Answer:
The direction of the magnetic field on point P, equidistant from both wires, and having equal magnitude of current flowing through them will be pointed perpendicularly away from the direction of the wires.
Explanation:
Using the right hand grip, the direction of the magnet field on the wire M is counterclockwise, and the direction of the magnetic field on wire N is clockwise. Using this ideas, we can see that the magnetic flux of both field due to the currents of the same magnitude through both wires, acting on a particle P equidistant from both wires will act in a direction perpendicularly away from both wires.
What is the wavelength of electromagnetic radiation which has a frequency of 3.818 x 10^14 Hz?
Answer:
7.86×10⁻⁷ m
Explanation:
Using,
v = λf.................. Equation 1
Where v = velocity of electromagnetic wave, λ = wave length, f = frequency.
make λ the subject of the equation
λ = v/f............... Equation 2
Note: All electromagnetic wave have the same speed which is 3×10⁸ m/s.
Given: f = 3.818×10¹⁴ Hz
Constant: v = 3×10⁸ m/s
Substitute these values into equation 2
λ = 3×10⁸/3.818×10¹⁴
λ = 7.86×10⁻⁷ m
Hence the wavelength of the electromagnetic radiation is 7.86×10⁻⁷ m
The wavelength of this electromagnetic radiation is equal to [tex]7.86 \times 10^{-7} \;meters[/tex]
Given the following data:
Frequency = [tex]3.818\times 10^{14}\;Hz[/tex]Scientific data:
Velocity of an electromagnetic radiation = [tex]3 \times 10^8\;m/s[/tex]
To determine the wavelength of this electromagnetic radiation:
Mathematically, the wavelength of an electromagnetic radiation is calculated by using the formula;
[tex]Wavelength = \frac{Speed }{frequency}[/tex]
Substituting the given parameters into the formula, we have;
[tex]Wavelength = \frac{3 \times 10^8}{3.818\times 10^{14}}[/tex]
Wavelength = [tex]7.86 \times 10^{-7} \;meters[/tex]
Read more wavelength on here: https://brainly.com/question/6352445
A spherical balloon has a radius of 6.95m and is filled with helium. The density of helium is 0.179 kg/m3, and the density of air is 1.29 kg/m3. The skin and structure of the balloon has a mass of 960kg . Neglect the buoyant force on the cargo volume itself. Determine the largest mass of cargo the balloon can lift.
Answer:
602.27 kg
Explanation:
The computation of the largest mass of cargo the balloon can lift is shown below:-
Volume of helium inside the ballon= (4 ÷ 3) × π × r^3
= (4 ÷ 3) × 3.14 × 6.953
= 1406.19 m3
Mass the balloon can carry = volume × (density of air-density of helium)
= 1406.19 × (1.29-0.179)
= 1562.27 kg
Mass of cargo it can carry = Mass it can carry - Mass of structure
= 1562.27 - 960
= 602.27 kg
A 1.25-kg ball begins rolling from rest with constant angular acceleration down a hill. If it takes 3.60 s for it to make the first complete revolution, how long will it take to make the next complete revolution?
Answer:
The time taken is [tex]\Delta t = 1.5 \ s[/tex]
Explanation:
From the question we are told that
The mass of the ball is [tex]m = 1.25 \ kg[/tex]
The time taken to make the first complete revolution is t= 3.60 s
The displacement of the first complete revolution is [tex]\theta = 1 rev = 2 \pi \ radian[/tex]
Generally the displacement for one complete revolution is mathematically represented as
[tex]\theta = w_i t + \frac{1}{2} * \alpha * t^2[/tex]
Now given that the stone started from rest [tex]w_i = 0 \ rad / s[/tex]
[tex]2 \pi =0 + 0.5* \alpha *(3.60)^2[/tex]
[tex]\alpha = 0.9698 \ s[/tex]
Now the displacement for two complete revolution is
[tex]\theta_2 = 2 * 2\pi[/tex]
[tex]\theta_2 = 4\pi[/tex]
Generally the displacement for two complete revolution is mathematically represented as
[tex]4 \pi = 0 + 0.5 * 0.9698 * t^2[/tex]
=> [tex]t^2 = 25.9187[/tex]
=> [tex]t= 5.1 \ s[/tex]
So
The time taken to complete the next oscillation is mathematically evaluated as
[tex]\Delta t = t_2 - t[/tex]
substituting values
[tex]\Delta t = 5.1 - 3.60[/tex]
[tex]\Delta t = 1.5 \ s[/tex]
The time for the ball to complete the next revolution is 1.5 s.
The given parameters;
mass of the ball, m = 1.25 kgtime of motion, t = 3.6 sone complete revolution, θ = 2πThe constant angular acceleration of the ball is calculated as follows;
[tex]\theta = \omega t \ + \ \frac{1}{2} \alpha t^2\\\\2\pi = 0 \ + \ 0.5(3.6)^2 \alpha\\\\2\pi = 6.48 \alpha \\\\\alpha = \frac{2 \pi }{6.48} \\\\\alpha = 0.97 \ rad/s^2[/tex]
The time to complete the next revolution is calculated as follows;
[tex]4\pi = 0 + \frac{1}{2} (0.97)t^2\\\\8\pi = 0.97t^2\\\\t^2 = \frac{8\pi }{0.97} \\\\t^2 = 25.91\\\\t = \sqrt{ 25.91} \\\\t = 5.1 \ s[/tex]
[tex]\Delta t = 5.1 \ s \ - \ 3.6 \ s \\\\\Delta t = 1.5 \ s[/tex]
Thus, the time for the ball to complete the next revolution is 1.5 s.
Learn more here:https://brainly.com/question/20738528
If R = 20 Ω, what is the equivalent resistance between points A and B in the figure?
Answer:
c. 70 Ω
Explanation:
The R and R resistors are in parallel. The 2R and 2R resistors are in parallel. The 4R and 4R resistors are in parallel. Each parallel combination is in series with each other. Therefore, the equivalent resistance is:
Req = 1/(1/R + 1/R) + 1/(1/2R + 1/2R) + 1/(1/4R + 1/4R)
Req = R/2 + 2R/2 + 4R/2
Req = 3.5R
Req = 70Ω
5. The speed of a transverse wave on a string is 170 m/s when the string tension is 120 ????. To what value must the tension be changed to raise the wave speed to 180 m/s?
Answer:
The tension on string when the speed was raised is 134.53 N
Explanation:
Given;
Tension on the string, T = 120 N
initial speed of the transverse wave, v₁ = 170 m/s
final speed of the transverse wave, v₂ = 180 m/s
The speed of the wave is given as;
[tex]v = \sqrt{\frac{T}{\mu} }[/tex]
where;
μ is mass per unit length
[tex]v^2 = \frac{T}{\mu} \\\\\mu = \frac{T}{v^2} \\\\\frac{T_1}{v_1^2} = \frac{T_2}{v_2^2}[/tex]
The final tension T₂ will be calculated as;
[tex]T_2 = \frac{T_1 v_2^2}{v_1^2} \\\\T_2 = \frac{120*180^2}{170^2} \\\\T_2 = 134.53 \ N[/tex]
Therefore, the tension on string when the speed was raised is 134.53 N
Find the current through a person and identify the likely effect on her if she touches a 120 V AC source in the following circumstances. (Note that currents above 10 mA lead to involuntarily muscle contraction.)
(a) if she is standing on a rubber mat and offers a total resistance of 300kΩ
(b) if she is standing barefoot on wet grass and has a resistance of only 4000kΩ
Answer:
A) 0.4 mA
B) 0.03 mA
Explanation:
Given that
voltage source, V = 120 V
to solve this question, we would be using the very basic Ohms Law, that voltage is proportional to the current and the resistance passing through the circuit, if temperature is constant.
mathematically, Ohms Law, V = IR
V = Voltage
I = Current
R = Resistance
from question a, we were given 300kΩ, substituting this value of resistance in the equation, we have
120 = I * 300*10^3 Ω
making I the subject of the formula,
I = 120 / 300000
I = 0.0004 A
I = 0.4 mA
Question said, currents above 10 mA causes involuntary muscle contraction, this current is way below 10 mA, so nothing happens.
B, we have Resistance, R = 4000kΩ
Substituting like in part A, we have
120 = I * 4000*10^3 Ω
I = 120 / 4000000
I = 0.00003 A
I = 0.03 mA
This also means nothing happens, because 0.03 mA is very much lesser compared to in the 10 mA
The current through a person will be:
a) 0.4 mA
b) 0.03 mA
Given:
Voltage, V = 120 V
Ohm's Law:It states that the voltage or potential difference between two points is directly proportional to the current or electricity passing through the resistance, and directly proportional to the resistance of the circuit.
Ohms Law, V = I*R
where,
V = Voltage
I = Current
R = Resistance
a)
Given: Resistance= 300kΩ
[tex]120 = I * 300*10^3 ohm\\\\I = 120 / 300000\\\\I = 0.0004 A[/tex]
Thus, current will be, I = 0.4 mA
b)
Given: R = 4000kΩ
[tex]120 = I * 4000*10^3 ohm\\\\I = 120 / 4000000\\\\I = 0.00003 A[/tex]
Thus, current will be, I = 0.03 mA
From calculations, we observe that nothing happens, because 0.03 mA is very much lesser compared to in the 10 mA.
Find more information about Current here:
brainly.com/question/24858512
From a static hot air balloon, a 10kg projectile is launched at a speed of 10m / s upwards. If the balloon has a mass of 90kg. What is the final velocity of the latter? Select one:
a. 0.57m / s down
b. 2.56m / s down
c. 1.11m / s down
d. 2.03m / s down
e. 3.15m / s down
Answer:
c. 1.11 m/s down
Explanation:
Momentum is conserved.
m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂
Assuming the balloon and projectile are originally at rest:
(90 kg) (0 m/s) + (10 kg) (0 m/s) = (90 kg) v + (10 kg) (10 m/s)
0 kg m/s = (90 kg) v + 100 kg m/s
v = -1.11 m/s
The entropy of any substance at any temperature above absolute zero is called the: Select the correct answer below:
a. absolute entropy
b. Third Law entropy
c. standard entropy
d. free entropy
e. none of the above
Answer:
b. Third Law entropy
Explanation:
Third law entropy: In physics, the term "third law entropy" or "the third law of thermodynamics" states that the specific entropy of a particular system at "absolute zero" is considered as a "well-defined constant". It occurs because any system at "zero temperature" tends to exists or persists in its "ground state" in order for the entropy to be determined or described only by the "degeneracy" of the given ground state.
In the question above, the correct answer is option b.
Calculate the electromotive force produced by each of the battery combinations shown in the figure, if the emf of each is 1.5 V.
Answer:
A) 1.5 V
B) 4.5 V
Explanation:
A) Batteries in parallel have the same voltage as an individual battery.
V = 1.5 V
B) Batteries in series have a voltage equal to the sum of the individual batteries.
V = 1.5 V + 1.5 V + 1.5 V
V = 4.5 V
Categorize each ray tracing statement as relating to ray 1, ray 2, or ray 3.
A. Drawn from the top of the object so that it passes through the center of the lens at the optical axis.
B. Drawn from the top of the object so that it passes through the focal point on the same side of the lens as the object.
C. Drawn parallel to the optical axis from the top of the object.
D. Ray bends parallel to the optical axis.
E. Ray bends so that it passes through the focal point on the opposite side of the lens as the object.
F. Ray does not bend.
Answer:
statement 1 with answer C
statement 2 with answer F
statement 3 with answer B
Statement 1 with E
Statement 2 with A
Statement 3 with D
Explanation:
In this exercise you are asked to relate each with the answers
In general, in the optics diagram,
* Ray 1 is a horizontal ray that after stopping by the optical system goes to the focal point
* Ray 2 is a ray that passes through the intercept point between the optical axis and the system and does not deviate
* Ray 3 is a ray that passes through the focal length and after passing the optical system, it comes out horizontally.
With these statements, let's review the answers
statement 1 with answer C
statement 2 with answer F
statement 3 with answer B
Statement 1 with E
Statement 2 with A
Statement 3 with D
Currents in DC transmission lines can be 100 A or higher. Some people are concerned that the electromagnetic fields from such lines near their homes could pose health dangers.
A. For a line that has current 150 A and a height of 8.0 m above the ground, what magnetic field does the line produce at ground level? Express your answer in teslas.
B. What magnetic field does the line produce at ground level as a percent of earth's magnetic field which is 0.50 G?
C. Is this value of magnetic field cause for worry? Choose your answer below.
i. Yes. Since this field does not differ a lot from the earth's magnetic field, it would be expected to have almost the same effect as the earth's field.
ii. No. Since this field is much lesser than the earth's magnetic field, it would be expected to have less effect than the earth's field.
iii. Yes. Since this field is much greater than the earth's magnetic field, it would be expected to have more effect than the earth's field.
iv. No. Since this field does not differ a lot from the earth's magnetic field, it would be expected to have almost the same effect as the earth's field.
Answer:
Explanation:
magnetic field due to an infinite current carrying conductor
B = k x 2I / r where k = 10⁻⁷ , I is current in conductor and r is distance from wire
putting the given data
B = 10⁻⁷ x 2 x 100 / 8
= 25 x 10⁻⁷ T .
B )
earth's magnetic field = .5 gauss
= .5 x 10⁻⁴ T
= 5 x 10⁻⁵ T
percent required = (25 x 10⁻⁷ / 5 x 10⁻⁵) x 100
= 5 %
C )
ii. No. Since this field is much lesser than the earth's magnetic field, it would be expected to have less effect than the earth's field.
A 10kg block with an initial velocity of 10 m/s slides 1o m across a horizontal surface and comes to rest. it takes the block 2 seconds to stop. The stopping force acting on the block is about
Answer:
-50N
Explanation:
F=ma=m(Vf-Vi)/t
m=10kgVf=0m/sVi=10m/st=2sF=(10)(-10)/(2)=-50N
So the force acting on the block is -50N, where the negative sign simply tells us that the force is opposite to the direction of movement.
Describe how, using a positively-charged rod and two neutral metal spheres, we canmake one sphere positive without touching it to the rod. You might want to draw adiagram to help you.
Answer:
se the principle of induction.
place the two metallic spheres together, now we bring the positively charged bar closer to the first sphere.
The charge that was induced in the sphere is distributed as infirm as possible,
At this time I separate the spheres and move the bar away, by separating the spheres the excess positive
Explanation:
For this exercise we will use that the electric charge is not created, it is not destroyed and charges of the same sign repel.
Let's use the principle of induction. We place the two metallic spheres together, one in front of the other, now we bring the positively charged bar closer to the first sphere.
Here the positive charge of the bar repels the positive charge of the sphere, but as this is mocil it moves as far away as possible, until the negative charge that remains neutralizes the positive charge of the bar.
The charge that was induced in the sphere is distributed as infirm as possible, most of it in the furthest sphere, since the Coulomb force decreases.
At this time I separate the spheres and move the bar away, by separating the spheres the excess positive charge in the last sphere cannot be neutralized, therefore this sphere remains with a positive charge.
Please help!
Much appreciated!
Answer:
your question answer is 22°
A flat loop of wire consisting of a single turn of cross-sectional area 7.30 cm2 is perpendicular to a magnetic field that increases uniformly in magnitude from 0.500 T to 3.50 T in 1.00 s. What is the resulting induced current if the loop has a resistance of 2.60
Answer:
-0.73mA
Explanation:
Using amphere's Law
ε =−dΦB/ dt
=−(2.6T)·(7.30·10−4 m2)/ 1.00 s
=−1.9 mV
Using ohms law
ε=V =IR
I = ε/ R =−1.9mV/ 2.60Ω =−0.73mA
Which is produced around a wire when an electrical current is in the wire? magnetic field solenoid electron flow electromagnet
Answer:
A. magnetic field
Explanation:
The magnetic field is produced around a wire when an electrical current is in the wire because of the magnetic effect of the electric current therefore the correct answer is option A .
What is a magnetic field ?A magnetic field could be understood as an area around a magnet, magnetic material, or an electric charge in which magnetic force is exerted.
As given in the problem statement we have to find out what is produced around a wire when an electrical current is in the wire.
The magnetic field is produced as a result when an electrical current is passed through the conducting wire .
Option A is the appropriate response because a wire's magnetic field is created when an electrical current flows through it due to the magnetic influence of the electric current .
Learn more about the magnetic fields here, refer to the link given below;
brainly.com/question/23096032
#SPJ6
Two parallel metal plates, each of area A, are separatedby a distance 3d. Both are connected to ground and each plate carries no charge. A third plate carrying charge Qis inserted between the two plates, located a distance dfrom the upper plate. As a result, negative charge is induced on each of the two original plates. a) In terms of Q, find the amount of charge on the upper plate, Q1, and the lower plate, Q2. (Hint: it must be true that Q
Answer:
Upper plate Q/3
Lower plate 2Q/3
Explanation:
See attached file
You have a lightweight spring whose unstretched length is 4.0 cm. First, you attach one end of the spring to the ceiling and hang a 1.8 g mass from it. This stretches the spring to a length of 5.1 cm . You then attach two small plastic beads to the opposite ends of the spring, lay the spring on a frictionless table, and give each plastic bead the same charge. This stretches the spring to a length of 4.3 cm .
Requried:
What is the magnitude of the charge (in nC) on each bead?
Answer:
2.2nC
Explanation:
Call the amount by which the spring’s unstretched length L,
the amount it stretches while hanging x1
and the amount it stretches while on the table x2.
Combining Hooke’s law with Newton’s second law, given that the stretched spring is not accelerating,
we have mg−kx1 =0, or k = mg /x1 , where k is the spring constant. On the other hand,
applying Coulomb’s law to the second part tells us ke q2/ (L+x2)2 − kx2 = 0 or q2 = kx2(L+x2)2/ke,
where ke is the Coulomb constant. Combining these,
we get q = √(mgx2(L+x2)²/x1ke =2.2nC
A particle moves along line segments from the origin to the points (2, 0, 0), (2, 3, 1), (0, 3, 1), and back to the origin under the influence of the force field F(x, y, z).
Required:
Find the work done.
Answer:
the net work is zero
Explanation:
Work is defined by the expression
W = F. ds
Bold type indicates vectors
In this problem, the friction force does not decrease, therefore it will be zero.
Consequently for work on a closed path it is zero.
The work in going from the initial point (0, 0, 0) to the end of each segment is positive and when it returns from the point of origin the angle is 180º, therefore the work is negative, consequently the net work is zero
A bar magnet is dropped from above and falls through the loop of wire. The north pole of the bar magnet points downward towards the page as it falls. Which statement is correct?a. The current in the loop always flows in a clockwise direction. b·The current in the loop always flows in a counterclockwise direction. c. The current in the loop flows first in a clockwise, then in a counterclockwise direction. d. The current in the loop flows first in a counterclockwise, then in a clockwise direction. e. No current flows in the loop because both ends of the magnet move through the loop.
Answer:
b. The current in the loop always flows in a counterclockwise direction.
Explanation:
When a magnet falls through a loop of wire, it induces an induced current on the loop of wire. This induced current is due to the motion of the magnet through the loop, which cause a change in the flux linkage of the magnet. According to Lenz law, the induced current acts in such a way as to repel the force or action that produces it. For this magnet, the only opposition possible is to stop its fall by inducing a like pole on the wire loop to repel its motion down. An induced current that flows counterclockwise in the wire loop has a polarity that is equivalent to a north pole on a magnet, and this will try to repel the motion of the magnet through the coil. Also, when the magnet goes pass the wire loop, this induced north pole will try to attract the south end of the magnet, all in a bid to stop its motion downwards.
The current in the loop always flows in a counterclockwise direction. Hence, option (b) is correct.
The given problem is based on the concept and fundamentals of magnetic bars. When a magnet falls through a loop of wire, it induces an induced current on the loop of wire. There is some magnitude of current induced in the wire.
This induced current is due to the motion of the magnet through the loop, which cause a change in the flux linkage of the magnet. According to Lenz law, the induced current acts in such a way as to repel the force or action that produces it. For this magnet, the only opposition possible is to stop its fall by inducing a like pole on the wire loop to repel its motion down. An induced current that flows counterclockwise in the wire loop has a polarity that is equivalent to a north pole on a magnet, and this will try to repel the motion of the magnet through the coil. Also, when the magnet goes pass the wire loop, this induced north pole will try to attract the south end of the magnet, all in a bid to stop its motion downwards.Thus, we can say that the current in the loop always flows in a counterclockwise direction. Hence, option (b) is correct.
Learn more about the magnetic field here:
https://brainly.com/question/14848188
Tech A says parallel circuits are like links in a chain. Tech B says total current in a parallel circuit equals the sum of the current flowing in each branch of the circuit. Who is correct?
Answer: Only Tech B is correct.
Explanation:
First, tech A is wrong.
The circuits that can be compared with links in a chain are the series circuit, and it can be related to the links in a chain because if one of the elements breaks, the current can not flow furthermore (because the elements in the circuit are connected in series) while in a parallel circuit if one of the branches breaks, the current still can flow by other branches.
Also in a parallel circuit, the sum of the currents of each path is equal to the current that comes from the source, so Tech B is correct, the total current is equal to the sum of the currents flowing in each branch of the circuit.
An array of solar panels produces 9.35 A of direct current at a potential difference of 195 V. The current flows into an inverter that produces a 60 Hz alternating current with Vmax = 166V and Imax = 19.5A.
A) What rms power is produced by the inverter?
B) Use the rms values to find the power efficiency Pout/Pin of the inverter.
Answer:
(A). 1620 watt.
(B).0.8885.
Explanation:
So, we are given the following data or parameters or information which is going to assist or help us in solving this particular Question or problem. So, we have;
Current = 9.35A, direct current at a potential difference of 195 V, frequency of the inverter = 60 Hz alternating current, alternating current with Vmax = 166V and Imax = 19.5A.
(A). The rms power is produced by the inverter = (19.5 /2 ) × 166 = 1620 watt(approximately).
(B). the rms values to find the power efficiency Pout/Pin of the inverter.
P(in) = 195 × 9.35 = 1823.3 watt.
Thus, the rms values to find the power efficiency Pout/Pin of the inverter = 1620/1823.3 = 0.88852324146441793 = 0.8885.
how does a system naturally change over time
Answer:
The movement of energy and matter in a system differs from one system to another. On the other hand, in open system both the matter and energy move into and out of the system. Therefore, matter and energy in a system naturally change over time will decrease in entropy.
Explanation:
Answer:
Decrease in entropy
Explanation:
Various systems which exist in nature possess energy and matter that move through these system continuously. The movement of energy and matter in a system differs from one system to another.
In a closed system for example, only energy flows in and out of the system while matter does not enter or leave the system.
On the other hand, in open system both the matter and energy move into and out of the system.
The two metallic strips that constitute some thermostats must differ in:_______
A. length
B. thickness
C. mass
D. rate at which they conduct heat
E. coefficient of linear expansion
Answer:
E. Coefficient of linear expansion
What is the power P of the eye when viewing an object 61.0 cm away? Assume the lens-to-retina distance is 2.00 cm , and express the answer in diopters.
Answer:
The power of the eye is 51.64 diopters
Explanation:
The power of the eye is given by;
[tex]P = \frac{1}{f} = \frac{1}{d_o} +\frac{1}{d_i}[/tex]
where;
P is the power of the eye in diopter
f is the focal length of the eye
[tex]d_o[/tex] is the distance between the eye and the object
[tex]d_i[/tex] is the distance between the eye and the image
Given;
[tex]d_o[/tex] = 61.0 cm = 0.61 m
[tex]d_i[/tex] = 2.0 cm = 0.02 m
[tex]P = \frac{1}{d_o} +\frac{1}{d_i} \\\\P = \frac{1}{0.61} + \frac{1}{0.02} \\\\P = 51.64 \ D[/tex]
Therefore, the power of the eye is 51.64 diopters.
The power P of the eye when viewing an object 61.0 cm away is 51.639D
The power of a lens is a reciprocal of its focal length and it is expressed as:
[tex]P=\frac{1}{f}[/tex]
According to the mirror formula
[tex]\frac{1}{f} =\frac{1}{d_i} +\frac{1}{d_0}[/tex]
where
[tex]d_i[/tex] is the distance from the lens to the image = 61.0cm = 0.61m
[tex]d_0[/tex] is the distance from the lens to the object = 2.00cm = 0.02m
[tex]P=\frac{1}{f} =\frac{1}{0.02} +\frac{1}{0.61}\\P=50+1.639\\P=51.639D[/tex]
Hence the power P of the eye when viewing an object 61.0 cm away is 51.639D
Learn more here: https://brainly.com/question/14870552
A rectangular coil lies flat on a horizontal surface. A bar magnet is held above the center of the coil with its north pole pointing down. What is the direction of the induced current in the coil?
Answer:
There is no induced current on the coil.
Explanation:
Current is induced in a coil or a circuit, when there is a break of flux linkage. A break in flux linkage is caused by a changing magnetic field, and must be achieved by a relative motion between the coil and the magnet. Holding the magnet above the center of the coil will cause no changing magnetic filed since there is no relative motion between the coil and the magnet.
An electron moving at 3.94 103 m/s in a 1.23 T magnetic field experiences a magnetic force of 1.40 10-16 N. What angle does the velocity of the electron make with the magnetic field? There are two answers between 0° and 180°. (Enter your answers from smallest to largest.)
Answer:
10.4⁰ and 169.6⁰Explanation:
The force experienced by the moving electron in the magnetic field is expressed as F = qvBsinθ where;
q is the charge on the electron
v is the velocity of the electron
B is the magnetic field strength
θ is the angle that the velocity of the electron make with the magnetic field.
Given parameters
F = 1.40*10⁻¹⁶ N
q = 1.6*10⁻¹⁹C
v = 3.94*10³m/s
B = 1.23T
Required
Angle that the velocity of the electron make with the magnetic field
Substituting the given parameters into the formula:
1.40*10⁻¹⁶ = 1.6*10⁻¹⁹ * 3.94*10³ * 1.23 * sinθ
1.40*10⁻¹⁶ = 7.75392 * 10⁻¹⁹⁺³sinθ
1.40*10⁻¹⁶ = 7.75392 * 10⁻¹⁶sinθ
sinθ = 1.40*10⁻¹⁶/7.75392 * 10⁻¹⁶
sinθ = 1.40/7.75392
sinθ = 0.1806
θ = sin⁻¹0.1806
θ₁ = 10.4⁰
Since sinθ is positive in the 1st and 2nd quadrant, θ₂ = 180-θ₁
θ₂ = 180-10.4
θ₂ = 169.6⁰
Hence, the angle that the velocity of the electron make with the magnetic field are 10.4⁰ and 169.6⁰
A spring with spring constant 15 N/m hangs from the ceiling. A ball is attached to the spring and allowed to come to rest. It is then pulled down 6.0 cm and released. If the ball makes 30 oscillations in 20 s, what are its (a) mass and (b) maximum speed?
Answer:
a
[tex]m = 0.169 \ kg[/tex]
b
[tex]|v_{max} |= 0.5653 \ m/s[/tex]
Explanation:
From the question we are told that
The spring constant is [tex]k = 14 \ N/m[/tex]
The maximum extension of the spring is [tex]A = 6.0 \ cm = 0.06 \ m[/tex]
The number of oscillation is [tex]n = 30[/tex]
The time taken is [tex]t = 20 \ s[/tex]
Generally the the angular speed of this oscillations is mathematically represented as
[tex]w = \frac{2 \pi}{T}[/tex]
where T is the period which is mathematically represented as
[tex]T = \frac{t}{n}[/tex]
substituting values
[tex]T = \frac{20}{30 }[/tex]
[tex]T = 0.667 \ s[/tex]
Thus
[tex]w = \frac{2 * 3.142 }{ 0.667}[/tex]
[tex]w = 9.421 \ rad/s[/tex]
this angular speed can also be represented mathematically as
[tex]w = \sqrt{\frac{k}{m} }[/tex]
=> [tex]m =\frac{k }{w^2}[/tex]
substituting values
[tex]m =\frac{ 15 }{(9.421)^2}[/tex]
[tex]m = 0.169 \ kg[/tex]
In SHM (simple harmonic motion )the equation for velocity is mathematically represented as
[tex]v = - Awsin (wt)[/tex]
The velocity is maximum when [tex]wt = \(90^o) \ or \ 1.5708\ rad[/tex]
[tex]v_{max} = - A* w[/tex]
=> [tex]|v_{max} |= A* w[/tex]
=> [tex]|v_{max} |= 0.06 * 9.421[/tex]
=> [tex]|v_{max} |= 0.5653 \ m/s[/tex]
In a velocity selector having electric field E and magnetic field B, the velocity selected for positively charged particles is v= E/B. The formula is the same for a negatively charged particles.
a. True
b. False
Answer:
True or False
Explanation:
Because.....
easy 50% chance you are right
W is the work done on the system, and K, U, and Eth are the kinetic, potential, and thermal energies of the system, respectively. Any energy not mentioned in the transformation is assumed to remain constant; if work is not mentioned, it is assumed to be zero.
1. Give a specific example of a system with the energy transformation shown.
W→ΔEth
2. Give a specific example of a system with the energy transformation shown.
a. Rolling a ball up a hill.
b. Moving a block of wood across a horizontal rough surface at constant speed.
c. A block sliding on level ground, to which a cord you are holding on to is attached .
d. Dropping a ball from a height.
Answer:
1) a block going down a slope
2) a) W = ΔU + ΔK + ΔE, b) W = ΔE, c) W = ΔK, d) ΔU = ΔK
Explanation:
In this exercise you are asked to give an example of various types of systems
1) a system where work is transformed into internal energy is a system with friction, for example a block going down a slope in this case work is done during the descent, which is transformed in part kinetic energy, in part power energy and partly internal energy that is represented by an increase in the temperature of the block.
2)
a) rolling a ball uphill
In this case we have an increase in potential energy, if there is a change in speed, the kinetic energy also increases, if the change in speed is zero, there is no change in kinetic energy and there is a change in internal energy due to the stationary rec in the point of contact
W = ΔU + ΔK + ΔE
b) in this system work is transformed into internal energy
W = ΔE
c) There is no friction here, therefore the work is transformed into kinetic energy
W = ΔK
d) if you assume that there is no friction with the air, the potential energy is transformed into kinetic energy
ΔU = ΔK