Answer:
A process that involves rearrangement of the molecular or ionic structure of a substance, as opposed to a change in physical form or a nuclear reaction.
Explanation:
Pretty much just not a physical reaction or otherwise
In the following neutralization reaction, which substance is the acid?
HCI + NaOH - NaCl + H20
ОА.
НСІ
OB.
NaOH
OC.
NaCl
OD. H20
Answer:
HCl is a acid
Explanation:
NaOH is base
Nacl is salt
An ether and alkene are formed as by products in this reaction. draw the structures of these by-products and give mechanisms for their formation
Answer:
sim eu também preciso desta respota
An ether and alkene are formed as by products in the reaction which is a electrophilic addition reaction.
What is electrophilic addition reaction?An addition reaction known as an electrophilic addition reaction occurs when a chemical molecule having a double or triple bond has one of its bonds broken and two new bonds are formed. The interconversion of C=C and CC into a variety of significant functional groups, such as alkyl halides and alcohols, is made possible via the key.
The following describes the general mechanism: Hydrogen bromide produces an electrophile, H+, which attacks the double bond to create a carbocation. The production of ions is dominated by secondary carbocation because it is more stable than primary carbocation.
Thus, an ether and alkene are formed as by products in the reaction which is a electrophilic addition reaction.
To learn more about electrophilic addition reaction, refer to the link below:
https://brainly.com/question/16811879
#SPJ2
What is the major organic product obtained from the sequence of reactions 2-phenyl-4 bomobutane and NaN3?
Answer:
(E)-1-phenylbut-1-ene
Explanation:
2-phenyl-4 bromobutane is an amphetamine that contains a phenyl group. It forms a major stable product with other reacting agents.
The major organic product that is obtained from the sequence of the reactions of the 2-phenyl-4 bomobutane when it reacts with [tex]NaN_3[/tex] is the (E)-1-phenylbut-1-ene.
Thus the answer is 2-phenyl-4 bromobutane is an amphetamine that contains a phenyl group. It forms a major stable product with other reacting agents.
The major organic product that is (E)-1-phenylbut-1-ene.
..............................................................................................
Based on your knowledge of factors affecting the rate of reaction, why is there a danger of explosions in places such as flour mills and coal mines where there are large quantities of powdered, combustible materials?
Answer:
See Explanation
Explanation:
Rate of reaction refers to how quickly or slowly a reaction proceeds. The rate of reaction depends on certain factors.
Two among the factors that affect the rate of reaction are the concentration of reactants and the surface area of reactants.
The more the concentration of reactants, the faster the rate of reactants because there is a high possibility of collision between reactants. Also, the higher the surface area of reactants, the greater the rate of reaction.
In flour mills and coal mines where there is a large amount (concentration) of combustible materials and the particles are powdered (high surface area), there is a greater risk of explosion due to a high rate of reaction owing to a combination of the two factors discussed above.
10. What is the mass of SO3 when -8753 kJ of energy are used according
to the following equation?2S + 302 - 2003 AH = -791.4kJ Is this
Endothermic or Exothermic -8735kJ x mols03/kJ x gSO3/
molSO3
Answer:
Exothermic
1771 g
Explanation:
Step 1: Write the balanced thermochemical equation
2 S(s) + 3 O₂(g) ⇒ 2 SO₃(g) ΔH° = -791.4 kJ
Since ΔH° < 0, the reaction is exothermic.
Step 2: Calculate the moles of SO₃ produced when 8753 kJ of energy are released
According to the thermochemical equation, -791.4 kJ are released every 2 moles of SO₃ that are formed.
-8753 kJ × 2 mol/(-791.4 kJ) = 22.12 mol
Step 3: Calculate the mass corresponding to 22.12 moles of SO₃
The molar mass of SO₃ is 80.06 g/mol.
22.12 mol × 80.06 g/mol = 1771 g
Compare the solubility of silver chloride in each of the following aqueous solutions:
a. 0.10 M AgNO3 More soluble than in pure water.
b. 0.10 M NaCI Similar solubility as in pure water
c. 0.10 M KNO3 Less soluble than in pure water.
d. 0.10 M NH4CH3COO
Answer:
Compare the solubility of silver chloride in each of the following aqueous solutions:
a. 0.10 M AgNO3 More soluble than in pure water.
b. 0.10 M NaCI Similar solubility as in pure water
c. 0.10 M KNO3 Less soluble than in pure water.
d. 0.10 M NH4CH3COO
Explanation:
This is based on common ion effect.
According to common ion effect, the solubility of a sparingly soluble salt decreases in a solution containing common ion to it.
The solubility of AgCl(s) is shown below:
[tex]AgCl(s) <=> Ag^{+}(aq)+Cl^-(aq)[/tex]
So, when it is placed in:
a. 0.10 M AgNO3
Due to common ion effect Ag+, its solubility is less in this solution than in pure water.
b. 0.10 M NaCI :
Due to common ion effect Cl-, its solubility is less in this solution than in pure water.
c. 0.10 M KNO3 :
In this solution there is no presence of common ion.
So, the solubility of AgCl in this solution is similar to that of pure water.
d. 0.10 M NH4CH3COO:
In this solution, AgCl forms a precipitate.
So, the solubility of AgCl is more in this solution compared to pure water.
what is a property of every mixture
Explanation:
can u post a picture of the question ?
Explain why ethanol and water are miscible yet tetrachloride and water are immiscible.
Answer:
CCl4 can neither form H-bonds with water molecules nor can it break H-bonds in water molecules. Therefore, it is insoluble in water. Ethanol is a polar compound and can form H-bonds with water, which is a polar solvent. Therefore,it is miscible with water in all proportions
Explanation:
FIRSTLY WATER MOLECULES CONTAIN ONE OXYGEN AND TWO HYDROGEN(H2O) .HENCE IN THIS STRUCTURE THE BOND BETWEEN OXYGEN AND HYDROGEN IS COVALENT AND POLARIZABLE .HENCE OXYGEN ATOM ATTRACTS ELECTRONS MORE STRONGLY TOWARDS INWARDS AS COMPARE TO 2 HYDROGEN ATOMS. DUE TO WHICH OXYGEN ATOM GET SLIGHTLY NEGATIVE CHARGE AND 2 HYDROGEN OCCUPY SLIGHTLY POSITIVE CHARGE THAT MAKE WATER A POLAR MOLECULE. :NOW IN ETHANOL(CH3CH2OH),ETHANOL MOLECULE IS FORMED BY 2 CARBON ATOM JOINED BY SINGLE BOND WHICH IS NOT POLAR.IN β CARBON OF ETANOL CARBON IS BONDED TO 3 HYDROGEN ATOMS WHICH MAKES IT NON POLAR DUE TO SYMMETRY BUT α CARBON HAS 2 HYDROGEN AND 1 OH- ION (SAME AS IN THE CASE OF WATER MOLECULE) SO THIS CARBON ATOM BECAMES POLAR AND HENCE ETHANOL MOLECULES BECAMES POLAR. NOW WE KNOW THAT SAME CHARGE REPEL EACH OTHER AND UNLIKE CHARGES ATTRACTS EACH OTHER SO THE SLIGHTHLY POSITIVE CHARGE OF WATER MOLECULE MAKES A BOND WITH THE.
Chair and Boat Conformers of Cyclohexane (C6H12). Note it is impossible to place all the carbons in the same plane without straining the bonds. Take two opposite carbons and pull both of them up to make one conformation and then pull one of them down to make the other conformation.
a. Can you interconvert one conformer into the other without breaking any bonds?
b. Explain why these represent conformers and not isomers.
Answer:
See explanation
Explanation:
Conformation refers to the various spatial arrangements of atoms in a molecule that result from free rotation across the carbon-carbon single bond.
There are two possible conformations of cyclohexane. They are; the chair and boat conformations.
We can convert the molecule from one conformation to another by rotation of single bonds.
These conformations are not isomers. Isomers are different molecules while conformers are different spatial arrangements of the same molecule obtained by rotation across carbon-carbon single bonds. Isomers are not obtained by rotation across carbon-carbon single bonds.
Hence, the chair and boat conformers of cyclohexane are obtained by rotation across the carbon-carbon single bond hence they are conformers and not isomers.
there are tiny plants growing on rock fence after the several year . you observe something happened on the rock which of the following describes your observations ? the plants the rock
it is moss
Explanation:
The weak ionization constant (Ka)
for HCN is equal to:
Answer:
Ka = [H⁺] × [CN⁻] / [HCN]
Explanation:
Cyanhydric acid is a weak acid, according to the following equation:
HCN(aq) ⇄ H⁺(aq) + CN⁻(aq)
The acid ionization constant (Ka) is equal to the product of the concentrations of the ions raised to the stoichiometric coefficients divided by the concentration of the undissociated acid raised to its stoichiometric coefficient.
Ka for HCN is:
Ka = [H⁺] × [CN⁻] / [HCN]
An organelle that is not found in this illustration of a cell would be
A. the cell wall
B. chromosome
C. mitochondria
D. the cell membrane
Answer:
The answer is cell wall
Explanation:
Because it is
A student calculates the empirical formula of a compound to be C1.5H3.5. Express this as a correct empirical formula.
Answer:
No, the correct empirical formula is [tex]C_3H_7[/tex].
Explanation:
Hello there!
In this case, according to the given information, it turns out necessary for us to bear to mind the fact that empirical formulas must not be expressed in decimal numbers, for that reason, we need to multiply the given empirical formula by 2 to get the correct one:
[tex]C_3H_7[/tex]
Which is now possible.
Regards!
HELP PLZ SND THANKS WILL MARK YOU AS BRAINLIEST
Answer:
See explanation
Explanation:
For the first question, we can see that the pressure is constant so we apply Charles law;
V1/T1 =V2/T2
V1T2 = V2T1
V1= 4.5 L
T1= 27 + 273 = 300 K
V2= ?
T2= 127 + 273 = 400 K
V2= V1T2/T1
V2= 4.5 × 400/300
V2= 6L
For question 2, Charles law is also used;
V1/T1 =V2/T2
V1T2 = V2T1
T1= 338 K
V1= 0.480 L
T2= ?
V2= 9.2 L
T2= V2T1/V1
T2= 9.2 × 338/0.480
T2= 6478.3 K
Match each term to the best description.
a. Blue-gray color
b. Chelating agent
c. EBT
d. EDTA
e. Pale purple-pink color
1. Eriochrome Black T
2. Starting color, before titration
3. Molecule that has a high affinity for ions
4. Ethylenediaminetetracetlc acid
5. Color at the completion of titration
Solution :
Term Best description
Eriochrome Black T EBT
Starting color, before titration Pale purple-pink color
Molecule that has a high affinity for metal ions Chelating agent
Ethylenediaminetetracetic acid EDTA
Color at the completion of titration Blue-gray color
A weak acid is titrated with 0.1236 M NaOH. From the titration curve you determine that the equivalence point occurs after exactly 12.42 mL of NaOH have been added. What is the volume of NaOH at the half-equivalence point (a.k.a. the midpoint)
Answer: The volume of NaOH required at the half-equivalence point is 6.21 mL
Explanation:
The chemical equation for the reaction of a weak acid with NaOH follows:
[tex]HA+ NaOH\rightarrow NaA+H_2O[/tex]
From the equation, we can say that NaOH and weak acid is present in a 1 : 1 ratio.
We are given:
Volume of NaOH required at equivalence point = 12.42 mL
The volume of NaOH required at half-equivalence point will be = [tex]\frac{12.42mL}{2}=6.21mL[/tex]
Hence, the volume of NaOH required at the half-equivalence point is 6.21 mL
The volume of NaOH at the half-equivalence point is 6.21 mL
What is equivalence point?The equivalence point is the point at which equal amount of the acid and base have reacted.
How to determine the half-equivalence pointVolume at equivalence point = 12.42 mLVolume at half-equivalence point =?Half equivalence point = Equivalence point / 2
Half equivalence point = 12.42 / 2
Half equivalence point = 6.21 mL
Therefore, we can conclude that the volume of NaOH at the half-equivalence point is 6.21 mL.
Learn more about titration:
https://brainly.com/question/14356286
Problem PageQuestion A chemist makes of magnesium fluoride working solution by adding distilled water to of a stock solution of magnesium fluoride in water. Calculate the concentration of the chemist's working solution. Round your answer to significant digits. Clears your work. Undoes your last action. Provides information about entering answers.
Answer:
5.37 × 10⁻⁴ mol/L
Explanation:
A chemist makes 660. mL of magnesium fluoride working solution by adding distilled water to 230. mL of a 0.00154 mol/L stock solution of magnesium fluoride in water. Calculate the concentration of the chemist's working solution. Round your answer to 3 significant digits.
Step 1: Given data
Initial concentration (C₁): 0.00154 mol/LInitial volume (V₁): 230. mLFinal concentration (C₂): ?Final volume (V₂): 660. mLStep 2: Calculate the concentration of the final solution
We want to prepare a dilute solution from a concentrated one. We can calculate the concentration of the final solution using the dilution rule.
C₁ × V₁ = C₂ × V₂
C₂ = C₁ × V₁ / V₂
C₂ = 0.00154 mol/L × 230. mL / 660. mL = 5.37 × 10⁻⁴ mol/L
Complete a chair conformation of trans-1-bromo-3-methylcyclohexane by placing the hydrogen, bromine, and methyl groups in the appropriate positions.
Place the bromine on the carbon that is more to the right.
Answer:
Explanation:
The most highly stable cycloalkane is cyclohexane. It does not suffer from an angle or torsional strain, and it has the appropriate stability as chain alkanes. Because of the peculiar conformation it takes, this stability leads to the cyclohexane conformation popularly known as the "chair" conformation.
However, from the information given;
The chair conformation structure of trans-1-bromo-3-methylcyclohexane is carefully drawn and the substituents are appropriately attached in the image below.
Boiling point-methanol (65.0) 66.8c.Boiling point-unknown (record from video)——-c
Identify of unknown:
Possibilities are:Mathanol65.0c;Ethanol 78.5c; Acetone 56.0C
which is the correct orbital diagram for carbon
Answer:
Below
Explanation:
Got it right
Check the periodic table, then click electrons
In centigrade bromine has a melting point of -7 and a boiling point of 58. Room temperature is 20. What is bromine at this temperature? Answers- Solid Liquid Gas
Solid with some liquid. It has to be one of those/
Answer:
Bromine will be a liquid
CAN SOMEONE HELP ME PLZ AND THANKS WILL MARK U AS BRAINLIEST
Explanation:
2. [tex]2C_2H_6 + 7O_2 \rightarrow 4CO_2 + 6H_2O[/tex]
First, we need to find the number of moles of [tex]CO_2[/tex] at 300K and 1.5 atm using the ideal gas law:
[tex]n= \dfrac{PV}{RT}= \dfrac{(1.5\:\text {atm})(33\:L)}{(0.082\:\text{L-atm/mol-K})(300K)}[/tex]
[tex]=2.0\:\text{mol}\:CO_2[/tex]
Now use the molar ratios to find the number of moles of ethane to produce this much [tex]CO_2[/tex].
[tex]2.0\:\text{mol}\:CO_2 \times \left(\dfrac{2\:\text{mol}\:C_2H_6}{4\:\text{mol}\:CO_2}\right)[/tex]
[tex]=1.0\:\text{mol}\:C_2H_6[/tex]
Finally, convert this amount to grams using its molar mass:
[tex]1.0\:\text {mol}\:C_2H_6 \times \left(\dfrac{30.07\:\text g\:C_2H_6}{1\:\text{mol}\:C_2H_6} \right)[/tex]
[tex]=30.1\:g\:C_2H_6[/tex]
3. [tex]3Zn + 2H_3PO_4 \rightarrow 3H_2 + Zn_3(PO_4)_2[/tex]
Convert 75 g Zn into moles:
[tex]75\:\text g\:Zn \times \left(\dfrac{65.38\:\text g\:Zn}{1\:\text{mol}\:Zn}\right)=1.1\:\text{mol}\:Zn[/tex]
Then use the molar ratios to find the amount of H2 produced.
[tex]1.1\:\text{mol}\:Zn \times \left(\dfrac{3\:\text{mol}\:H_2}{3\:\text{mol}\:Zn}\right)=1.1\:\text{mol}\:H_2[/tex]
Now use the ideal gas law [tex]PV=nRT[/tex] to find the volume of H2 produced at 23°C and 4 atm:
[tex]V= \dfrac{nRT}{P}= \dfrac{(1.1\:\text{mol}\:H_2)(0.082\:\text{L-atm/mol-K})(296K)}{4\:\text{atm}}[/tex]
[tex]=8.9\:\text L\:H_2[/tex]
An experiment was performed under identical conditions as yours. The absorbance of the penny solution was recorded as 0.219 absorbance units. A calibration plot of absorbance vs. concentration of Cu(II) (M) yielded the following trendline equation:
y= 11.589x - 0.0002
Required:
What is the concentration (mol/L) of the penny solution?
Answer:
Concentration C = 0.0189 mol/L
Explanation:
From the given information:
Let consider the formula used in calculating the concentration according to Beer's law:
[tex]\mathtt{A =\varepsilon \times L \times C}[/tex] --- (1)
here;
A = absorbance
ε = coefficient of molar absorptivity
L = path length
C = concentration (mol/L)
Also, from Beer law plot:
y = mx+b
where,
y represent absorbance A
b represents intercept
m represents the coefficient of molar absorptivity ε
and x represents the concentration(C).
replacing the substituted entities
A = ε × C + b ---- (2)
Making the concentration the subject of the above formula:
[tex]C = \dfrac{A-b}{\varepsilon}[/tex]----(3)
From y = 11.589x - 0.0002
A = 11.589 *C - 0.0002
Given that:
A = 0.219
∴
0.219 = 11.589 *C - 0.0002
0.219 + 0.0002 = 11.589 *C
C = 0.2192/11.589
C = 0.0189 mol/L
Which is the balanced version of the half-reaction below?
H2S → S+H+
Answer:
C. [tex]H_2S\rightarrow S+2H^++2e^-[/tex]
Explanation:
Hello there!
In this case, according to the given chemical reaction, it turns out possible to realize there is one sulfur atom on each side of the chemical equation but two hydrogen atoms on the left and one on the right, which means the latter must be balanced in agreement to the law of conservation of mass.
In such a way, by setting a 2 on H⁺, the reaction will be balanced:
[tex]H_2S\rightarrow S+2H^+[/tex]
Now, we count the transfer electrons for sulfur from -2 to 0 as 2e⁻ on the right, which will match with the option C.
[tex]H_2S\rightarrow S+2H^++2e^-[/tex]
Regards!
For a particular chemical reaction the rate (g/hr) at which one of the reactants changes is proportional to the amount of that reactant present. If y represents the amount of that reactant at time t, StartFraction dy Over dt EndFraction equals minus0.7y. If there were 70 grams of the reactant when the process started (tequals 0), how many grams will remain after 4 hours?
Answer:
Amount of reactant after four hours = 4,26 grams
Explanation:
Suppose y denotes the amount of reactant at the time (t)
The given function:
[tex]\dfrac{dy}{dt} = -0.7 y[/tex]
[tex]\dfrac{dy}{y} = -0.7 dt[/tex]
Taking integral on both sides
㏑(y) = -0.7t + c¹
[tex]e^{In(y)}= e^{-0.7t + c^1}[/tex]
[tex]y(t) = Ce ^{-0.7t}[/tex]
At t = 0 ; y (t) = 70
∴
[tex]70 = Ce^{-0.7(0)}[/tex]
C = 70
As such; [tex]\mathtt{y(t) = 70 e^{-0.7*t}}[/tex]
After four hours, the amount of the reactant is:
[tex]\mathtt{y(t) = 70 e^{-0.7*4}}[/tex]
[tex]\mathtt{y(t) = 70 e^{-2.8}}[/tex]
[tex]\mathtt{y(t) = 4.26}[/tex]
Amount of reactant after four hours = 4,26 grams
n a combination redox reaction, two or more ____________ , at least one of which is a(n) ____________ , form a(n) ____________ . General Reaction: ____________ In a decomposition redox reaction, a(n) ____________ forms two or more ____________ , at least one of which is a(n) ____________ . General Reaction: ____________ In double-displacement (metathesis) reactions, such as precipitation and acid-base reactions, ____________ of two ____________ exchange places; these reactions ____________ redox processes.General Reaction: ____________ In solution, single-displacement reactions occur when a(n) ____________ of one ____________ displaces the ____________ of another. Since one of the ____________ is a(n) ____________ , a
Answer:
In a combination redox reaction, two or more reactants, at least one of which is a(n) element, form a(n) compound. General Reaction: X + Y > Z
In a decomposition redox reaction, a(n) compound forms two or more products, at least one of which is a(n) element. General Reaction: Z>X+Y
In double-displacement (metathesis) reactions, such as precipitation and acid-base reactions, atoms (or ions) of two compounds exchange places; these reactions are not redox processes. General Reaction: AB+CD>AD+CB
In solution, single-displacement reactions occur when a(n) atom of one element displaces the atom of another. Since one of the reactants is a(n) element, all single-displacement reactions are redox processes. General Reaction: X+YZ>XY+Z
Explanation:
In a combination redox reaction, two or more reactants, at least one of which is a(n) element, form a(n) compound.
General Reaction: X + Y > Z
In the reaction scheme above, X combines with Y to give Z as a product.
In a decomposition redox reaction, a(n) compound forms two or more products, at least one of which is a(n) element.
General Reaction: Z>X+Y
In the reaction scheme above, Z decomposes to X and Y
In double-displacement (metathesis) reactions, such as precipitation and acid-base reactions, atoms (or ions) of two compounds exchange places; these reactions are not redox processes since there are no changes occurring in the oxidation number of the atoms (or ions) involved.
General Reaction: AB+CD>AD+CB
In the reaction scheme above, B and D exchange places in their respective compounds
In solution, single-displacement reactions occur when a(n) atom of one element displaces the atom of another. This type of reaction is due to the difference in the reactivities of the elements. The more reactive atom of one element displaces the least reactive atom of another element from its solution.
Since one of the reactants is a(n) element, all single-displacement reactions are redox processes.
General Reaction: X+YZ>XY+Z
In the reaction scheme above, X displaces Z from the compound YZ.
The normal freezing point of a certain liquid Xis-7.30°C but when l02. g of iron(III) chloride (FeCl3) are dissolved in 650. g of Xthe solution freezes at -9.9°C instead. Use this information to calculate the molal freezing point depression constant Kf of X.
Answer:
2.7 °C.kg/mol
Explanation:
Step 1: Calculate the freezing point depression (ΔT)
The normal freezing point of a certain liquid X is-7.30°C and the solution freezes at -9.9°C instead. The freezing point depression is:
ΔT = -7.30 °C - (-9.9 °C) = 2.6 °C
Step 2: Calculate the molality of the solution (b)
We will use the following expression.
b = mass of solute / molar mass of solute × kilograms of solvent
b = 102. g / (162.2 g/mol) × 0.650 kg = 0.967 mol/kg
Step 3: Calculate the molal freezing point depression constant Kf of X
Freezing point depression is a colligative property. It can be calculated using the following expression.
ΔT = Kf × b
Kf = ΔT / b
Kf = 2.6 °C / (0.967 mol/kg) = 2.7 °C.kg/mol
Which of the following is a protein source of plant origin
Answer:
soy....plant protein also is found in vegtables and grain products.
The protein that is derived from the plant is soyabean. Protein-rich foods have a rich source of amino acids. Amino acids are required by the body for different cellular activities.
What are proteins?
Proteins are present in plant-based foods and animal-based foods. In nature, the plant-based foods that are rich in proteins are soybeans, beans etc. Animal products such as dairy products, milk, and cheese are rich sources of proteins.
Animal-based foods such as eggs, meat, and fish have a good amount of protein. The proteins are made up of amino acids. Peptide bonds connect each amino acid to the next.
Proteins are necessary for the body, as cells need amino acids for both structural and functional support. Not all cells of the body synthesise all amino acids. Some essential amino acids are required by the body and can be taken from external sources such as plants.
Hence, the plant-based protein is soyabean.
To learn more about the protein, here
https://brainly.com/question/17095120
#SPJ2.
The question is incomplete; the complete question may be the following:
1) Which of the following is a protein source of plant origin?
A)egg
B) Soyabean
C)cheese
D)Milk
Compound A and compound B are constitutional isomers with molecular formula C3H7Cl. When compound A is treated with sodium methoxide, a substitution reaction predominates. When compound B is treated with sodium methoxide, an elimination reaction predominates.
Required:
Propose structures A and B.
Answer:
Compound A and compound B are constitutional isomers with molecular formula C3H7Cl.
When compound A is treated with sodium methoxide, a substitution reaction predominates. When compound B is treated with sodium methoxide, an elimination reaction predominates.
Explanation:
Constitutional isomers are the one which differs in the structural formula.
When compound A is treated with sodium methoxide, a substitution reaction predominates.
That means sodium methoxide is a strong base and a strong nucleophile.
But when it reacts with primary alkyl halides it forms a substitution product and when it reacts with secondary alkyl halide it forms mostly elimination product.
The reaction and the structures of A and B are shown below: