Answer:
Solution : Option A
Step-by-step explanation:
What we want to do here is eliminate the parameter t. In order to do that, we can isolate t in our first equation x = t + 6 ----- ( 1 ) and then plug that value for t in the second equation y = 3t - 1. Our solution will be an equation that is not present with t.
( 1 ) x = t + 6, t = x - 6
( 2 ) y = 3( x - 6 ) - 1 ( Distribute the " 3 " in 3( x - 6 ) )
y = 3x - 18 - 1 ( Combine like terms )
y = 3x - 19
As you can see our result will be option a, y = 3x - 19.
coefficient of 8x+7y
Answer:
8
Step-by-step explanation:
Identify the exponents on the variables in each term, and add them together to find the degree of each term.
8x→1
7y→1
The largest exponent is the degree of the polynomial.
1
The leading term in a polynomial is the term with the highest degree.
8x
The leading coefficient of a polynomial is the coefficient of the leading term.
____________________________________________________________
The leading term in a polynomial is the term with the highest degree.
8x
The leading coefficient in a polynomial is the coefficient of the leading term.
8
List the results.
Polynomial Degree: 1
Leading Term: 8x
Leading Coefficient: 8
Hope This Helps!!!
Another trader would like to carry out a hypothesis test about stocks that offer dividends. Why is this hypothesis test right-tailed? Select the correct answer below: This is a right-tailed test because a direction is not specified. This is a right-tailed test because a direction is specified. The population parameter is greater than the specified value. This is a right-tailed test because a direction is specified. The population parameter is less than the specified value. More information is needed.
Answer:
This is a right-tailed test because a direction is specified. The population parameter is greater than the specified value.
Step-by-step explanation:
The hypothesis testing technique is used to test an assumption regarding population parameter. Null hypothesis is a statement that is to be tested against the alternative hypothesis and then decision is taken whether to accept or reject the null hypothesis. A right tailed test is where the most of data is in the right side. This is one tailed test where the direction is specified.
x = 4: 3x3 - 2x2 +10
Answer:
170
Step-by-step explanation:
3(4)³ - 2(4)² + 10
192 - 32 + 10 = 170
Find the measure of A.
A. 50
B. 70
C. 100
D. 90
Answer:
D
Step-by-step explanation:
I don't know how to eliminate the wrong answers.
Two line segments which have one end at a diameter and the other end meeting at a common point, make a 90 degree angle.
A is made that way, so A is 90 degrees.
Answer:
Step-by-step explanation:
I believe it is 90
1. What is the value of (1/2)^3?
O A. 76
O B. 119
O C.12
O D. 18
Answer:
1/2 to the power of 3= 1/8
Step-by-step explanation:
1/2*1/2=1/4
1/4*1/2=1/8
d?
[tex]\huge\text{Hey there!}[/tex]
[tex]\mathsf{(\dfrac{1}{2})^3}[/tex]
[tex]\mathsf{= \dfrac{1}{2}^3}[/tex]
[tex]\mathsf{= \dfrac{1}{2} \times \dfrac{1}{2} \times \dfrac{1}{2}}[/tex]
[tex]\mathsf{= \dfrac{1 \times 1 \times 1}{2 \times 2 \times 2}}[/tex]
[tex]\mathsf{\mathsf{= \dfrac{1 \times 1} {4 \times 2}}}[/tex]
[tex]\mathsf{= \dfrac{1}{8}}[/tex]
[tex]\huge\text{Therefore your answer should be:}[/tex]
[tex]\huge\boxed{\mathsf{Option\ D.\ \dfrac{1}{8}}}\huge\checkmark[/tex]
[tex]\huge\text{Good luck on your assignment \& enjoy your day!}[/tex]
The Downtown Parking Authority of Tampa, Florida, reported the following information for a sample of 229 customers on the number of hours cars are parked and the amount they are charged.
Number of Hours Frequency Amount Charged 1 16 $ 3 2 34 6 3 51 12 4 39 16 5 34 21 6 16 24 7 9 27 8 30 29 229
a. Convert the information on the number of hours parked to a probability distribution. (Round your answers to 3 decimal places.) Hours Probability 1 2 3 4 5 6 7 8
a-2. Is this a discrete or a continuous probability distribution?
b-1. Find the mean and the standard deviation of the number of hours parked. (Do not round intermediate calculations. Round your final answers to 3 decimal places.)
b-2. How long is a typical customer parked? (Do not round intermediate calculations. Round your final answers to 3 decimal places.)
c. Find the mean and the standard deviation of the amount charged. (Do not round intermediate calculations. Round your final answers to 3 decimal places.)
Answer:
a
See in the explanation
a-2.
Discrete
b-1.
Mean = 4.201
Standard Deviation = 2.069
b-2.
4.201
c.
Mean = 16.153
Standard Deviation = 8.079
Step-by-step explanation:
Given Data:
Number of Hours Frequency Amount Charged
1 16 $3
2 34 6
3 51 12
4 39 16
5 34 21
6 16 24
7 9 27
8 30 29
∑f = 229
a. Convert the information on the number of hours parked to a probability distribution:
The probability is calculated by dividing each frequency by 229. For example probability of Hour 1 is calculated as:
16 / 229 = 0.06987
This way all the hours probabilities are computed. The probability distribution is given below
Hours Probability
1 0.06987
2 0.14847
3 0.2227
4 0.1703
5 0.1485
6 0.0699
7 0.0393
8 0.1310
∑ 1
a-2. Is this a discrete or a continuous probability distribution?
This is a discrete probability distribution as the probability of each hour of between 0 and 1 and the sum of all the probabilities of hours is 1.
b-1. Find the mean and the standard deviation of the number of hours parked.
First multiply each value of Number of hours by the corresponding frequency. Let x represents the number of hours and f represents frequency. Then:
Number of Hours Parked
fx
16
68
153
156
170
96
63
240
Now add the above computed products.
∑fx = 16+68+153+156+170+96+63+240 = 962
Compute Mean:
Now the formula to calculate mean:
Mean = Sum of the value / Number of value
= ∑fx / ∑f
= 962 / 229
Mean = 4.201
Compute Standard Deviation:
Let x be the Number of hours.
Let f be the frequency
First calculate (x-x_bar) where x is each number of hours and x_bar is mean. The value of x_bar i.e. [tex]\frac{}{x}[/tex] = 4.201
For example for the Hour = 1 , and mean = 4.201
Then (x-[tex]\frac{}{x}[/tex]) = 1 - 4.201 = -3.201
So calculating this for every number of hour we get:
(x-[tex]\frac{}{x}[/tex])
-3.201
-2.201
-1.201
-0.201
0.799
1.799
2.799
3.799
Next calculate (x-[tex]\frac{}{x}[/tex])². Just take the squares of the above column (x-[tex]\frac{}{x}[/tex])
For example the first entry of below calculation is computed by:
(x-[tex]\frac{}{x}[/tex])² = (-3.201 )² = 10.246401
(x-[tex]\frac{}{x}[/tex])²
10.246401
4.844401
1.442401
0.040401
0.638401
3.236401
7.834401
14.432401
Next multiply each entry of (x-[tex]\frac{}{x}[/tex])² with frequency f. For example the first entry below is computed by:
(x-[tex]\frac{}{x}[/tex])² * f = 10.246401 * 16 = 163.942416
(x-[tex]\frac{}{x}[/tex])² * f
163.942416
164.709634
73.562451
1.575639
21.705634
51.782416
70.509609
432.97203
Now the formula to calculate standard deviation is:
S = √∑(x-[tex]\frac{}{x}[/tex])² * f/n
Here
n = ∑f = 229
∑(x-[tex]\frac{}{x}[/tex])² * f is the sum of all entries of (x-[tex]\frac{}{x}[/tex])² * f
∑(x-[tex]\frac{}{x}[/tex])² * f = 980.759829
S = √∑(x-[tex]\frac{}{x}[/tex])² * f/n
= √980.759829 / 229
= √4.2827940131004
= 2.0694912449924
S = 2.069
b-2) How long is a typical customer parked?
That is the value of mean calculated in part b-1. Hence
Typical Customer Parked for 4.201 hours
c) Find the mean and the standard deviation of the amount charged.
First multiply each value of Amount Charged by the corresponding frequency. Let x represents the number of hours and f represents frequency. Then:
fx
48
204
612
624
714
384
243
870
Now add the above computed products.
∑fx = 48+204+612+624+714+384+243+870 = 3699
Compute Mean:
Now the formula to calculate mean:
Mean = Sum of the value / Number of value
= ∑fx / ∑f
= 3699 / 229
Mean = 16.153
Compute Standard Deviation:
Let x be the Amount Charged.
Let f be the frequency.
First calculate (x-x_bar) where x is each value of Amount charged and x_bar is mean. The value of x_bar i.e. [tex]\frac{}{x}[/tex] = 16.153
For example for the Amount Charged = 3 , and mean = 16.153
Then (x-[tex]\frac{}{x}[/tex]) = 3 - 16.153 = -13.153
So calculating this for every number of hour we get:
(x-[tex]\frac{}{x}[/tex])
-13.153
-10.153
-4.153
-0.153
4.847
7.847
10.847
12.847
Next calculate (x-[tex]\frac{}{x}[/tex])². Just take the squares of the above column (x-[tex]\frac{}{x}[/tex])
For example the first entry of below calculation is computed by:
(x-[tex]\frac{}{x}[/tex])² = (-13.153 )² = 173.001409
(x-[tex]\frac{}{x}[/tex])²
173.001409
103.083409
17.247409
0.023409
23.493409
61.575409
117.657409
165.045409
Next multiply each entry of (x-[tex]\frac{}{x}[/tex])² with frequency f. For example the first entry below is computed by:
(x-[tex]\frac{}{x}[/tex])² * f = 173.001409 * 16 =
(x-[tex]\frac{}{x}[/tex])² * f
2768.022544
3504.835906
879.617859
0.912951
798.775906
985.206544
1058.916681
4951.36227
∑(x-[tex]\frac{}{x}[/tex])² = 14947.65066
Now the formula to calculate standard deviation is:
S = √∑(x-[tex]\frac{}{x}[/tex])² * f/n
Here
n = ∑f = 229
∑(x-[tex]\frac{}{x}[/tex])² * f is the sum of all entries of (x-[tex]\frac{}{x}[/tex])² * f
∑(x-[tex]\frac{}{x}[/tex])² * f = 14947.65066
S = √∑(x-[tex]\frac{}{x}[/tex])² * f/ ∑f
= √65.273583668122
= 8.0792068712295
S = 8.079
What is the midline equation of the function h(x) = -4 cos(5x - 9) - 7?
Answer: Midline equation: y = -7
Step-by-step explanation: This function is a sinusoidal function of the form:
y = a.cos(b(x+c))+d
Midline is a horizontal line where the function oscillates above and below.
In the sinusoidal function d represents its vertical shift. Midline is not influenced by any other value except vertical shift. For that reason,
Midline, for the function: [tex]h(x) = -4cos(5x-9) - 7[/tex] is y=d, i.e., [tex]y=-7[/tex]
Answer:
y=-7
Step-by-step explanation:
Which of the following is true about congruent figures?
They're the same shape and the same size.
They're the same size, but not the same shape.
They're not the same shape or size.
They're the same shape, but not the same size.
Answer:
A
Step-by-step explanation:
congruent means they have the same shape and size. hope this helps :)
Find an exact value of sin(17pi/12)
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Hi my lil bunny!
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
[tex]\frac{(17)(3.141593)}{12}[/tex]
= [tex]\frac{53.407075}{12}[/tex]
= [tex]4.45059[/tex]
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
If this helped you, could you maybe give brainliest..?
Also Have a great day/night!
❀*May*❀
I have an answer and explanation but I can't type so search up the question you asked and you should get an answer and explanation from s0cratic.
1. Determine whether the given procedure results in a binomial distribution. If not, state the reason why.
Rolling a single die 53 times, keeping track of the "fives" rolled.
A) Not binomial: there are too many trials.
B) Not binomial: there are more than two outcomes for each trial.
C) Not binomial: the trials are not independent.
D) Procedure results in a binomial distribution.
2. Determine whether the given procedure results in a binomial distribution. If not, state the reason why.
Spinning a roulette wheel 7 times, keeping track of the winning numbers.
A) Not binomial: there are more than two outcomes for each trial.
B) Procedure results in a binomial distribution.
C) Not binomial: there are too many trials.
D) Not binomial: the trials are not independent.
1. Not binomial: there are more than two outcomes for each trial.
Thus, option (B) is correct.
2. Procedure results in a binomial distribution.
Thus, option (B) is correct.
1. Not binomial: there are more than two outcomes for each trial.
In a binomial distribution, each trial can have only two outcomes (usually referred to as success and failure).
In this case, the procedure involves rolling a single die 53 times and keeping track of the "fives" rolled.
Since the outcome can be any number from 1 to 6 on each trial, it does not meet the criteria for a binomial distribution.
Thus, option (B) is correct.
2. Procedure results in a binomial distribution.
In this case, the procedure involves spinning a roulette wheel 7 times and keeping track of the winning numbers. The outcome of each trial is either a win or a loss, which satisfies the requirement for a binomial distribution.
Thus, option (B) is correct.
Learn more about Binomial Distribution here:
https://brainly.com/question/29163389
#SPJ6
normal population has a mean of 63 and a standard deviation of 13. You select a random sample of 25. Compute the probability that the sample mean is: (Round your z values to 2 decimal places and final answers to 4 decimal places): Greater than 65.
Answer:
0.2207
Step-by-step explanation:
Here, we want to find the probability that the sample mean is greater than 25.
What we use here is the z-scores statistic
Mathematically;
z-score = (x-mean)/SD/√n
From the question;
x = 65, mean = 63, SD = 13 and n = 25
Plugging these values in the z-score equation, we have
Z-score = (65-63)/13/√25 = 2/13/5 = 0.77
So the probability we want to calculate is ;
P(z > 0.77)
This can be obtained from the standard normal distribution table
Thus;
P(z > 0.77) = 0.22065 which is 0.2207 to 4 d.p
Geometry pls help !!! Find the value of AB.
AB = [?]
Answer:
AB = 16 Units
Step-by-step explanation:
In the given figure, CD is the diameter and AB is the chord of the circle.
Since, diameter of the circle bisects the chord at right angle.
Therefore, AE = 1/2 AB
Or AB = 2AE...(1)
Let the center of the circle be given by O. Join OA.
OA = OD = 10 (Radii of same circle)
Triangle OAE is right triangle.
Now, by Pythagoras theorem:
[tex] OA^2 = AE^2 + OE^2 \\
10^2 = AE^2 + 6^2 \\
100= AE^2 + 36\\
100-36 = AE^2 \\
64= AE^2 \\
AE = \sqrt{64}\\
AE = 8 \\
\because AB = 2AE..[From \: equation\: (1)] \\
\therefore AB = 2\times 8\\
\huge \purple {\boxed {AB = 16 \: Units}} [/tex]
find the area of this figure to the nearest hundredth. Use 3.14 to approximate pi.
Answer:
86.28 ft²
Step-by-step explanation:
The figure given consists of a rectangle and a semicircle.
The area of the figure = area of rectangle + area of semicircle
Area of rectangle = [tex] l*w [/tex]
Where,
l = 10 ft
w = 8 ft
[tex] area = l*w = 10*8 = 80 ft^2 [/tex]
Area of semicircle:
Area of semicircle = ½ of area of a circle = ½(πr²)
Where,
π = 3.14
r = ½ of 8 = 4 ft
Area of semi-circle = ½(3.14*4) = 6.28 ft²
Area of the figure = area of rectangle + area of semi-circle = 80 + 6.28 = 86.28 ft² (nearest hundredth)
Answer:
the area of the figrue is 105.12
Step-by-step explanation:
area of rectangle A= l · w10 x 8= 80area of simi-circle= 1/2(3.14 x r²)1/2 x 3.14 x 4²=25.1280+25.12=105.12 (nearest Hundredth)Find the indicated complement. A certain group of women has a 0.12% rate of red/green color blindness. If a woman is randomly selected, what is the probability that she does not have red/green color blindness?
Answer:
the probability will be 0.
Step-by-step explanation:
0.12%= 0.0012= 3/2500.
Translate and solve: 54 greater than x is greater than 216
Answer:
x >162
Step-by-step explanation:
x+54 > 216
Subtract 54 from each side
x+54-54 > 216 - 54
x >162
Answer:
[tex]\huge \boxed{{x>162}}[/tex]
Step-by-step explanation:
[tex]x+54 > 216[/tex]
[tex]\sf Subtract \ 54 \ from \ both \ parts.[/tex]
[tex]x+54 -54> 216-54[/tex]
[tex]x>162[/tex]
(a) A survey of the adults in a town shows that 8% have liver problems. Of these, it is also found that 25% are heavy drinkers, 35% are social drinkers and 40% are non-drinkers. Of those that did not suffer from liver problems, 5% are heavy drinkers, 65% are social drinkers and 30% do not drink at all. An adult is chosen at random, what is the probability that this person i. Has a liver problems?
Answer:
The probability that the selected adult has liver problems is 0.08
Step-by-step explanation:
In this question, from the data given, we want to calculate the probability that an adult selected at random has liver problems.
Let E(L) be the event that an adult has liver problems.
The probability is directly obtainable from the question and it is given as 8%
Thus, the probability that the selected adult has liver problems; P(L) = 8% = 8/100 = 0.08
PLEASE HELP ! (2/5) -50 POINTS -
Answer:
symmetric
Step-by-step explanation:
it kind of evenly falls to the left and right from the highest value in the middle
skewed would be different and would look like a straight line not a quadratic equation
5. If W(-10, 4), X(-3,-1), and Y(-5, 11) classify AWXY by its sides. Show all work to justify your
answer.
Answer:
an isosceles right triangle
Step-by-step explanation:
The square of the length of a side can be found from the distance formula:
d^2 = (x2-x1)^2 +(y2-y1)^2
The square of the length of WX is ...
WX^2 = (-3-(-10))^2 +(-1-4)^2 = 49+25 = 74
The square of the length of XY is ...
XY^2 = (-5-(-3))^2 +(11-(-1))^2 = 4 +144 = 148
The square of the length of YW is ...
YW^2 = (-10-(-5))^2 +(4 -11)^2 = 25 +49 = 74
The sum of the squares of the short sides is equal to the square of the long side, so this is a right triangle. The squares of the short sides are equal, so this is an isosceles right triangle.
Find the total amount in the compound interest account.
$10000 is compounded semiannually at a rate of 9% for 22 years.
(Round to the nearest cent.)
Answer:
$69,361.23
Step-by-step explanation:
[tex] A = P(1 + \dfrac{r}{n})^{nt} [/tex]
[tex] A = 10000(1 + \dfrac{0.09}{2})^{2 \times 22} [/tex]
[tex]A = 10000(1.045)^{44}[/tex]
[tex] A = 69361.23 [/tex]
Answer: $69,361.23
if G is the midpoint of FH, FG = 14x + 25 and GH = 73 - 2x, find FH.
Answer:
FH = 134
Step-by-step explanation:
From the question given:
G is the midpoint of FH
FG = 14x + 25
GH = 73 - 2x
FH =?
Next, we shall determine the value of x. The value of x can be obtained as follow:
Since G is the midpoint of FH, this implies that FG and GH are equal i.e
FG = GH
With the above formula, we can obtain the value of x as follow:
FG = 14x + 25
GH = 73 - 2x
x =?
FG = GH
14x + 25 = 73 - 2x
Collect like terms
14x + 2x = 73 - 25
16x = 48
Divide both side by 16
x = 48/16
x = 3
Next, we shall determine the value of FG and GH. These can be obtained as shown below:
FG = 14x + 25
x = 3
FG = 14x + 25
FG = 14(3) + 25
FG = 42 + 25
FG = 67
GH = 73 - 2x
x = 3
GH = 73 - 2x
GH = 73 - 2(3)
GH = 73 - 6
GH = 67
Finally, we shall determine FH as follow:
FH = FG + GH
FG = 67
GH = 67
FH = FG + GH
FH = 67 + 67
FH = 134
Therefore, FH is 134
A new fast-food firm predicts that the number of franchises for its products will grow at the rate dn dt = 6 t + 1 where t is the number of years, 0 ≤ t ≤ 15.
Answer:
The answer is "253"
Step-by-step explanation:
In the given- equation there is mistype error so, the correct equation and its solution can be defined as follows:
Given:
[tex]\bold{\frac{dn}{dt} = 6\sqrt{t+1}}\\[/tex]
[tex]\to dn= 6\sqrt{t+1} \ \ dt.....(a)\\\\[/tex]
integrate the above value:
[tex]\to \int dn= \int 6\sqrt{t+1} \ \ dt \\\\\to n= \frac{(6\sqrt{t+1} )^{\frac{3}{2}}}{\frac{3}{2}}+c\\\\\to n= \frac{(12\sqrt{t+1} )^{\frac{3}{2}}}{3}+c\\\\[/tex]
When the value of n=1 then t=0
[tex]\to 1= \frac{12(0+1)^{\frac{3}{2}}}{3}+c\\\\ \to 1= \frac{12(1)^{\frac{3}{2}}}{3}+c\\\\\to 1-\frac{12}{3}=c\\\\\to \frac{3-12}{3}=c\\\\\to \frac{-9}{3}=c\\\\\to c=-3\\[/tex]
so the value of n is:
[tex]\to n= \frac{(12\sqrt{t+1} )^{\frac{3}{2}}}{3}-3\\\\[/tex]
when we put the value t= 15 then,
[tex]\to n= \frac{(12\sqrt{15+1} )^{\frac{3}{2}}}{3}-3\\\\\to n= \frac{(12\sqrt{16} )^{\frac{3}{2}}}{3}-3\\\\\to n= \frac{(12\times 64)}{3}-3\\\\\to n= (4\times 64)-3\\\\\to n= 256-3\\\\\to n= 253[/tex]
Use the frequency distribution, which shows the number of American voters (in millions) according to age, to
find the probability that a voter chosen at random is in the 18 to 20 years old age range
Ages
18 to 20
21 to 24
25 to 34
35 to 44
45 to 64
65 and over
Frequency
4.2
7.8
20.8
23.7
50.1
28 2
Date
07/2
3:29
The probability that a voter chosen at random is in the 18 to 20 years old age range is 0.0311
(Round to three decimal places as needed.)
07/2
8:52
Question Viewer
07/1
8:03
07/1
5:46
>
07/1
12:2
07/1
5:39
07/1
2:42
Question is complete. Tap on the red indicators to see incorrect answers.
07/1
12:00
Answer:
The probability that a voter chosen at random is in the 18 to 20 years old age range is = 4.2/ 134.8= 0.0311572
Step-by-step explanation:
We can find the probability by simply dividing the frequency of the ages range of 18-20 by the total frequency.
Ages Frequency
18 to 20 4.2
21 to 24 7.8
25 to 34 20.8
35 to 44 23.7
45 to 64 50.1
65 and over 28.2
∑ 134.8
The probability of an event is given by the occurrence of an event by the total occurrences .
So
Here the occurrence of ages 18-20 is given by 4.2
and the total frequency is 134.8
The probability that a voter chosen at random is in the 18 to 20 years old age range is = 4.2/ 134.8= 0.0311572
(G1) The distance from Flagstaff Arizona to
Tucson Arizona is 260 miles. Express this
distance in meters.
A. 418,418 meters
B. 419,000 meters
C. 126,200 meters
D. 260,000 meters
Answer:
A. 418, 418
Step-by-step explanation:
The formula to convert miles to meters is the following:
1 = 1,609.34
so for every 1 mile, you have 1,609.34 meters
so you take your distance in miles and multiply it by 1,609.34
d= 260 x 1,609.34
d = 418, 428.4
Is the sequence {81, 27, 9, 3, 1, …} arithmetic or geometric?
Answer:
Geometric
Step-by-step explanation:
That is a geometric sequence, because the each number divided into 3. As we know if the pattern are multiply or divided it will be geometric, if it is sum or subtract will be arithmetic.
hope this helps
if u have question let me know in comments
The given sequence is geometric. The common ratio of the geometric sequence is 1/3.
What is geometric progression?A geometric progression (G.P.) is a sort of sequence in which each successive term is obtained by multiplying the prior term by a set number known as a common ratio.
This progression is also known as a pattern-following geometric sequence of integers.
The given sequence in the problem is;
81, 27, 9, 3, 1, …
Due to the fact that each number is split into three, that sequence is geometric. The pattern will be geometric if it is multiplied or divided, and arithmetic if it is the result of addition or subtraction.
The common ratio of the sequence is found as;
[tex]\rm r = \frac{27}{81} =\frac{9}{27} =\frac{3}{9} =\frac{1}{3} =\frac{1}{3}[/tex]
The common ratio of successive terms is equal.
Hence, the given sequence is geometric.
To learn more about the geometric progression, refer to https://brainly.com/question/14320920.
#SPJ2
Should I read Fruit's Basket? I need something to keep me busy.
Answer: Yes
Explanation: Yes because, sometimes you need to do stuff to get things of your head
Joseph is 33 years old. Five years ago, He was twice as old as Ann. How old will Ann be in 5 years time?
Answer:
19 years oldStep-by-step explanation:
[tex]Joseph = 33 \:years \:old\\ \\Let \: ann's \:age be x\\\\33-5 = 2x\\\\28 = 2x\\\\Divide \:both \:sides \:of \:the \:equation \: by \:2\\\\\frac{2x}{2} = \frac{28}{2} \\\\x = 14\\\\Ann's \:present \:age \:= 14\\\\In \:5 \:years \:time ; \\\\14+5 = 19\\[/tex]
solve the following inequalities 7 x minus 5 / 8 x + 3 >4
Answer:
[tex]x> \frac{8}{51} [/tex]
Step-by-step explanation:
[tex]7x - \frac{5}{8} x + 3>4[/tex]
Bring constants to one side, simplify:
[tex] \frac{51}{8} x>4 - 3 \\ \frac{51}{8} x>1 \\ x>1 \div \frac{51}{8} \\ x>1 \times \frac{8}{51} \\ x> \frac{8}{51} [/tex]
*Note that the inequality sign only changes when you divide the whole inequality by a negative number.
Answer:
[tex]x>\frac{8}{51}[/tex]
Step-by-step explanation:
[tex]7x-\frac{5}{8}x+3>4\\\mathrm{Subtract\:}3\mathrm{\:from\:both\:sides}\\7x-\frac{5}{8}x+3-3>4-3\\\mathrm{Simplify}\\7x-\frac{5}{8}x>1\\\mathrm{Multiply\:both\:sides\:by\:}8\\7x\times \:8-\frac{5}{8}x\times \:8>1\times \:8\\\mathrm{Simplify}\\56x-5x>8\\51x>8\\\mathrm{Divide\:both\:sides\:by\:}51\\\frac{51x}{51}>\frac{8}{51}\\\\x>\frac{8}{51}[/tex]
I hope it helps :)
13,226 divided by 29
13226/29= 456.068965517
What is the sum of the geometric sequence?
Answer:
B. 259
Step-by-step explanation:
6^(i - 1) for i = 1 to 4
sum = 6^(1 - 1) + 6^(2 - 1) + 6^(3 - 1) + 6^(4 - 1) =
= 6^0 + 6^1 + 6^2 + 6^3
= 1 + 6 + 36 + 216
= 259
Answer: B. 259
Recall the formula V = four-thirds pi r cubed.
Answer:
1308.33
Step-by-step explanation:
In the pic