Step-by-step explanation:
Ellen - 115/23
Classmates and Ellen got = 5 each
Help me please I need answers
Answer:
[tex]\huge \boxed{\mathrm{\$ \ 7,533.33}}[/tex]
Step-by-step explanation:
There are 12 months in one whole year.
In one year, the person earns $96,600 with bonus.
The person gets a bonus of $6,200 during Christmas.
96,600 - 6,200 = 90,400
The person earns $90,400 yearly.
[tex]\frac{90,400}{12}[/tex] = 7,533.3333
Each month, the person earns $7,533.33, to the nearest cent.
In a random sample of 205 people, 149 said that they watched educational television. Find the 95% confidence interval of the true proportion of people who watched educational television. Round intermediate answers to at least five decimal places.
Answer: Given a sample of 200, we are 90% confident that the true proportion of people who watched educational TV is between 72.1% and 81.9%.
Step-by-step explanation:
[tex]\frac{154}{200} =0.77[/tex]
[tex]1-0.77=0.23[/tex]
[tex]\sqrt{\frac{(0.77)(0.23)}{200} }[/tex]=0.049
0.77±0.049< 0.819, 0.721
Can I have somebody answer a few more of the questions that I need please and this one too?
Answer:
x > 22
Step-by-step explanation:
Hey there!
Well to solve,
52 - 3x < -14
we need to single out x
52 - 3x < -14
-52 to both sides
-3x < -66
Divide both sides by -3
x > 22
The < changes to > because the variable number is a - being divided.
Hope this helps :)
Answer:
x > 22
Step-by-step explanation:
First, rearrange the equation
52 - 3 × x - (-14) < 0Then, pull out the like terms:
66 - 3xNext, apply algebra to the equation by dividing each side by -3. It should now look like this: x > 22.
Therefore, the solution set of the inequality would be x > 22.
A highway department executive claims that the number of fatal accidents which occur in her state does not vary from month to month. The results of a study of 140 fatal accidents were recorded. Is there enough evidence to reject the highway department executive's claim about the distribution of fatal accidents between each month? Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Fatal Accidents 8 15 9 8 13 6 17 15 10 9 18 12
Answer:
There is enough evidence to reject the highway department executive's claim about the distribution of fatal accidents between each month, as the Variance is 14 and the Standard Deviation = 4 approximately.
There is a high degree of variability in the mean of the population as explained by the Variance and the Standard Deviation.
Step-by-step explanation:
Month No. of Mean Squared
Fatal Accidents Deviation Difference
Jan 8 -4 16
Feb 15 3 9
Mar 9 -3 9
Apr 8 -4 16
May 13 1 1
Jun 6 -6 36
Jul 17 5 25
Aug 15 3 9
Sep 10 -2 4
Oct 9 -3 9
Nov 18 6 36
Dec 12 0 0
Total 140 170
Mean = 140/12 = 12 Mean of squared deviation (Variance) = 170/12 = 14.16667
Standard deviation = square root of variance = 3.76386 = 4
The fatal accidents' Variance is a measure of how spread out the fatal accident data set is. It is calculated as the average squared deviation of the number of each month's accident from the mean of the fatal accident data set. It also shows how variable the data varies from the mean of approximately 12.
The fatal accidents' Standard Deviation is the square root of the variance, and a useful measure of variability when the distribution is normal or approximately normal.
PLEASE HELP!! (1/5) -50 POINTS-
Answer:
[tex]X=\begin{bmatrix}5&3\\ -3&2\end{bmatrix}[/tex]
Step-by-step explanation:
We are given the following matrix equation, from which we have to isolate X and simplify this value.
[tex]\begin{bmatrix}2&4\\ \:\:\:5&4\end{bmatrix}X\:+\:\begin{bmatrix}-8&-8\\ \:\:\:12&1\end{bmatrix}=\:\begin{bmatrix}-10&6\\ \:\:\:25&24\end{bmatrix}[/tex]
To isolate X, let us first subtract the second matrix, as demonstrated below, from either side. Further simplifying this equation we can multiply either side by the inverse of the matrix being the co - efficient of X, isolating it in the doing.
[tex]\begin{bmatrix}2&4\\ 5&4\end{bmatrix}X=\begin{bmatrix}-10&6\\ 25&24\end{bmatrix}-\begin{bmatrix}-8&-8\\ 12&1\end{bmatrix}[/tex] (Simplify second side of equation)
[tex]\begin{bmatrix}-10&6\\ 25&24\end{bmatrix}-\begin{bmatrix}-8&-8\\ 12&1\end{bmatrix}=\begin{bmatrix}\left(-10\right)-\left(-8\right)&6-\left(-8\right)\\ 25-12&24-1\end{bmatrix}=\begin{bmatrix}-2&14\\ 13&23\end{bmatrix}[/tex] ,
[tex]\begin{bmatrix}2&4\\ 5&4\end{bmatrix}X=\begin{bmatrix}-2&14\\ 13&23\end{bmatrix}[/tex] (Multiply either side by inverse of matrix 1)
[tex]X=\begin{bmatrix}2&4\\ 5&4\end{bmatrix}^{-1}\begin{bmatrix}-2&14\\ 13&23\end{bmatrix}=\begin{bmatrix}5&3\\ -3&2\end{bmatrix}[/tex]
Our solution is hence option c
A bag contains 12 blue marbles, 5 red marbles, and 3 green marbles. Jonas selects a marble and then returns it to the bag before selecting a marble again. If Jonas selects a blue marble 4 out of 20 times, what is the experimental probability that the next marble he selects will be blue? A. .02% B. 2% C. 20% D. 200% Please show ALL work! <3
Answer:
20 %
Step-by-step explanation:
The experimental probability is 4/20 = 1/5 = .2 = 20 %
Help me please thank you
Answer:
x = 7
Step-by-step explanation:
The angles are alternate interior angles, so for the lines to be parallel, the angle measures must be equal.
7x - 7 = 4x + 14
3x = 21
x = 7
Find the union and interesection of each of the following A={3,6,9,12}, B ={6,8,9}
Answer:
Hello,
The answer would be,
A union B = {3,6,9,12}
and A intersection B= {6,9}
Answer:
[tex]\huge\boxed{ A\ union \ B = \{3,6,8,9,12\}}[/tex]
[tex]\huge\boxed{A\ intersection \ B = \{6,9\}}[/tex]
Step-by-step explanation:
A = {3,6,9,12}
B = {6,8,9}
A∪B = {3,6,9,12} ∪ { 6,8,9} [Union means all of the elements should be included in the set of A∪B]
=> A∪B = {3,6,8,9,12}
Now,
A∩B = {3,6,9,12} ∩ {6,8,9} [Intersection means common elements of the set]
=> A∩B = {6,9}
Change each of the following points from rectangular coordinates to spherical coordinates and to cylindrical coordinates.
a. (4,2,−4)
b. (0,8,15)
c. (√2,1,1)
d. (−2√3,−2,3)
Answer and Step-by-step explanation: Spherical coordinate describes a location of a point in space: one distance (ρ) and two angles (Ф,θ).To transform cartesian coordinates into spherical coordinates:
[tex]\rho = \sqrt{x^{2}+y^{2}+z^{2}}[/tex]
[tex]\phi = cos^{-1}\frac{z}{\rho}[/tex]
For angle θ:
If x > 0 and y > 0: [tex]\theta = tan^{-1}\frac{y}{x}[/tex];If x < 0: [tex]\theta = \pi + tan^{-1}\frac{y}{x}[/tex];If x > 0 and y < 0: [tex]\theta = 2\pi + tan^{-1}\frac{y}{x}[/tex];Calculating:
a) (4,2,-4)
[tex]\rho = \sqrt{4^{2}+2^{2}+(-4)^{2}}[/tex] = 6
[tex]\phi = cos^{-1}(\frac{-4}{6})[/tex]
[tex]\phi = cos^{-1}(\frac{-2}{3})[/tex]
For θ, choose 1st option:
[tex]\theta = tan^{-1}(\frac{2}{4})[/tex]
[tex]\theta = tan^{-1}(\frac{1}{2})[/tex]
b) (0,8,15)
[tex]\rho = \sqrt{0^{2}+8^{2}+(15)^{2}}[/tex] = 17
[tex]\phi = cos^{-1}(\frac{15}{17})[/tex]
[tex]\theta = tan^{-1}\frac{y}{x}[/tex]
The angle θ gives a tangent that doesn't exist. Analysing table of sine, cosine and tangent: θ = [tex]\frac{\pi}{2}[/tex]
c) (√2,1,1)
[tex]\rho = \sqrt{(\sqrt{2} )^{2}+1^{2}+1^{2}}[/tex] = 2
[tex]\phi = cos^{-1}(\frac{1}{2})[/tex]
[tex]\phi[/tex] = [tex]\frac{\pi}{3}[/tex]
[tex]\theta = tan^{-1}\frac{1}{\sqrt{2} }[/tex]
d) (−2√3,−2,3)
[tex]\rho = \sqrt{(-2\sqrt{3} )^{2}+(-2)^{2}+3^{2}}[/tex] = 5
[tex]\phi = cos^{-1}(\frac{3}{5})[/tex]
Since x < 0, use 2nd option:
[tex]\theta = \pi + tan^{-1}\frac{1}{\sqrt{3} }[/tex]
[tex]\theta = \pi + \frac{\pi}{6}[/tex]
[tex]\theta = \frac{7\pi}{6}[/tex]
Cilindrical coordinate describes a 3 dimension space: 2 distances (r and z) and 1 angle (θ). To express cartesian coordinates into cilindrical:
[tex]r=\sqrt{x^{2}+y^{2}}[/tex]
Angle θ is the same as spherical coordinate;
z = z
Calculating:
a) (4,2,-4)
[tex]r=\sqrt{4^{2}+2^{2}}[/tex] = [tex]\sqrt{20}[/tex]
[tex]\theta = tan^{-1}\frac{1}{2}[/tex]
z = -4
b) (0, 8, 15)
[tex]r=\sqrt{0^{2}+8^{2}}[/tex] = 8
[tex]\theta = \frac{\pi}{2}[/tex]
z = 15
c) (√2,1,1)
[tex]r=\sqrt{(\sqrt{2} )^{2}+1^{2}}[/tex] = [tex]\sqrt{3}[/tex]
[tex]\theta = \frac{\pi}{3}[/tex]
z = 1
d) (−2√3,−2,3)
[tex]r=\sqrt{(-2\sqrt{3} )^{2}+(-2)^{2}}[/tex] = 4
[tex]\theta = \frac{7\pi}{6}[/tex]
z = 3
sorry to keep asking questions
Answer:
y = [tex]\sqrt[3]{x-5}[/tex]
Step-by-step explanation:
To find the inverse of any function you basically switch x and y.
function = y = x^3 + 5
Now we switch x and y
x = y^3 +5
Solve for y,
x - 5 = y^3
switch sides,
y^3 = x-5
y = [tex]\sqrt[3]{x-5}[/tex]
Answer:
[tex]\Large \boxed{{f^{-1}(x)=\sqrt[3]{x-5}}}[/tex]
Step-by-step explanation:
The function is given,
[tex]f(x)=x^3 +5[/tex]
The inverse of a function reverses the original function.
Replace f(x) with y.
[tex]y=x^3 +5[/tex]
Switch variables.
[tex]x=y^3 +5[/tex]
Solve for y to find the inverse.
Subtract 5 from both sides.
[tex]x-5=y^3[/tex]
Take the cube root of both sides.
[tex]\sqrt[3]{x-5} =y[/tex]
Can someone help? This hard
Answer:
The expression = [tex] \frac{40}{y - 16} [/tex]
Value of the expression = 4 (when y is 20)
Step-by-step explanation:
Quotient simply means the result you get when you divide two numbers. Thus, dividend (the numerator) ÷ divisor (the denominator) = quotient.
From the information given to us here,
the dividend = 40
the divisor = y - 16
The quotient = [tex] \frac{40}{y - 16} [/tex]
There, the expression would be [tex] \frac{40}{y - 16} [/tex]
Find the value of the expression when y = 20.
Plug in 20 for y in the expression and evaluate.
[tex] \frac{40}{y - 16} [/tex]
[tex] = \frac{40}{20 - 16} [/tex]
[tex] = \frac{40}{4} = 10 [/tex]
The value of the expression, when y is 20, is 4.
32 to 34 Directions: Given the following set of
numbers find the mean, median, and mode.
12, 13, 15, 15, 16, 19, 19, 19, 20, 21, 25
39.
32. Mean =
a. 17.64
b. 19
c. 15
40. 1
33. Median
a. 17.64
b. 19
c. 15
Answer:
32. A
33. B
Step-by-step explanation:
32. Mean: In order to find the mean, add all of the #up which is 194 then divide by how many # there is
33. Start by crossing out the beginning # and the end # all the way till you get the # without another pair in the end
You flip two coins. What is the probability
that you flip at least one head?
Answer:
[tex]\boxed{Probability=\frac{1}{2} }[/tex]
Step-by-step explanation:
The probability of flipping at least 1 head from flipping 2 coins is:
=> Total sides of the coins = 4
=> Sides which are head = 2
=> Probability = 2/4 = 1/2
In the morning, Sophie goes to the church then goes to the school. In the afternoon she goes to school to home. The map shows the distance between school and home as 5 cm. If every 4 cm on the scale drawing equals 8 kilometers, how far apart are the school and home?
Answer:
10 km
Step-by-step explanation:
Distance = 5 cm
4 cm = 8 km
In km, how far apart is school and home?
Cross Multiply
[tex]\frac{4cm}{8km}[/tex] · [tex]\frac{5cm}{1}[/tex]
Cancel centimeters
[tex]\frac{40(km)(cm)}{4cm}[/tex]
Divide
= [tex]\frac{40km}{4}[/tex]
= 10 km
Use A = -h(a + b) to find the area A of a
2
be trapezium when a = 15, b = 9 and h = 7
Step-by-step explanation:
Putting values
A = - 7(15 + 9)
A = - 7(24)
A = - 168
#1: Simplify the expression below. Type your answer as an integer.
7 + 1 - 18 : 6
Answer:
5
Step-by-step explanation:
Steps of calculation:
7 + 1 - 18 : 6 = 7 + 1 - 3 = 8 - 3 =5Answer is 5
I dont understand this please help Which expression represents the area of the shaded region
Answer:
I'm gonna say C
10-
What is the equation of the line that is perpendicular to
the given line and passes through the point (2, 6)?
8-
(2,6)
-6
O x = 2
4
O x = 6
-2
-10 -3 -6 -22
2
4
B
8
10
X
O y = 2
O y = 6
(-34)
(814)
8
WO
Answer:
x = 2
Step-by-step explanation:
This blue line seems to be horizontal, and so a line perpendicular would have to be vertical. The only vertical line that passes through (2, 6) would be x = 2.
The equation of the line perpendicular to the given line and passes through the point (2, 6) is x = 2.
What is the Equation of line in Slope Intercept form?Equation of a line in slope intercept form is y = mx + b, where m is the slope of the line and b is the y intercept, which is the y coordinate of the point where it touches the Y axis.
Given is a line that passes through the points (-8, -4) and (8, -4).
This line is parallel to the X axis.
A line parallel to X axis has the equation y = b.
The y coordinate is -4 throughout the line.
So equation of the line is y = -4.
A line perpendicular to the given line will be parallel to Y axis.
Parallel lines to Y axis has the equation of the form x = a.
Line passes through the point (2, 6).
x coordinate will be 2 throughout.
So the equation of the perpendicular line is x = 2.
Hence the required equation is x = 2.
Learn more about Equations of Lines here :
https://brainly.com/question/21511618
#SPJ7
Justin is married with one child. He works 40 hours each week at a rate of $16 per hour. His wife began working part time
after their daughter was born, but still contributes about $350 to the cash inflow each month. Their monthly cash outflow
is generally about $3,000. They have a balance of $2,000 in their savings account. Justin has retirement contributions
taken out of his paycheck at work. They have renter's, car and life insurance coverage.
Based on this information, what part of their financial plan should Justin and his wife work on?
managing income
b. managing liquidity
c. protecting assets
d. retirement
a.
Please select the best answer from the choices provided
Answer:
THe answer is A
Step-by-step explanation:
prove that if f is a continuous and positive function on [0,1], there exists δ > 0 such that f(x) > δ for any x E [0,1] g
Answer:
I dont Know
Step-by-step explanation:
find the slope of the line that passes through the two points (0,1) and (-8, -7)
Answer:
The slope of the line is 1Step-by-step explanation:
The slope of a line is found by using the formula
[tex]m = \frac{y2 - y1}{x2 - x1} [/tex]
where
m is the slope and
(x1 , y1) and ( x2 , y2) are the points
Substituting the above values into the above formula we have
Slope of the line that passes through
(0,1) and (-8, -7) is
[tex]m = \frac{ - 7 - 1}{ - 8 - 0} = \frac{ - 8}{ - 8} = 1[/tex]
The slope of the line is 1Hope this helps you
g The intersection of events A and B is the event that occurs when: a. either A or B occurs but not both b. neither A nor B occur c. both A and B occur d. All of these choices are true. a. b. c. d.
Answer:
c. both A and B
Step-by-step explanation:
Given that there are two events A and B.
To find:
Intersection of the two sets represents which of the following events:
a. either A or B occurs but not both
b. neither A nor B occur
c. both A and B occur
d. All of these choices are true. a. b. c. d
Solution:
First of all, let us learn about the concept of intersection.
Intersection of two events means the common part in the two events.
Explanation using set theory:
Let set P contains the outcomes of roll of a dice.
P = {1, 2, 3, 4, 5, 6}
And set Q contains the set of even numbers less than 10.
Q = {2, 4, 6, 8}
Common elements are {2, 4, 6}
So, intersection of P and Q:
[tex]P \cap Q[/tex] = {2, 4, 6}
Explanation using Venn diagram:
Please refer to the image attached in the answer area.
The shaded region is the intersection of the two sets P and Q.
When we apply the above concept in events, we can clearly say from the above explanation that the intersection of two events A and B is the event that occurs when both A and B occur.
So, correct answer is:
c. both A and B
Answer:
C.
Step-by-step explanation:
Calculate how many different sequences can be formed that use the letters of the given word. Leave your answer as a product of terms of the form C(n, r). HINT [Decide where, for example, all the s's will go, rather than what will go in each position.]
georgianna
A) C(10, 7)
B) C(2, 10)C(1, 8)C(1, 7)C(1, 6)C(1, 5)C(2, 4)C(2, 2)
C) C(10, 2)C(8, 1)C(7, 1)C(6, 1)C(5, 1)C(4, 1)C(3, 1)C(2, 1)C(1, 1)
D) 10 · C(10, 2)C(8, 1)C(7, 1)C(6, 1)C(5, 1)C(4, 2)C(2, 2)
E) C(10, 2)C(8, 1)C(7, 1)C(6, 1)C(5, 1)C(4, 2)C(2, 2)
Answer: E) C(10, 2)C(8, 1)C(7, 1)C(6, 1)C(5, 1)C(4, 2)C(2, 2)
Step-by-step explanation:
According to the combinations: Number of ways to choose r things out of n things = C(n,r)
Given word: "georgianna"
It is a sequence of 10 letters with 2 a's , 2 g's , 2 n's , and one of each e, o,r, i.
If we think 10 blank spaces, then in a sequence we need 2 spaces for each of g.
Number of ways = C(10,2)
Similarly,
1 space for 'e' → C(8,1)
1 space for 'o' → C(7,1)
1 space for 'r' → C(6,1)
1 space for 'i' → C(5,1)
1 space for 'a' → C(4,2)
1 space for 'n' → C(2,2)
Required number of different sequences = C(10,2) ×C(8,1)× C(7,1)× C(6,1)×C(5,1)×C(2,2).
Hence, the correct option is E) C(10, 2)C(8, 1)C(7, 1)C(6, 1)C(5, 1)C(4, 2)C(2, 2)
A box contain 12 balls in which 4 are white 3 are blue and 5 are red.3 balls are drawn at random from the box.find the chance that all three are selected
Answer:
3/11
Step-by-step explanation:
In the above question, we have the following information
Total number of balls = 12
White balls = 4
Blue balls = 3
Red balls = 5
We are to find the chance of probability that if we select 3 balls, all the three are selected.
Hence,
Probability ( all the three balls are selected) = P(White ball) × P(Blue ball) × P( Red ball)
Probability ( all the three balls are selected) = 4/12 × 3/11 × 5/10
= 60/1320
= 1/22
The number of ways by which we can selected all the three balls is a total of 6 ways:
WBR = White, Blue, Red
WRB = White, Red, Blue
RBW = Red, Blue, White
RWB = Red, White, Blue
BRW = Blue, Red, White
BWR = Blue, White, Red
Therefore, the chance that all three are selected :
1/22 × 6 ways = 6/22 = 3/11
Multiple Choice The opposite of –4 is A. 4. B. –4. C. –(–(–4)). D. –|4|.
Answer:
a. 4
Step-by-step explanation:
-1(-4) = 4
Answer:
A 4
Step-by-step explanation:
opposite of –4 = 4
A manufacturing company regularly conducts quality control checks at specified periods on the products it manufactures. Historically, the failure rate for LED light bulbs that the company manufactures is 3%. Suppose a random sample of 10 LED light bulbs is selected. What is the probability that
Answer:
The probability that none of the LED light bulbs are defective is 0.7374.
Step-by-step explanation:
The complete question is:
What is the probability that none of the LED light bulbs are defective?
Solution:
Let the random variable X represent the number of defective LED light bulbs.
The probability of a LED light bulb being defective is, P (X) = p = 0.03.
A random sample of n = 10 LED light bulbs is selected.
The event of a specific LED light bulb being defective is independent of the other bulbs.
The random variable X thus follows a Binomial distribution with parameters n = 10 and p = 0.03.
The probability mass function of X is:
[tex]P(X=x)={10\choose x}(0.03)^{x}(1-0.03)^{10-x};\ x=0,1,2,3...[/tex]
Compute the probability that none of the LED light bulbs are defective as follows:
[tex]P(X=0)={10\choose 0}(0.03)^{0}(1-0.03)^{10-0}[/tex]
[tex]=1\times 1\times 0.737424\\=0.737424\\\approx 0.7374[/tex]
Thus, the probability that none of the LED light bulbs are defective is 0.7374.
Jessica is at a charity fundraiser and has a chance of receiving a gift. The odds in favor of receiving a gift are 5/12. Find the probability of Jessica receiving a gift.
Answer:
5/17
Step-by-step explanation:
This is a question to calculate probability from odds. The formula is given as:
A formula for calculating probability from odds is P = Odds / (Odds + 1)
From the question , we are told that the odds of receiving a gift is
= 5:12
The probability of Jessica receiving a gift =
Probability = Odds / (Odds + 1)
P = 5/12 / ( 5/12 + 1)
P = (5/12)/ (17/12)
P = 5/12 × 12/17
= 5/17
Therefore, the probability of Jessica. receiving a gift is 5/17.
From a group of 11 people, 4 are randomly selected. What is the probability the 4 oldest people in the group were selected
The probability that the 4 oldest people in the group were selected is based on combinatorics is 0.00303 or 0.303%.
Given that:
Find how many ways the 4 oldest people can be selected from the group.
Since the 4 oldest people are already determined, there is only 1 way to select them.
n = 11 (total number of people in the group) and k = 4 (number of people to be selected).To calculate the probability, to determine the total number of ways to select 4 people from the group of 11. This can be found using the combination formula:
Number of ways to choose k items from n items :
C(n,k) = n! / (k!(n-k)!)
Calculate the total number of ways to select 4 people from the group:
Plugging n and k value from given data:
C(11,4 )= 11! / (4!(11-4)!)
On simplifications gives:
C(11, 4) = 330.
Calculate the probability:
Probability = Number of ways 4 oldest people selected / Total number of ways to select 4 people
Plugging the given data:
Probability = 1 / 330
Probability ≈ 0.00303 or 0.303%.
Therefore, the probability that the 4 oldest people in the group were selected is based on combinatorics is 0.00303 or 0.303%.
Learn more about probabilities here:
https://brainly.com/question/23846068
#SPJ4
How many ways are there to choose 22 croissants with at least one plain croissant, at least two cherry croissants, at least three chocolate croissants, at least one almond croissant, at least two apple croissants, and no more than three broccoli croissants
Answer:
There are 6566 ways to choose 22 croissants with at least one plain croissant, at least two cherry croissants, at least three chocolate croissants, at least one almond croissant, at least two apple croissants, and no more than three broccoli croissants.
Step-by-step explanation:
Given:
There are 5 types of croissants:
plain croissants
cherry croissants
chocolate croissants
almond croissant
apple croissants
broccoli croissants
To find:
to choose 22 croissants with:
at least one plain croissant
at least two cherry croissants
at least three chocolate croissants
at least one almond croissant
at least two apple croissants
no more than three broccoli croissants
Solution:
First we select
At least one plain croissant to lets say we first select 1 plain croissant, 2 cherry croissants, 3 chocolate croissants, 1 almond croissant, 2 apple croissants
So
1 + 2 + 3 + 1 + 2 = 9
Total croissants = 22
So 9 croissants are already selected and 13 remaining croissants are still needed to be selected as 22-9 = 13, without selecting more than three broccoli croissants.
n = 5
r = 13
C(n + r - 1, r)
= C(5 + 13 - 1, 13)
= C(17,13)
[tex]=\frac{17! }{13!(17-13)!}[/tex]
= 355687428096000 / 6227020800 ( 24 )
= 355687428096000 / 149448499200
= 2380
C(17,13) = 2380
C(n + r - 1, r)
= C(5 + 12 - 1, 12)
= C(16,12)
[tex]=\frac{16! }{12!(16-12)!}[/tex]
= 20922789888000 / 479001600 ( 24 )
= 20922789888000 / 11496038400
= 1820
C(16,12) = 1820
C(n + r - 1, r)
= C(5 + 11 - 1, 11)
= C(15,11)
[tex]=\frac{15! }{11!(15-11)!}[/tex]
= 1307674368000 / 39916800 (24)
= 1307674368000 / 958003200
= 1307674368000 / 958003200
= 1365
C(15,11) = 1365
C(n + r - 1, r)
= C(5 + 10 - 1, 10)
= C(14,10)
[tex]=\frac{14! }{10!(14-10)!}[/tex]
= 87178291200 / 3628800 ( 24 )
= 87178291200 / 87091200
= 1001
C(14,10) = 1001
Adding them:
2380 + 1820 + 1365 + 1001 = 6566 ways
Find the product of all solutions of the equation (10x + 33) · (11x + 60) = 0
Answer:
18
Step-by-step explanation:
Using Zero Product Property, we can split this equation into two separate equations by setting each factor to 0. The equations are:
10x + 33 = 0 or 11x + 60 = 0
10x = -33 or 11x = -60
x = -33/10 or x = -60/11
Multiplying the two solutions together, we get -33/10 * -60/11 = 1980 / 110 = 18.