Answer:
f(x)=-x when x belongs to (-infinity, 3)
f(x)=-2 when x belongs to [3, 6]
f(x)=2x-7 when x belongs to (6, infinity)
11. Find the 5th term of the sequence defined by the given rule. (1/2 point)
f(n) = 6n + 4
Answer:
34
Step-by-step explanation:
n = 5
f(5) = 6(5)+4
f(5)=34
The fifth term of the sequence is equal to 34.
What is arithmetic progression?The sequence in which every next number is the addition of the constant quantity in the series is termed the arithmetic progression.
The mathematical expression combines numerical variables and operations denoted by addition, subtraction, multiplication, and division signs.
Mathematical symbols can be used to represent numbers (constants), variables, operations, functions, brackets, punctuation, and grouping. They can also denote the logical syntax's operation order and other properties.
Given expression is f(n) = 6n + 4. The value of the fifth term will be calculated as,
n = 5
f(5) = 6(5)+4
f(5)=34
Therefore, the fifth term of the sequence is equal to 34.
To know more about arithmetic progression follow
https://brainly.com/question/6561461
#SPJ2
According to the U.S. National Center for Health Statistics, there is a 98% probability that a
20-year-old male will survive to age 30.
(a) Using statistical software, simulate taking 100 random samples of size 30 from this
population.
(b) Using the results of the simulation, compute the probability that exactly 29 of the 30 males
survive to age 30.
(c) Compute the probability that exactly 29 of the 30 males survive to age 30, using the
binomial probability distribution.
(d) Using the results of the simulation, compute the probability that at most 27 of the 30 males
survive to age 30.
(e) Compute the probability that at most 27 of the 30 males survive to age 30 using the
binomial probability distribution.
(f) Compute the mean number of male survivors in the 100 simulations of the probability
experiment. Is it close to the expected value?
(g) Compute the standard deviation of the number of
male survivors in the 100 simulations of the probability experiment. Compare the result to the
theoretical standard deviation of the probability distribution
Answer:
0.03398 or 3.398%
Step-by-step explanation:
-This is a binomial probability problem.
-Given p=0.24, n=100, the probability that exactly 30 people is calculated as:
Hence, the probability that exactly 30 people have hypertension is 0.03398
5. Given a test in which there is overlap of the test results for diseased and non-diseased individuals (e.g., normal individuals are found who have test results ranging in value from 8 to 15, and diseased individuals are found who have test results ranging in value from 12 to 25, so that in the range of values 12 to 15 there are both normal and diseased individuals), if the current cutoff value lies in the range of this overlap and you move the cutoff value toward the normal population (lower numbers in this example), the true negative numbers will _____________________ . (5 points)
Answer:
True negative numbers are considered as diseased individual. So, the true negative numbers will increase
Step-by-step explanation:
True negative numbers are considered as diseased individual. So, the true negative numbers will increase.
- 18 = -3x + 6
Plz help
Answer:
8 =x
Step-by-step explanation:
- 18 = -3x + 6
Subtract 6 from each side
-18-6 = -3x+6-6
-24 = -3x
Divide each side by -3
-24/-3 = -3x/-3
8 =x
Answer:
x= 8
Step-by-step explanation:
[tex]\sf{}[/tex]
=> -3x+6 = -18
=> -3x+6-6= -8-6
=> -3x= -24
=> x= 8
A cone and a pyramid have equal heights and volumes. If the base area of the pyramid is 154cm^2, find the radius of the cone
Answer:
√154/π
Step-by-step explanation:
thể tích nón = thể tích hình chóp
1/3πr².h=1/3S.h
πr²=154(rút gọn h và 1/3)
=> r=√154/π
The radius of the cone is 7 cm if the cone and a pyramid have equal heights and volumes.
What is a cone?It is defined as a three-dimensional shape in which the base is a circular shape and the diameter of the circle decreases as we move from the circular base to the vertex.
[tex]\rm V=\pi r^2\dfrac{h}{3}[/tex]
We have:
A cone and a pyramid have equal heights and volumes.
154 = πr²
π = 22/7
r = 7 cm
Thus, the radius of the cone is 7 cm if the cone and a pyramid have equal heights and volumes.
Learn more about the cone here:
brainly.com/question/16394302
#SPJ2
1. Coach Jensson wants to celebrate the final win of the
school's baseball season with a trip to the local fast food
place. The team buys 22 delicious tacos and 17 orders
of savory nachos for $71.05. A few of the players are still
hungry, so the coach buys 10 more tacos and 5 more
orders of nachos for $27.25. If you don't consider tax,
what is the price of a taco and the price of an
order of nachos ?
Factorize:
625a^4 + 4b^4
(625 • (a4)) + 22b4
54a4 + 22b4
Final result :
625a4 + 4b4
the value of 5/121^1/2
Answer:
√5/121
Step-by-step explanation:
formula: a^½=√a
(⁵/¹²¹)^½=√⁵/¹²¹
prove that tan² theta + cot² theta = sec² theta cosec² theta- 2
Step-by-step explanation:
Tan² theta = sec² theta - 1
Cot² theta = cosec² theta - 1
Tan²+Cot² = sec²-1+cosec²-1
= sec²+cosec²-2
Please find attached herewith the solution of your question.
If you have any doubt, please comment.
Form a polynomial whose zeros and degree are given.
Zeros: - 2, 2, 6; degree: 3
Type a polynomial with intéger coefficients and a leading coefficient of 1 in the box below.
f(x)=(Simplify your answer.)
Answer:
[tex]f(x) = (x + 2)(x - 2)(x - 6)[/tex]
[tex]f(x) = ({x}^{2} + 4)(x - 6)[/tex]
[tex]f(x) = {x}^{3} - 6 {x}^{2} + 4x - 24[/tex]
Step-by-step explanation:
Multiply factors.
HELP WILL GIVE BRAINLYIST
Answer:
The parent cubic function has been vertically stretched by a factor of 4.
Equation:G(x)= 4[tex]\sqrt[3]{x}[/tex]
Answer: Option B
OAmalOHopeO
What is the variable used in the equation 5x + 2 =100?
Answer:
[tex]5x + 2 = 100 \\ 5x = 100 - 2 \\ 5x = 98 \\ x = \frac{98}{5} \\ x = 19.6[/tex]
Answer: the answer would be x because that's the actual variable in the question then if 19.6 was not an option
Step-by-step explanation:
The weight of an object above the surface of the Earth varies inversely with the square of the
distance from the center of the Earth. If a body weighs 50 pounds when it is 3,960 miles from
Earth's center, what would it weigh if it were 4,015 miles from Earth's center?
Answer:
weight =48.71228786pounds
Step-by-step explanation:
[tex]w = \frac{k}{ {d}^{2} } \\ 50 = \frac{k}{ {3960}^{2} } \\ \\ k = 50 \times {3960}^{2} \\ k = 50 \times 15681600 \\ k = 784080000 \\ \\ w = \frac{784080000}{ {d}^{2} } \\ w = \frac{784080000}{16120225} \\ \\ w = 48.71228786 \\ w = 48.7pounds[/tex]
If a body weighs 50 pounds when it is 3,960 miles from Earth's center, it would weigh approximately 48.547 pounds if it were 4,015 miles from Earth's center, according to the inverse square law formula.
We know the inverse square law formula:
W₁ / W₂ = D²₂ / D²₁
Where W₁ is the weight of the body at the initial distance D₁, and W₂ is the weight at the final distance D₂.
So we have,
W₁ = 50
D₁ = 3,960
D₂ = 4015
We know that the body weighs 50 pounds when it is 3,960 miles from Earth's center,
So we can plug in those values as follows:
50 / W₂ = (4,015)²/ (3,960)²
To solve for W₂, we can cross-multiply and simplify as follows:
W₂ = 50 x (3,960)² / (4,015)²
W₂ = 50 x 15,681,600 / 16,120,225
W₂ = 48.547 pounds (rounded to three decimal places)
Therefore, if the body were 4,015 miles from Earth's center, it would weigh approximately 48.547 pounds.
To learn more about inverse square law visit:
https://brainly.com/question/30562749
#SPJ2
Find the bases for Col A and Nul A, and then state the dimension of these subspaces for the matrix A and an echelon form of A below.
A= 1 3 8 2 7 1 3 8 2 7
2 7 20 6 20 --- 0 1 4 2 6
-3 -12 -36 -7 -19 0 0 0 1 4
3 13 40 9 25 0 0 0 0 0
Start 4 By 5 Table 1st Row 1st Column 1 2nd Column 3 3rd Column 8 4st Column 2 5st Column 7 2nd Row 1st Column 2 2nd Column 7 3rd Column 20 4st Column 6 5st Column 20 3rd Row 1st Column negative 3 2nd Column negative 12 3rd Column negative 36 4st Column negative 7 5st Column negative 19 4st Row 1st Column 3 2nd Column 13 3rd Column 40 4st Column 9 5st Column 25 EndTable
tilde
Start 4 By 5 Table 1st Row 1st Column 1 2nd Column 3 3rd Column 8 4st Column 2 5st Column 7 2nd Row 1st Column 0 2nd Column 1 3rd Column 4 4st Column 2 5st Column 6 3rd Row 1st Column 0 2nd Column 0 3rd Column 0 4st Column 1 5st Column 4 4st Row 1st Column 0 2nd Column 0 3rd Column 0 4st Column 0 5st Column 0 EndTable
A basis for Col A is given by
StartSet nothing EndSet
(Use a comma to separate vectors as needed.)
The dimension of Col A is
3.
A basis for Nul A is given by
StartSet nothing EndSet
(Use a comma to separate vectors as needed.)
The dimension of Nul A .
Answer:
skip counting by 0
Step-by-step explanation:
skipcount by 0 to get to 100 for the third column.
Answer:
its the first graph
Step-by-step explanation:
I got it right bc im cool like that ig
Let x represent the average annual salary of college and university professors (in thousands of dollars) in the United States. For all colleges and universities in the United States, the population variance of x is approximately σ2
= 47.1. However, a random sample of 15 colleges and universities in Kansas showed that x has a sample variance σ2 = 83.2. Use a 5% level of significance to test the claim that the variance for colleges and universities in Kansas is greater than 47.1. Use the traditional method. Assume that a simple random sample is selected from a normally distributed population.
a. Check requirements.
b. Establish H0 and H1 and note the level of significance.
c. Find the sample test statistic.
d. Find Critical Value.
e. Conclude the test and interpret results.
Answer:
Kindly check explanation
Step-by-step explanation:
Given that :
The hypothesis :
H0 : σ²= 47.1
H1 : σ² > 47.1
α = 5% = 0.05
Population variance, σ² = 47.1
Sample variance, s² = 83.2
Sample size, n = 15
The test statistic = (n-1)*s²/σ²
Test statistic, T = [(15 - 1) * 83.2] ÷ 47.1
Test statistic = T = [(14 * 83.2)] * 47.1
Test statistic = 1164.8 / 47.1
Test statistic = 24.73
The degree of freedom, df = n - 1 ; 10 = 9
Critical value (0.05, 9) = 16.92 (Chisquare distribution table)
Reject H0 ; If Test statistic > Critical value
Since ; 24.73 > 16.92 ; Reject H0 and conclude that variance is greater.
how many ways can this be done. if a committee of 5 people from 7 men and 8 women?
Answer:
3003 ways
Step-by-step explanation:
(7+8)C5
= 15C5
= 15!/(5!10!)
= 3003
What is the equation of the line that passes through (-3,-1) and has a slope of 2/5? Put your answer in slope-intercept form
A: y= 2/5x -1/5
B: y= 2/5x +1/5
C: y= -2/5x -1/5
Answer:
y = 2/5x + 1/5
Step-by-step explanation:
y = 2/5x + b
-1 = 2/5(-3) + b
-1 = -6/5 + b
1/5 = b
please help me with geometry
Answer:
x = 7
Explaination:
ABC = 40°
and BD bisects the angle so ABD = 20°
so 3x-1=20
solving for x gets us
x = 7
Which of the two functions below has the smallest minimum y-value?
f(x) = 4(x - 6)4 + 1
g(x) = 2x3 + 28
O A. g(x)
B. f(x).
C. The extreme minimum y-value for f(x) and g(x) is --
D. There is not enough information to determine
Answer:
Answer A
Step-by-step explanation:
[tex]\displaystyle \lim_{n \to -\infty} (3x^3+28)=-\infty\\\\minimum\ of \ f(x)=6\\\\Answer\ A[/tex]
Consider the probability that no more than 28 out of 304 students will not graduate on time. Choose the best description of the area under the normal curve that would be used to approximate binomial probability.
a. Area to the right of 27.5
b. Area to the right of 28.5
c. Area to the left of 27.5
d. Area to the left of 28.5
e. Area between 27.5 and 28.5
Solution :
Here the probability that exactly 28 out of 304 students will not graduate on time. That is
P (x = 28)
By using the normal approximation of binomial probability,
[tex]$P(x=a) = P(a-1/2 \leq x \leq a+1/2)$[/tex]
∴ [tex]$P(x=28) = P(28-1/2 \leq x \leq 28+1/2)$[/tex]
[tex]$=P(27.5 \leq x \leq 28.5)$[/tex]
That is the area between 27.5 and 28.5
Therefore, the correct option is (e). Area between 27.5 and 28.5
Which of the following fractions is closest to 0? 5/12 , 2/3, 5/6,3/4
Answer:
5/12
Step-by-step explanation:
5/12 , 2/3, 5/6,3/4
Get a common denominator of 12
5/12, 2/3 *4/4, 5/6*2/2, 3/4 *3/3
5/12, 8/12, 10/12, 9/12
The numerator closest to 0 is the fraction closest to 0
5/12
For a standard normal distribution, find:
P(z > c) = 0.058
Find c.
Answer:
1.572
Step-by-step explanation:
For a standard normal distribution,
P(z > c) = 0.058
To obtain C ; we find the Zscore corresponding to the proportion given, which is to the right of the distribution ;
Using technology or table,
Zscore equivalent to P(Z > c) = 0.058 is 1.572
Hence, c = 1.572
prove:
sin²A-cos²B=sin²B-cos²A
Step-by-step explanation:
thwashm m GB DC GM 3hka it g feeds ygzdkzyzuzjz indin, mi, hn zbe
Answer:
Solution given:
L.H.S
sin²A-cos²B
we havesin²A=1-cos²A and Cos²B=1-sin²B
nowreplacing value
1-cos²A-(1-sin²B)
open bracket1-cos²A-1+sin²B
keep together like terms1-1+sin²B-Cos²A
=sin²B-Cos²A
R.H.S
proved.if x and y are linear pair of angel then x +y=
Answer: x + y = 180²
Step-by-step explanation:
A linear pair is a pair of adjacent, supplementary angles.
Adjacent means next to each other.
Supplementary means that the measures of the two angles add up to equal 180 degrees.
Therefore, by definition, if x and y are linear pairs of angles, then x + y = 180.
Plz help me find side x and y thanks
Answer:
2sqrt3
Step-by-step explanation:
Since this seems to be a 45, 45, 90 triangle, x and y are the same.
The hypoteneuse is always the side lengths *sqrt2
We divide the hypoteneuse by sqrt 2 and get sqrt12
sqrt12 simplified is 2sqrt3
Max needs to paint a wall that is shaped like a square. He knows that the area of the wall is 75 ft2 . He needs to find the height of the wall. Find the height of the wall to the nearest tenth of a foot.
Answer:
8.7 feet
Step-by-step explanation:
Use the square area formula, a = s², where s is the side length of the square.
Plug in the area and solve for s:
a = s²
75 = s²
√75 = s
8.7 = s
So, to the nearest tenth of a foot, the height is 8.7 feet
Find Term 20 for the sequence a= 4 6 8 10......
4,6,8,10 are in A.P
a=4d=2[tex]\\ \rm\Rrightarrow a_n=a+(n-1)d[/tex]
[tex]\\ \rm\Rrightarrow a_20=4+(20-1)2[/tex]
[tex]\\ \rm\Rrightarrow a_20=4+19(2)[/tex]
[tex]\\ \rm\Rrightarrow a_20=4+38[/tex]
[tex]\\ \rm\Rrightarrow a_20=42[/tex]
Please help!! The question is the image below VVV
Answers are also images after the picture.
Step-by-step explanation:
When adding two fractions with different bases (bottom numbers), we can use this function:
[tex]\frac{a}{b} + \frac{c}{d} = \frac{ad + cb}{bd}[/tex]
So, to apply this to the given question:
[tex]\frac{x+3}{x-6} +\frac{1}{x-2}[/tex]
= [tex]\frac{(x+3)(x-2)+(1)(x-6)}{(x-6)(x-2)}[/tex]
From the given answers, we see we don't need to simplify the resulting base number, which makes things a lot easier.
Multiply top using: (a + b)(c + d) = ac + ad + bc + bd= [tex]\frac{[(x*x) + (x*-2)+(3*x)+(3*-2)]+(x-6)}{(x-6)(x-2)}[/tex]
Simplify.= [tex]\frac{[x^2 -2x+3x-6]+(x-6)}{(x-6)(x-2)}[/tex]
Remove parentheses.= [tex]\frac{x^2 -2x+3x-6+x-6}{(x-6)(x-2)}[/tex]
Simplify again.= [tex]\frac{x^2 +2x-12}{(x-6)(x-2)}[/tex]
Now if we wanna be a little smart, we can see that from here, the only answer that has x^2 and something else, is A. But, just for show, lets factor.
Factor.= [tex]\frac{x(x+2)}{(x-6)(x-2)}[/tex]
Answer:
A) [tex]\frac{x(x+2)}{(x-6)(x-2)}[/tex]
find the greatest number than divides 45 60 75 without leaving remainder
Answer:
15
Step-by-step explanation:
15 is the greatest number that divides 45 60 75 without leaving remainder
Answer:
15
Step-by-step explanation:
Let write the factors of each number:
45: (1,3,5,9,15,45)
60:(1,2,3,4,5,6,10,12,15,20,30,60)
75:(1,3,5,15,15,75).
The greatest common factor is 15. So the answer is 15.
Jordan buys sandals and sunglasses for a trip to the beach. The sunglasses cost $6. The sandals cost 3 times as much as the sunglasses. How much do the sandals cost?
Answer:
18 dollars
Step-by-step explanation:
sunglasses = 6 dollars
sandals = 3 * sunglasses
= 3 * 6 dollars
= 18 dollars