Earnings per share, EPS is calculated using the formula \large EPS=\frac{NI-PD}{SO}, where NI is net income, PD is preferred dividence, and SO number of outstanding shares.

What is a company's net income if they have $50,000 in preferred dividends and pay out $0.55 per share on 200,000 shares?

Answers

Answer 1

Answer: $160,000

Step-by-step explanation:

Given the following :

Earning per share (EPS) = $0.55

Number of outstanding shares = 200,000

Preferred dividend = $50,000

EPS = (NET INCOME - PREFERRED DIVIDEND) / NUMBR OF OUTSTANDING SHARES

0.55 = ( NET INCOME - 50000) / 200000

200000 × 0.55 = NET INCOME - 50000

110,000 = NET INCOME - 50000

NET INCOME = 110,000 + 50,000

NET INCOME = $160,000


Related Questions

Escreva expressões algébricas mais simples e equivalentes às expressões abaixo.

Answers

Answer:

Step-by-step explanation:

(4a+8)/2 = 4a/2  + 8/2 = 2a + 4(5x + 6x + 22)/11 = (11x+22)/11 = 11x/11 + 22/11 = x + 2{6(x+2)-12}/3 = {6x+12 - 12}/3 = 6x/3 = 2x(

hey gouys I need help on this to plz help mee

Answers

Answer:

d. 3√6 = 7.348

Step-by-step explanation:

1. simplify each expression

a. √150 / 2 = 6.124

b. π + 4 = 7.142

c. 2π = 6.283

d. 3√6 = 7.348

the largest number will be the closest to 8. therefore, point W is expression D.

12 divided by 458 in long division please answer correctly please help.​

Answers

Answer:

600 is the missing space

Step-by-step explanation:

rate me brainliest plz

A pair of opposite vertices of a square is (1, 2) and (3,4). Find the coordinates of the remaining
vertices of the square.​

Answers

Answer:

(3, 2) and (1, 4)

Step-by-step explanation:

Plot the two points on a graph.

The other two points are (3, 2) and (1, 4).

To do this with algebra, it takes a few steps.

The diagonals of a square are perpendicular and bisect each other. You are given opposite vertices, so first, find the midpoint of that diagonal.

((1 + 3)/2, (2 + 4)/2) = (2, 3)

The midpoint of the diagonal is (2, 3).

This diagonal has slope 1 and y-intercept 1, so its equation is

y = x + 1

The perpendicular bisector has equation

y = -x + 5

The two vertices we are looking for, lie in a circle whose center is the midpoint of the diagonals, (2, 3), and whose radius is half of the diagonal.

Use Pythagoras to find the diagonal's length.

2^2 + 2^2 = c^2

c^2 = 8

c = sqrt(8) = 2sqrt(2)

Half of the diagonal is sqrt(2). This is the radius if the circle.

The equation of the circle is

(x - 2)^2 + (y - 3)^2 = (sqrt(2))^2

(x - 2)^2 + (y - 3)^2 = 2

The points of intersection of this circle and the second diagonal are the two vertices you are looking for.

System of equations:

(x - 2)^2 + (y - 3)^2 = 2

y = -x + 5

Use substitution and substitute y with -x + 5 in the equation of the circle.

(x - 2)^2 + (-x + 5 - 3)^2 = 2

(x - 2)^2 + (-x + 2)^2 - 2 = 0

x^2 - 4x + 4 + x^2 - 4x + 4 - 2= 0

2x^2 - 8x + 6 = 0

x^2 - 4x + 3 = 0

(x - 3)(x - 1) = 0

x - 3 = 0   or x - 1 = 0

x = 3 or x = 1

Now we find corresponding y values.

y = -x + 5

x = 3

y = -3 + 5 = 2

This gives us (3, 2).

y = -x + 5

x = 1

y = -1 + 5 = 4

This gives us (1, 4).

Answer: (1, 4) and (3, 2)

need help on this one

Answers

The correct answer is (B)

Starting at the same spot on a circular track that is 80 meters in diameter, Hillary and Eugene run in opposite directions, at 300 meters per minute and 240 meters per minute, respectively. They run for 50 minutes. What distance separates Hillary and Eugene when they finish

Answers

Answer:

143.32 m

Step-by-step explanation:

Given the following :

Diameter of circular track = 80m

Hillary's speed = 300m per minute

Eugene's speed = 240m per minute

Run time = 50 minutes

Note: they both run in opposite direction.

Calculate the Circumference(C) of the circle :

C = 2πr or πd

Where r = radius ; d = diameter

Using C = πd

C = πd

C = π * 80

C = 251.327

Eugene's distance covered = (240 * 50) = 12000

Hillary's distance covered = (300 * 50) = 15000

Number turns :

Eugene = 12000/ 251.327 = 47.746561

Hillary = 15000/251.327 = 59.683201

Therefore ;

48 - 47.746561 = 0.253439

60 - 59.683201 = 0.316799

(0.253439+0.316799) = 0.570238

Distance which separates Eugene and Hillary when they finish :

0.570238 * 251.327 = 143.32 m

I need help pppppppllssssssssss​

Answers

Answer:

y=x-1

Step-by-step explanation:

Using a table of values, determine the solution to the equation below to the nearest fourth of a unit. 2^x=1-3^x

Answers

Answer:

Option (1)

Step-by-step explanation:

Given equation is,

[tex]2^x=1-3^x[/tex]

To determine the solution of the equation we will substitute the values of 'x' given in the options,

Option (1)

For x = -0.75

[tex]2^{-0.75}=1-3^{-0.75}[/tex]

0.59 = 1 - 0.44

0.59 = 0.56

Since, values on both the sides are approximately same.

Therefore, x = -0.75 will be the answer.

Option (2)

For x = -1.25

[tex]2^{-1.25}=1-3^{-1.25}[/tex]

0.42 = 1 - 0.25

0.42 = 0.75

Which is not true.

Therefore, x = -1.25 is not the answer.

Option (3)

For x = 0.75

[tex]2^{0.75}=1-3^{0.75}[/tex]

1.68 = 1 - 2.28

1.68 = -1.28

Which is not true.

Therefore, x = 0.75 is not the answer.

Option (4)

For x = 1.25

[tex]2^{1.25}=1-3^{1.25}[/tex]

2.38 = 1 - 3.95

2.38 = -2.95

It's not true.

Therefore, x = 1.25 is not the answer.

x - (-20) = 5 _________________

Answers

X - (-20) = 5

When you subtract a negative, change it to addition:

X + 20 = 5

Subtract 20 from both sides:

X = -15

Answer:

[tex]\boxed{x=-15}[/tex]

Step-by-step explanation:

[tex]x-(-20)=5[/tex]

[tex]\sf Distribute \ negative \ sign.[/tex]

[tex]x+20=5[/tex]

[tex]\sf Subtract \ 20 \ from \ both \ sides.[/tex]

[tex]x+20-20=5-20[/tex]

[tex]x=-15[/tex]

Line m and point P are shown below. Part A: Using a compass and straightedge, construct line n parallel to line m and passing through point P. Leave all construction marks. Part B: Explain the process that you used to construct line n.

Answers

Answer:

The steps to construct a a line parallel to another line from a point includes

1) From the given line draw a transversal through the point

2) With the compass, copy the angle formed between the transversal and the given line to the point P

3) Draw a line through the intersection of the arcs of the angle construction to get the parallel line through the point P

Step-by-step explanation:

Kareem wants to find the number of hours the average sixth-grader at his school practices an instrument each week. Which is the best way Kareem can get a representative sample?

Answers

This question is incomplete because the options are missing; here is the complete question:

Kareem wants to find the number of hours the average sixth-grader at his school practices an instrument each week. Which is the best way Kareem can get a representative sample?

A. He can randomly survey 50 boys in the school.

B. He can survey 30 students in the school band.

C. He can randomly survey 50 6th graders in the school.

D. He can survey 20 friends from his neighborhood.

The correct answer is C. He can randomly survey 50 6th graders in the school.

Explanation:

A representative sample is a portion of a population that shows the characteristics of all the population. In this context, for a sample to be representative it needs to include only individuals of the population that is studied. Also, ideally, individuals should be selected randomly as this guarantees the sample is not influenced by the researcher. According to this, option C is the best as this is the only one that focuses on the target population (6th graders) and the sample is random, which contributes to the sample being objective and representing the behavior of 6th-graders.

Answer:

He can randomly survey 50 sixth-graders in the school.

Step-by-step explanation:

can someone please help me I need the answer urgently please​

Answers

Answer:

Step-by-step explanation:

AB ≅ BC.  So, ΔABC is an isosceles triangle

Opposite angles of equal sides are equal.

∠BAC = ∠BCA = x°

In ΔABC,

∠ABC + ∠BAC + ∠BCA = 180  {Angle sum property of triangle}

 56 + x + x = 180

56 + 2x = 180

        2x = 180 - 56

         2x = 124

           x = 124/2

           x = 62°

∠BAC = ∠BCA =  62°

∠DCF = ∠BCA   {Vertically opposite angles}

∠DCF = 62°

CDEF is a parallelogram.

In parallelogram, opposite angles are congruent.

∠DEF = ∠DCF

∠DEF = 62°

In a parallelogram, sum of adjacent angles = 180

∠DEF + ∠CDE = 180

62 + ∠CDE = 180

       ∠CDE = 180 - 62

      ∠CDE = 118°

∠CFE = ∠CDE   {In parallelogram, opposite angles are congruent}

∠CFE  = 118°

solve for x 5(x+1)=4(x+8)

Answers

Answer:

x=27

Step-by-step explanation:

expanding the above expression we get

5x+5=4x+32

grouping numbers with coefficient of x at the left side and constant at the right side we get

5x-4x=32-5

x=27

To solve this equation, we start by distributing both the 5 and the 4 through both set of parentheses.

This gives us 5x + 5 = 4x + 32.

Now subtract 4x from both
sides to get x + 5 = 32.

Now subtract 5 from both sides and x = 27.

If you invest $600 at 5% interest compounded continuously, how much would you make after 6 years?

Answers

Answer:

809.915$

Step-by-step explanation:

Amount of money = Principal x e^(rate x year)

                              = 600 x e^(0.05 x 6)

                              = 809.915$

Answer:

$809.92

Step-by-step explanation:

(see attached for reference)

Recall that the formula for compound interest (compounded continuously) is

A = P e^(rt)

where,

A = final amount (we are asked to find this)

P = principal = given as $600

r = interest rate = 5% = 0.05

t = time = 6 years

e = 2.71828 (mathematical constant)

Substituting the known values into the equation:

A = P e^(rt)

= 600 e^(0.05 x 6)

= 600 (2.71828)^(0.30)

= $809.92

Given the right triangle below, if AB = 4 and BC = 4, find AC.
A
B
C

Answers

The length of AC is found using the Pythagorean theorem which is a^2+b^2=c^2.

In this case your equation would look like 4^2+4^2=c^2.
Four to the power of two is 16 so 16+16=c^2.
16+16=32
32=c^2
Root 32 = c

Length AC is root 32.

AC will be 4√2 when AB = 4 and BC = 4, in the given right triangle.

What is Pythagoras' Theorem?

According to Pythagoras' Theorem, in a right triangle, the square of the length of the longest side, that is, the hypotenuse, that is, the side opposite to the right angle is equal to the sum of the squares of the lengths of the other two sides.

How to solve the question?

In the question, we are given a right triangle, with sides AB = 4 and BC = 4.

We are asked to find AC.

To find AC, we will use the Pythagoras theorem, according to which, we can write:

AC² = AB² + BC²

or, AC² = 4² + 4²,

or, AC² = 16 + 16,

or, AC² = 32,

or, AC = √32,

or, AC = √(16 * 2) = 4√2.

Therefore, AC will be 4√2 when AB = 4 and BC = 4, in the given right triangle.

Learn more about Pythagoras' Theorem at

https://brainly.com/question/231802

#SPJ2

Barry has been watching the geese that live in his neighborhood. The number of geese changes each week. n f(n) 1 56 2 28 3 14 4 7 Which function best shows the relationship between n and f(n)? f(n) = 28(0.5)n f(n) = 56(0.5)n−1 f(n) = 56(0.5)n f(n) = 112(0.5)n−1

Answers

Answer:

B. f(n) = 56(0.5)^n-1

Step-by-step explanation:

 First, You have to find out the starting population, if you look at the problem you see the population starts at 56

f(x) = 56

Second, you know that the population goes down 50% each week so it has a decay of 0.5

f(x) = 56(0.5)

 Third,  you need to add the exponent of n to make it exponential.  But, if you just add n then the the population would be 28 on week 1 which is incorrect. To fix that you make the exponent n-1 so when you are on week 1 it doesn't become 28 but it stays on 56, and on week 2 it's 28, ect

f(x) = 56(0.5)^n-1

In a right angled triangle ABC, ACB =30 and AC=10cm a. calculate BAC b. calculate line AB​

Answers

Answer:

10 cm is the answer because 30÷3 angles

prove that (3-4sin^2)(1-3tan^2)=(3-tan^2)(4cos^2-3)

Answers

Answer:

Proof in the explanation.

Step-by-step explanation:

I expanded both sides as a first step. (You may use foil here if you wish and if you use that term.)

This means we want to show the following:

[tex]3-9\tan^2(\theta)-4\sin^2(\theta)+12\sin^2(\theta)\tan^2(\theta)[/tex]

[tex]=12\cos^2(\theta)-9-4\cos^2(\theta)\tan^2(\theta)+3\tan^2(\theta)[/tex].

After this I played with only the left hand side to get it to match the right hand side.

One of the first things I notice we had sine squared's on left side and no sine squared's on the other. I wanted this out. I see there were cosine squared's on the right. Thus, I began with Pythagorean Theorem here.

[tex]3-9\tan^2(\theta)-4\sin^2(\theta)+12\sin^2(\theta)\tan^2(\theta)[/tex]

[tex]3-9\tan^2(\theta)-4(1-\cos^2(\theta))+12\sin^2(\theta)\tan^2(\theta)[tex]

Distribute:

[tex]3-9\tan^2(\theta)-4+4\cos^2(\theta)+12\sin^2(\theta)\tan^2(\theta)[/tex]

Combine like terms and reorder left side to organize it based on right side:

[tex]4\cos^2(\theta)-1+12\sin^2(\theta)\tan^2(\theta)-9\tan^2(\theta)[/tex]

After doing this, I since that on the left we had products of sine squared and tangent squared but on the right we had products of cosine squared and tangent squared. This problem could easily be fixed with Pythagorean Theorem again.

[tex]4\cos^2(\theta)-1+12\sin^2(\theta)\tan^2(\theta)-9\tan^2(\theta)[/tex]

[tex]4\cos^2(\theta)-1+12(1-\cos^2(\theta))\tan^2(\theta)-9\tan^2(\theta)[/tex]

Distribute:

[tex]4\cos^2(\theta)-1+12\tan^2(\theta)-12\cos^2(\theta)\tan^2(\theta)-9\tan^2(\theta)[/tex]

Combined like terms while keeping the same organization as the right:

[tex]4\cos^2(\theta)-1+3\tan^2(\theta)-12\cos^2(\theta)\tan^2(\theta)-9\tan^2(\theta)[/tex]

We do not have the same amount of the mentioned products in the previous step on both sides. So I rewrote this term as a sum. I did this as follows:

[tex]4\cos^2(\theta)-1+3\tan^2(\theta)-12\cos^2(\theta)\tan^2(\theta)-9\tan^2(\theta)[/tex]

[tex]4\cos^2(\theta)-1+3\tan^2(\theta)-4\cos^2(\theta)\tan^2(\theta)-8\cos^2(\theta)\tan^2(\theta)-9\tan^2(\theta)[/tex]

Here, I decide to use the following identity [tex]\cos\theta)\tan(\theta)=\sin(\theta)[/tex]. The reason for this is because I certainly didn't need those extra products of cosine squared and tangent squared as I didn't have them on the right side.

[tex]4\cos^2(\theta)-1+3\tan^2(\theta)-4\cos^2(\theta)\tan^2(\theta)-8\cos^2(\theta)\tan^2(\theta)-9\tan^2(\theta)[/tex]

[tex]4\cos^2(\theta)-1+3\tan^2(\theta)-4\cos^2(\theta)\tan^2(\theta)-8\sin^2(\theta)-9\tan^2(\theta)[/tex]

We are again back at having sine squared's on this side and only cosine squared's on the other. We will use Pythagorean Theorem again here.

[tex]4\cos^2(\theta)-1+3\tan^2(\theta)-4\cos^2(\theta)\tan^2(\theta)-8\sin^2(\theta)-9\tan^2(\theta)[/tex]

[tex]4\cos^2(\theta)-1+3\tan^2(\theta)-4\cos^2(\theta)\tan^2(\theta)-8(1-\cos^2(\theta))-9\tan^2(\theta)[/tex]

Distribute:

[tex]4\cos^2(\theta)-1+3\tan^2(\theta)-4\cos^2(\theta)\tan^2(\theta)-8+8\cos^2(\theta)-9\tan^2(\theta)[/tex]

Combine like terms:

[tex]12\cos^2(\theta)-9+3tan^2(\theta)-4\cos^2(\theta)\tan^2(\theta)[/tex]

Reorder again to fit right side:

[tex]12\cos^2(\theta)-9+4\cos^2(\theta)\tan(\theta)+3\tan^2(\theta)[/tex]

This does match the other side.

The proof is done.

Note: Reordering was done by commutative property.

What are the domain and range of the real-valued function f(x)=2/(x+5)?

Answers

Answer:

Domain is all real numbers, x ≠ -5

Range is all real numbers, y ≠ 0

Step-by-step explanation:

Domain: all real numbers except x=-5
(-infinity, -5)U(-5, infinity)

Range: all real numbers except y=0
(-infinity, 0)U(0, infinity)

i need help please i give 5 stars ;(

Answers

Answer:

D. [tex]\sqrt{\frac{2*2*2*2*3}{5*5*7} }[/tex]

Step-by-step explanation:

48 divided by 2 is 24. Insert the 2.

24 divided by 2 is 12. Insert the 2.

12 divided by 2 is 6. Insert the 2.

6 divided by 2 is 3. Insert the 2 and 3:

[tex]48=2*2*2*2*3[/tex]

175 divided by 5 is 35. Insert the 5.

35 divided by 5 is 7. Insert the 5 and 7:

[tex]175=5*5*7[/tex]

:Done

What property is demonstrated here? (3x-5) x 4 = 3 x (-5 x 4) A) commutative property of addition B) associative property of multiplication C) commutative property of multiplication D) associative property of addition (haven't learned this yet so I have no clue)

Answers

Answer:

B) Associative Property of Multiplication

Step-by-step explanation:

*if it's wrong idk how, but I apologise*

URGENTT PLEASE ANSWER

Answers

Answer:

Step 2

Step-by-step explanation:

9 was added to both sided so the equation would remain equal and the 9 would be cancelled out on the left side.

The row-echelon form of the augmented matrix of a system of equations is given.Find the solution of the system

Answers

Answer:

x = 9/4

y = 3/5

z = 2/3

w = -9/5

Step-by-step explanation:

Technically, the matrix is in reduced row echelon form. If there are zeros above and below the ones, it is RREF. If there are zeros only below the ones, then it's REF.

Since it is in RREF, the augmented numbers to the right of the bar are already your solutions. Simply label the variables.

sometimes true, always true, or never true?​

Answers

Answer: Always true

===========================================

Explanation:

I'll use x in place of n

Let y = x^2 - 4x + 5

If we complete the square, then,

y = x^2 - 4x + 5

y = (x^2 - 4x) + 5

y = (x^2 - 4x + 4 - 4) + 5

y = (x^2 - 4x + 4) - 4 + 5

y = (x-2)^2 + 1

The quantity (x-2)^2 is never negative as squaring any real number value is never a negative result. Adding on 1 makes the result positive. So y > 0 regardless of whatever x is. Replace x with n, and this shows how n^2 - 4n + 5 is always positive for any integer n.

------------

You could also use the quadratic formula to find that x^2 - 4x + 5 = 0 has no real solutions, so there are no x intercepts. Either the graph is entirely above the x axis or it is entirely below the x axis.

Plug in any x value you want, say x = 0, and the result is positive. Meaning that whatever x value you plug in will be positive (as the graph can't cross the x axis to go into negative territory)

Find the solution for this system of equations. 2x - 3y = 2 x= 6y -5

Answers

Answer:

Step-by-step explanation:

2(6y - 5) = 2

12y - 10 = 2

12y = 12

y = 1

x = 6(1) - 5

x = 6 - 5 = 1

(1,1)

Answer: (1,1)

Step-by-step explanation: 2(6y - 5) = 2

12y - 10 = 2

12y = 12

y = 1

x = 6(1) - 5

x = 6 - 5 = 1

(1,1)

Please solve, will give BRAINLIST!!

Answers

Answer:

x = 19 1/3

Step-by-step explanation:

6/14 = 7/(x-3)

Using cross products

6 * (x-3) = 7*14

6x -18 = 98

Add 18 to each side

6x-18+18 =98+18

6x = 116

Divide each side by 6

6x/6 = 116/6

x =58/3

x = 19  1/3

Answer= 58/3

Step by Step

Step 1: Cross-multiply.

6*(x−3)=(7)*(14)

6x−18=98

Step 2: Add 18 to both sides.

6x−18+18=98+18

6x=116

Step 3: Divide both sides by 6.

6x /6 = 116 /6

x= 58 /3

Allison is rolling her hula hoop on the playground. The radius of her hula hoop is 35 \text{ cm}35 cm35, start text, space, c, m, end text. What is the distance the hula hoop rolls in 444 full rotations?

Answers

Answer: 880 cm

Step-by-step explanation:

Given: Radius of the hula hoop = 35 cm

Hula hoop is  circular in shape

Then, Circumference = [tex]2\pi r[/tex] , where r = radius

Now , Circumference of hula hoop = [tex]2\times \dfrac{22}{7}\times35=220\ cm[/tex]

Now , the distance the hula hoop rolls in 4 full rotations = 4 × (Circumference of hula hoop)

[tex]= 4 \times 220=880\ cm[/tex]

Hence, the required distance = 880 cm

Answer:

880

Step-by-step explanation:

Which of the following lists of three numbers could form the side lengths of a triangle? A. 10, 20, 30 B. 122, 257, 137 C. 8.6, 12.2, 2.7 D. 1/2, 1/5, 1/6

Answers

Answer:

Step-by-step explanation:

The triangle inequality theorem states that the sum of any two sides of a triangle os greater than the third side.

■■■■■■■■■■■■■■■■■■■■■■■■■■

First triangle:

Let a,b and c be the sides of the triangle:

● a = 10

● b = 20

● c = 30

Now let's apply the theorem.

● a+b = 10+20=30

That's equal to the third side (c=30)

●b+c = 50

That's greater than a.

● a+c = 40

That's greater than b.

These aren't the sides of a triangel since the first inequality isn't verified.

■■■■■■■■■■■■■■■■■■■■■■■■■

Second triangle:

● a = 122

● b = 257

● c = 137

Let's apply the theorem.

● a+b = 379

That's greater than c

● a+c = 259

That's greater than b

● b+c = 394

That's greater than a

So 122,257 and 137 can be sides of a triangle.

■■■■■■■■■■■■■■■■■■■■■■■■■■

The third triangle:

● a = 8.6

● b = 12.2

● c = 2.7

Let's apply the theorem:

● a+b = 20.8

That's greater than c

● b+c = 14.9

That's greater than a

● a+c = 11.3

That isn't greater than b

So theses sides aren't the sides of triangle.

■■■■■■■■■■■■■■■■■■■■■■■■■■

● a = 1/2

● b = 1/5

● c = 1/6

Let's apply the theorem.

● a+b = 7/10

That's greater than c

● a+c = 2/3

That's greater than b

● b+c = 11/30

That isn't greater than a

So these can't be the sides of a triangle.

Directions: Using the digits 0 to 9, fill in the boxes so that the chart is accurate. Use each digit only once per blue box and once per red box. Logs are base 10. Please help me out with this would really appreciate it, thanks.

Answers

Step-by-step explanation:

log 10 = 1.  So if log x < 1, then x < 10.  And if log x > 1, then x > 10.

The upper left number is the smallest, and can't be smaller than 1.  If the exponent is 0, we can put any number in the red box.

The fractions in the upper right and lower left need to be as large as possible.  The denominators will be small, and the numerators will be large.

From there, a little trial and error does the rest.  The are many possible answers.  I've included one.

Solve logs (8 - 3x) = log20 for x.
A. X = 14
B. X = -13
C.x = -8
D. X= -4

Answers

Answer:

x = -4

Step-by-step explanation:

logs (8 - 3x) = log20

Since we are taking the log on each side

log a = log b  then a = b

8 -3x = 20

Subtract 8  from each side

8 -3x-8 =20 -8

-3x = 12

Divide by -3

-3x/-3 = 12/-3

x = -4

Answer:

[tex] \boxed{\sf x = -4} [/tex]

Step-by-step explanation:

[tex] \sf Solve \: for \: x \: over \: the \: r eal \: numbers:[/tex]

[tex] \sf \implies log(8 - 3x) = log 20[/tex]

[tex] \sf Cancel \: logarithms \: by \: taking \: exp \: of \: both \: sides:[/tex]

[tex] \sf \implies 8 - 3x = 20[/tex]

[tex] \sf Subtract \: 8 \: from \: both \: sides:[/tex]

[tex] \sf \implies 8 - 3x - 8 = 20 - 8 [/tex]

[tex] \sf \implies - 3x = 12 [/tex]

[tex] \sf Divide \: both \: sides \: by \: - 3:[/tex]

[tex] \sf \implies \frac{-3x}{-3} = \frac{12}{-3} [/tex]

[tex] \sf \implies x = - 4[/tex]

Other Questions
Marking as brainliest name another type of compound ( besides polysaccharides) that fits the definition of polymer On the map above, the black sea is located at _______, and the Aegean sea is located at________.A. letter A and letter CB. letter C and letter BC. letter A and letter BD. Letter B and letter A Which of the following are things we are REQUIRED to do BY LAW?A. RightsB. Civic DutiesC. Civic Responsibilities D. Personal Responsibilities Please help ! Ill mark you as brainliest if correct. Separate it to prefix suffix root word hypertension diabetes photophobianauseaemesisdiagnosisshingles meningitis cellulitiserythrocyte basal metabolic sedimentation tomographylumbar cerebrospinal fluid afebrile respiratory oxemetry atraumatic normocephalicpalpationcervical extraocular deformities symmetric auscultationrhythm abdomen extremities neurologic interpreter cervical collar To prevent states from violating federal law after the 2013-2014 school year; in return, states were required to: The particles of a GAS within a closed container will collide with the container walls, exerting a FORCE. The force per unit of AREA is known as what? While balancing a chemical equation, we change the _____ to balance the number of atoms on each side of the equation. A laser emits photons having an energy of 3.74 1019 J. What color would be expected for the light emitted by this laser? (c = 3.00 108 m/s, h = 6.63 1034 J s) Question 1: A triangle has sides with lengths 5, 6, and 7. Is the triangle right, acute, or obtuse?A)Right B)Obtuse C)Can't be determined D) Acute Question 2: A 15-foot statue casts a 20-foot shadow. How tall is a person who casts a 4-foot-long shadow? A)0.33 feet B)3.75 feet C)3 feet D)5 feet Question 3: A triangle has sides with lengths 17, 12, and 9. Is the triangle right, acute, or obtuse? A)Acute B)Right C)Can't be determined D)Obtuse Question 4: Two friends are standing at opposite corners of a rectangular courtyard. The dimensions of the courtyard are 12 ft. by 25 ft. How far apart are the friends? A)21.34 ft. B)21.93 ft. C)27.73 ft. D)19.21 ft. please help meI really tried to do it do u think mechanical teachers or computer cannot replace human as a teacher. The declaration, record, and payment dates in connection with a cash dividend of $77,000 on a corporation's common stock are October 1, November 7, and December 15. Required:Journalize the entries required on each date. It will cost $7,000 to acquire an ice cream cart. Cart sales are expected to be $3,600 a year for three years. After the three years, the cart is expected to be worthless as the expected life of the refrigeration unit is only three years. What is the payback period Based on the following information, calculate the variable overhead rate variance. Actual variable overhead cost $15,500 Actual hours used 4,200 Standard hours allowed 4,000 Standard variable overhead rate $3.75 per hour Northern Company has bonds with an amortized cost of $600,000. At the end of the first reporting period, the bonds had a fair value of $675,000. 2 days after the end of the first reporting period, the bonds have a fair value of $680,000 and Northern decides to sell the bonds. The initial investment in the bonds was $700,000 and the discount on bond account has a $100,000 balance. Northern properly classifies these bonds as trading securities. The journal entry to record the sale of the bonds includes:______. In a naval engagement, one-third of the fleet was captured, one-sixth was sunk, and two ships were destroyed by fire. One-seventh of the surviving ships were lost in a storm after the battle. Finally, the twenty-four remaining ships sailed home. How many ships were in the fleet before the engagement? American cool slangs plzz 10) How many possible outfit combinations come from six shirts, threeslacks, and five ties? *A 15B 18C 30D 90 A flat loop of wire consisting of a single turn of cross-sectional area 7.30 cm2 is perpendicular to a magnetic field that increases uniformly in magnitude from 0.500 T to 3.50 T in 1.00 s. What is the resulting induced current if the loop has a resistance of 2.60