concentration equilibrium constant for a certain reaction, heat is absorbed if the reaction is run at constant pressure. Some of the reactants are liquids and solids, and the net change in moles of gases is .
To calculate the equilibrium constant, we need to first determine the equilibrium concentrations of each species. We can do this by using the mass and moles of the reactants and products, the stoichiometric coefficients, and the net change in moles of gases.
Once we have the equilibrium concentrations, we can calculate the equilibrium constant using the law of mass action:
K = [products]/[reactants].Learn more about equilibrium: https://brainly.com/question/517289
#SPJ11
What mass of hydrogen will react with 84g of N2
How many atoms are in 0.75mol of H2O
There are approximately 4.5 x 10^23 atoms in 0.75 mol of H2O.
Or 4,500,000,000,000,000,000,000.
If some solid sodium solid hydroxide is added to a solution that is 0.010–molar in (CH3)3CCl and 0.10–molar in NaOH, which of the following is true? (Assume the temperature and volume remain constant.)answer choicesa. Both the reaction rate and k increase.b. Both the reaction rate and k decrease.c. Both the reaction rate and k remain the same.d. The reaction rate increases but k remains the same.e. The reaction rate decreases but k remains the same.
If some solid sodium hydroxide is added to a solution that is 0.010–molar in (CH₃)₃CCl and 0.10–molar in NaOH, the reaction rate increases but k remains the same. Therefore, option D is correct.
In this scenario, when solid sodium hydroxide (NaOH) is added to a solution containing (CH₃)₃CCl and NaOH, a reaction between (CH₃)₃CCl and NaOH takes place. The balanced chemical equation for this reaction is:
(CH₃)₃CCl + NaOH ⇒ (CH₃)₃COH + NaCl
The reaction rate is determined by the concentration of the reactants. In this case, the concentration of (CH₃)₃CCl remains constant because only solid NaOH is added.
The rate constant depends on the specific reaction and the conditions under which it occurs. Since the temperature and volume remain constant, the rate constant (k) will also remain constant.
To learn more about NaOH, follow the link:
https://brainly.com/question/20573731
#SPJ12
The pH in the intermembrane space of the mitochondria should be_____ compared to the matrix due to the
A. higher; higher concentration of protons in the intermembrane space B. higher; lower concentration of protons in the intermembrane space C. lower; higher concentration of protons in the intermembrane space
D. lower; lower concentration of protons in the intermembrane space
The pH in the intermembrane space of the mitochondria should be lower compared to the matrix due to the C. higher concentration of protons in the intermembrane space.
What is a Mitochondria?Mitochondria are organelles found in eukaryotic cells that play a vital role in producing the energy required to sustain cellular activity. Mitochondria produce energy from food and oxygen, which they use to generate ATP, the primary source of cellular energy.
The intermembrane space (IMS) is the region between the mitochondrial inner and outer membranes. The pH of the intermembrane space is significantly lower than that of the matrix due to the higher concentration of protons in the intermembrane space.
The pH gradient of the mitochondria enables the generation of ATP from ADP and Pi by ATP synthase, which pumps protons from the intermembrane space to the matrix, making the pH gradient a source of energy. The proton gradient generated by ATP synthase is used for ATP synthesis. Therefore, the pH in the intermembrane space of mitochondria should be lower compared to the matrix due to the higher concentration of protons in the intermembrane space.
To know more about mitochondria:
https://brainly.com/question/29763308
#SPJ11
For the best system, calculate the ratio of the masses of the buffer components required to make the buffer. Express your answer using two significant figures. NH3/NH4Cl ph=8.95
Answer : The ratio of the masses of NH3 to NH4Cl required to make the buffer is 1.6 x 10^4 : 1.
The buffer system is one of the most important chemical systems. They are usually composed of a weak acid and a salt of its conjugate base or a weak base and a salt of its conjugate acid. The buffer capacity is important as it helps to resist changes in pH. The Henderson-Hasselbalch equation can be used to calculate the pH of the buffer system.
It's given by: pH = pKa + log [A-] / [HA]Here, NH3 is the weak base and NH4Cl is the salt of its conjugate acid. NH3 + H2O <--> NH4+ + OH- NH4Cl <--> NH4+ + Cl-By combining the above equations, the ratio of the masses of NH3 and NH4Cl can be found as shown below. pH = pKb + log [salt] / [base] pH = 5.09 + log [NH4Cl] / [NH3]pH = 8.95, pKb of NH3 = 4.74Therefore, 8.95 = 4.74 + log [NH4Cl] / [NH3] 4.21 = log [NH4Cl] / [NH3] [NH4Cl] / [NH3] = antilog (4.21) [NH4Cl] / [NH3] = 1.6 x 10^4
Therefore, the ratio of the masses of NH3 to NH4Cl required to make the buffer is 1.6 x 10^4 : 1.
Know more about buffer system here:
https://brainly.com/question/22821585
#SPJ11
nonenzymatic e1 reactions can often result in a mixture of more than one alkene product. elimination of 'hx' from the following starting compound, for example, could yield three different possible alkene products, true or false?
The given statement is true that nonenzymatic E1 reactions can often result in a mixture of more than one alkene product. This is due to the presence of different possible elimination products.
Nonenzymatic E1 reactions: E1 is a chemical reaction mechanism that includes the elimination of a leaving group (such as HX) from an organic molecule to create a double bond or alkene. This is a two-step process in which the first step is the formation of a carbocation intermediate.The nonenzymatic E1 reactions can often result in a mixture of more than one alkene product because the carbocation intermediate that forms can be attacked by nucleophiles in various directions, leading to the formation of different elimination products. The regiochemistry of the reaction is determined by the most stable carbocation intermediate formed from the initial step of the reaction.In this case, elimination of HX from the given starting compound can yield three different possible alkene products due to the presence of three different hydrogen atoms that can eliminate. Hence, the given statement is true.Learn more about E1 reactions: https://brainly.com/question/30887510
#SPJ11