Answer:
see explanation
Step-by-step explanation:
The equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
Calculate m using the slope formula
m = [tex]\frac{y_{2}-y_{1} }{x_{2}-x_{1} }[/tex]
with (x₁, y₁ ) = (0, - 3) and (x₂, y₂ ) = (4, 2) ← 2 points on the line
m = [tex]\frac{2-(-3)}{4-0}[/tex] = [tex]\frac{2+3}{4}[/tex] = [tex]\frac{5}{4}[/tex]
The line crosses the y- axis at (0, - 3 ) ⇒ c = - 3
y = [tex]\frac{5}{4}[/tex] - 3 ← equation of line
Coefficient and degree of the polynomial
Answer:
The leading coefficient is -8 as it is a mix of x and cardinal, if it was x alone then it wouldn't be the coefficient, we would use the next number shown.
If it was just a number and no x then it would still be the coefficient.
The degree is 9 as it is the highest power shown.
Step-by-step explanation:
See attachment for examples
7. Solve for x: x/6 - y/3 = 1
Please give steps!
Angelica’s bouquet of dozen roses contains 5 white roses. The rest of the roses. What fraction of the bouquet is pink? There are 12 roses in a dozen
Answer:
7/12
Step-by-step explanation:
total: 12 roses
white roses: 5
pink roses: 7
fraction of pink roses = 7/12
WORTH 15 POINTSSSSSSSSS
Answer:
15
Step-by-step explanation:
Difference in distances = 75-60 = 15 miles
So Car A travels 15 miles more than Car A in an hour
Answered by Gauthmath
The sum of 'n' terms of an arithmetic sequence is 4n^2+3n. What is the first term, the common difference, and the sequence?
Answer:
d=8 and a=7
Step-by-step explanation:
The sum of a arithmetic sequence is given by (n/2)*(2a+(n-1)d). Comparing coefficients with the given Sn, we have; a-d/2=3 and d/2=4, d=8 and a=7. The sequence is 7, 15, 23, 31, 39
What is the dimension of the null space Null (A) of A =
Answer:
the nullity of a matrix A is the demision of its null space:nullity A = dim (n(A).
please help this is due soon
Can someone please help me with this math problem
We have [tex]f\left(f^{-1}(x)\right) = x[/tex] for inverse functions [tex]f(x)[/tex] and [tex]f^{-1}(x)[/tex]. Then if [tex]f(x) = 2x+5[/tex], we have
[tex]f\left(f^{-1}(x)\right) = 2f^{-1}(x) + 5 = x \implies f^{-1}(x) = \dfrac{x-5}2[/tex]
Then
[tex]f^{-1}(8) = \dfrac{8-5}2 = \boxed{\dfrac32}[/tex]
A cylinder has a radius of 6 inches and is 15 inches tall what is the volume of the cylinder round to the nearest whole square inch
Answer:
V=TT r²h
Step-by-step explanation:
TT=3.14
r=6
h=15
V=TTr²h
V=3.14×6²×15
V=3.14×36×15
V=1695.6inch³

Which description matches the function represented by the values in this
table?
X х
у
14
1
2
56
224
4
896
5
3584
O A. exponential decay
OB. linear growth
O C. linear decay
D. exponential growth
The given table represents Exponential growth.
Exponential growth:The process of Quantity rising over time is called exponential growth. An exponential function is used to create an exponential growth curve, which represents a pattern of data that shows a rise over time. Where the Exponential decay helps to understand the rapid decrease in a period of time
Here we have
The table
х 1 2 3 4 5
у 14 56 224 896 3584
From the given table, we can observe that
[tex]\frac{14}{56} = \frac{56}{224} = \frac{896}{3584} = \frac{1}{4}[/tex]
Since the absolute value of the common ratio is less than 1 i.e 1/4
And the values are increasing
Therefore,
The given table represents Exponential growth.
Learn more about Exponential growth at
https://brainly.com/question/8706992
#SPJ1
what is the area of the triangle ://
Answer:
The area of a triangle is:
Area = 1/2(bh)
Area = 1/2(70)
Area = 35 square inches
Let me know if this helps!
The figure shows an equilateral triangle with its sides as indicated. find the length of each side of the triangle .
I Will Mark Brainliest
Answer:
21
Step-by-step explanation:
All three sides are equal
2x-7 = x+y-9 = y+5
Using the last two
x+y-9 = y+5
Subtract y from each side
x+y-9-y = y+5-y
x-9 = 5
Add 9 to each side
x -9+9 = 5+9
x=14
We know the side length is
2x-7
2(14) -7
28-7
21
The side length is 21
Find the slope of the line tangent to the graph of x²+2xy² +3y=31 at the point (2, -3)
9514 1404 393
Answer:
22/21
Step-by-step explanation:
Taking the derivative, we have ...
2x·dx +2y²·dx +4xy·dy +3·dy = 0
dx(2x +2y²) +dy(4xy+3) = 0
At the given point, this is ...
dx(2·2 +2·(-3)²) +dy(4·2·(-3) +3) = 0
22dx -21dy = 0
dy/dx = 22/21
The slope of the tangent at the point of interest is 22/21.
the length of a rectangle is 4 meters longer than the width. if the area is 22 square meters , find the rectangle dimension
Let breadth be x
Length=x+4We know
[tex]\boxed{\sf Area_{(Rectangle)}=Length\times Breadth}[/tex]
[tex]\\ \sf\longmapsto x(x+4)=22[/tex]
[tex]\\ \sf\longmapsto x^2+4x=22[/tex]
[tex]\\ \sf\longmapsto x^2+4x-22=0[/tex]
By solving[tex]\\ \sf\longmapsto x=-2\pm\sqrt{26}[/tex]
It doesnot have any real roots
Here's the result of this question
The point (-2,7) has undergone the following transformations:
1. Translated 1 unit up and 4 units left
Then
2. Reflected about the c-axis
Then
3. Rotated 90° anticlockwise about the origin
A) Its final coordinates are (3,-1)
B) Its final coordinates are (8,-6)
C) Its final coordinates are (-8,6)
D) Its final coordinates are (-3,1)
Answer:
B) Its final coordinates are (8,-6)
Step-by-step explanation:
1. Translated 1 unit up and 4 units left
(-2,7) becomes (-6, 8)
2. Reflected about the x-axis
(-6,8) becomes (-6, -8)
3. Rotated 90° anticlockwise about the origin
(-6, -8) becomes (8, -6) because when rotating 90 degrees anticlockwise about the origin, point A (x,y) becomes point A' (-y,x). In other words, switch the x and y and make y negative.
2 men can build a wall in 10 days. in how many days will 8 men build the wall?
Step-by-step explanation:
8 men can do 60 man days of work by dividing 60 man days by the 8 men, which gives us 60/8 = 7 1/2 da
What is the correct answer?
Answer:
Option D
Only the equation in option D matches with the table
Answered by GAUTHMATH
rewrite the following statements into algebraic expression
the sum of x and y
5 is subtracted from y
What is the sum of the infinite geometric series?
Answer:
-6
Step-by-step explanation:
a1= -3
r= -(3/2)/-3 = 0.5
r>-3
s= a1/1-r
= -3/1-0.5
=-6
Current
How many years will it take for an initial investment of $60,000 to grow to $90,000? Assume a rate of interest of
4% compounded continuously.
>It will take about _years for the investment to grow to $90,000.
(Round to two decimal places as needed.)
Answer:
I think i don't know the answer i am so sorry!!!
maybe someone else can Answer
The height of the triangle is 4 meters longer than twice its base. find the height if the area of the triangle is 80 square meters. The height must be ___meters
Answer:
The height is 20 meters
Step-by-step explanation:
First set up the equation (Area)80=bh/2 then set up another equation, (height) h=4+2b (base). After this you can substitute h in the equation to end up with 80=(b(2b+4))/2 simplify it to get 80=b^2+2b then solve. The base is 8 meters, plug into the formula that we made before and you find the height is 20 meters.
Question 17 of 25
Solve the inequality. Enter the answer as an inequality that shows the value of
the variable; for example f>7, or 6 < w. Where necessary, use <= to write s
and use >= to write .
V-(-5) <-9
Answer here
I
SUBMIT
Answer:
v-(-5)<-9
v- remove brackets -5
v- -5= -4 +5 ( opposite operation)
v- = -4
v< -4
Find the area of the shape shown below.
Answer:
28 units²
Step-by-step explanation:
Area of trapezoid =
2(8 + 4)/2 = 12
Area of rectangle =
2 x 8 = 16
16 + 12 = 28
If my answer is incorrect, pls correct me!
If you like my answer and explanation, mark me as brainliest!
-Chetan K
There is 3m wide path around a circular cricket ground having the diameter of 137 m. Find the area of the path.
Answer:
1320 m^2
Step-by-step explanation:
area of ground = π r ^2
= (22/7) × (137/2)^2
= 14,747.0714286 m^2
area of ground and path
=( 22/7)(143/2)^2
= 16,067.0714286 m^2
area of path
=16,067.0714286 -14,747.0714286
= 1320 m^2
note :
r = radius = diameter /2
area of a circle = π r^2
diameter of circle created with path and ground = 137 + 2 × width of path
= 137 + 2× 3 = 143 m
express 111 as a sum of two primes
Answer:
2 + 109 = 111
Step-by-step explanation:
.............
What year was it when I was a freshman if I graduated this year(2021)?
Answer:
2019
Step-by-step explanation:
I am assuming you mean graduated from high school. If that's the case it's 2019. Sophmore year means 9th grade. which is 2019!
2. Solve the following:
a. When six is added to four times a number the result is 50. Find the number.
b. The sum of a number and nine is multiplied by -2 and the answer is -8. Find the
number
10
m in
Step-by-step explanation:
a) let number=x
four times a number=4x
Condition:
4x+6=50
4x=50-6
4x=44
x=44/4
x=11
b) Condition:
x+9×-2=-8
x-18=-8
x=-8+18
x=10
Note:if you need to ask any question please let me know.
please help I have 3 mins left
Answer:
the first one is 3.7 x 10^-4
and the second one is 3.7 x 10^4
explanation:
when we have decimals we are going backward,
therefore "0.00037" would be a negative number
to find the scientific notation form, we have to move the decimal over to the left untill we get 3.7
it took 4 moves to the right to get to 3.7, and since were dealing with decimals it will be negative,
so the first one is 3.7 x 10^4
the second one however is not a decimal so it will be a positive exponent.
now remember that there is always a decimal after a number we might just not see it.
so, going from the very end of the number it takes us 4 moves to the left to get to 3.7
so,
the second one will be 3.7 x 10^4
hope this helped :)
Calls to a customer service center last on average 2.3 minutes with a standard deviation of 2 minutes. An operator in the call center is required to answer 76 calls each day. Assume the call times are independent.
What is the expected total amount of time in minutes the operator will spend on the calls each day?
What is the standard deviation of the total amount of time in minutes the operator will spend on the calls each day? Give your answer to four decimal places.
What is the approximate probability that the total time spent on the calls will be less than 166 minutes? Give your answer to four decimal places. Use the standard deviation as you entered it above to answer this question.
What is the value c such that the approximate probability that the total time spent on the calls each day is less than c is 0.95? Give your answer to four decimal places. Use the standard deviation as you entered it above to answer this question.
Answer:
The expected total amount of time in minutes the operator will spend on the calls each day is of 174.8 minutes.
The standard deviation of the total amount of time in minutes the operator will spend on the calls each day is of 17.4356 minutes.
0.3085 = 30.85% approximate probability that the total time spent on the calls will be less than 166 minutes.
The value c such that the approximate probability that the total time spent on the calls each day is less than c is 0.95 is [tex]c = 203.4816[/tex]
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
n instances of a normally distributed variable:
For n instances of a normally distributed variable, the mean is:
[tex]M = n\mu[/tex]
The standard deviation is:
[tex]s = \sigma\sqrt{n}[/tex]
Calls to a customer service center last on average 2.3 minutes with a standard deviation of 2 minutes.
This means that [tex]\mu = 2.3, \sigma = 2[/tex]
An operator in the call center is required to answer 76 calls each day.
This means that [tex]n = 76[/tex]
What is the expected total amount of time in minutes the operator will spend on the calls each day?
[tex]M = n\mu = 76*2.3 = 174.8[/tex]
The expected total amount of time in minutes the operator will spend on the calls each day is of 174.8 minutes.
What is the standard deviation of the total amount of time in minutes the operator will spend on the calls each day?
[tex]s = \sigma\sqrt{n} = 2\sqrt{76} = 17.4356[/tex]
The standard deviation of the total amount of time in minutes the operator will spend on the calls each day is of 17.4356 minutes.
What is the approximate probability that the total time spent on the calls will be less than 166 minutes?
This is the p-value of Z when X = 166.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
For this problem:
[tex]Z = \frac{X - M}{s}[/tex]
[tex]Z = \frac{166 - 174.8}{17.4356}[/tex]
[tex]Z = 0.5[/tex]
[tex]Z = 0.5[/tex] has a p-value of 0.6915.
1 - 0.6915 = 0.3085.
0.3085 = 30.85% approximate probability that the total time spent on the calls will be less than 166 minutes.
What is the value c such that the approximate probability that the total time spent on the calls each day is less than c is 0.95?
This is X = c for which Z has a p-value of 0.95, so X = c when Z = 1.645. Then
[tex]Z = \frac{X - M}{s}[/tex]
[tex]1.645 = \frac{c - 174.8}{17.4356}[/tex]
[tex]c - 174.8 = 1.645*17.4356[/tex]
[tex]c = 203.4816[/tex]
The value c such that the approximate probability that the total time spent on the calls each day is less than c is 0.95 is [tex]c = 203.4816[/tex]
A turboprop plane flying with the wind flew 1,200 mi in 4 h. Flying against the wind, the plane required 5 h to travel the same distance. Find the rate of the wind and the rate of the plane in calm air.
Answer:
30 and 270 respectively
Step-by-step explanation:
Let the speed of plane in still air be x and the speed of wind be y.
ATQ, (x+y)*4=1200 and (x-y)*5=1200. Solving it, we get x=270 and y=30