Answer: -3/8
Step-by-step explanation:
Expanding z we get
z = 4x^2 - 4xy + y^2 - 2y^2 - 3y
= -y^2 - (4x + 3) y + 4x^2.
After Archimedes chooses x, Brahmagupta will choose
y=-(4x+3/2) in order to maximize z
Then
z=-((-4x+3)/2)^2 -(4x+3)(-4x+3)/2)^2)+4x^2
z=8x^2+6x+9/4
To minimize this expression, Archimedes should choose x=-3/8
Help please!??!!?!?
9514 1404 393
Answer:
a) CP = SP/1.1
b) CP = $59.50
c) GST = $5.95
Step-by-step explanation:
a) Divide by the coefficient of CP.
SP = 1.1×CP
CP = SP/1.1
__
b) Use the formula with the given value.
CP = $65.45/1.1 = $59.50
__
c) You can do this two ways: subtract CP from SP, or multiply CP by 0.1.
GST = SP -CP = $65.45 -59.50 = $5.95
GST = CP×0.10 = $59.50 × 0.10 = $5.95
if a stone is dropped from a cliff that is 122.5m high then its height in meters after t seconds is h=122.5-4.9t^2. find its velocity after 2s
Answer:
Step-by-step explanation:
Let t = 2
h = 122.5 - 4.9·2² = 122.5-19.6 = 102.9
Find the length of FT
Step-by-step explanation:
Hey there!
From the given figure;
Angle FVT = 43°
VT = 53
Taking Angle FVT as reference angle we get;
Perpendicular (p) = FT = ?
Base (b) = VT = 53
Taking the of tan;
[tex] \tan( \alpha ) = \frac{p}{b} [/tex]
Keep all values and simplify it;
[tex] \tan(43) = \frac{ft}{53} [/tex]
0.932515*53 = FT
Therefore, FT= 49.423.
Hope it helps!
Answer:
A. 49.42
Step-by-step explanation:
tan 43 = FT ÷ VT
0.932515086 = FT ÷ 53
49.42 = FT
Devaughn is 6 years older than Sydney. The sum of their ages is 56 . What is Sydney's age?
Answer:
Devaughn = 31, Sydney = 25
Step-by-step explanation:
(56-6)÷2= 25
So they would both be 25 if they were the same age but Devaughn is 6 years older so 25+6=31
ATQ
[tex]\\ \sf\longmapsto x+x+6=56[/tex]
[tex]\\ \sf\longmapsto 2x+6=56[/tex]
[tex]\\ \sf\longmapsto 2x=56-6[/tex]
[tex]\\ \sf\longmapsto 2x=50[/tex]
[tex]\\ \sf\longmapsto x=\dfrac{50}{2}[/tex]
[tex]\\ \sf\longmapsto x=25[/tex]
PLSS HELPPPP WILL GIVE BRAINLESSS A 22-foot ladder is resting against the side of a building. The bottom of the ladder is 3 feet from the building. Find the measure of the angle the ladder makes with the ground. Round your answer to the nearest tenth of a degree.
Answer:
The answer is 82.2
Step-by-step explanation
hope this helps
Triangle DEF has sides of length x, x+3, and x−1. What are all the possible types of DEF?
Triangle DEF is scalene
Must click thanks and mark brainliest
The triangle DEF will be a scalene triangle as all the sides of the triangle are unequal.
What is a scalene triangle?A scalene triangle is a type of triangle which have all the sides to be unequal and similarly, all the angles will also be unequal to each other.
Given that:-
Triangle DEF has sides of length x, x+3, and x−1it is given that all the sides of the triangle are x, x+3, and x−1 we can clearly see that for any value of x all the three sides will have different values. we can conclude from this that the triangle DEF is a scalene triangle.
Therefore triangle DEF will be a scalene triangle as all the sides of the triangle are unequal.
To know more about the scalene triangle follow
https://brainly.com/question/16589630
#SPJ2
Anna earned $9 an hour babysitting. She wants
to buy a 16 GB iPod that is $120. Anna has
saved $45 so far. How many more hours of
babysitting does she need to do to earn the rest
to purchase the iPod
Answer:
8.33 hours
Step-by-step explanation:
120-45 = 75
75 ÷ 9 = 8.33
Which is a perfect square?
6’1
6’2
6’3
6’5
Answer:
6'2
Step-by-step explanation:
The answer pl shhaoksngausinxbbs pls
Answer:
D. 3
Step-by-step explanation:
A triangle can be defined as a two-dimensional shape that comprises three (3) sides, three (3) vertices and three (3) angles.
Simply stated, any polygon with three (3) lengths of sides is a triangle.
In Geometry, a triangle is considered to be the most important shape.
Generally, there are three (3) main types of triangle based on the length of their sides and these include;
I. Equilateral triangle: it has all of its three (3) sides and interior angles equal.
II. Isosceles triangle: it has two (2) of its sides equal in length and two (2) equal angles.
III. Scalene triangle: it has all of its three (3) sides and interior angles different in length and size respectively.
In Geometry, an acute angle can be defined as any angle that has its size less than ninety (90) degrees.
Hence, we can deduce that the greatest number of acute angles that a triangle can contain is three (3) because the sum of all the interior angles of a triangle is 180 degrees.
The HCF of two numbers is 175. The LCM of these two numbers is 12600. Both numbers are greater than their HCF. Find the two numbers
Answer:
Hello,
Answer : 1400 and 1575
Step-by-step explanation:
Let's say a and b the ywo numbers
[tex]HCF(a,b)=a\vee b=175=5^2*7\\LCM(a,b)=a\wedge b=12600\\\\a*b=(a\vee b)*(a\wedge b)=(2^3*3^2*5^2*7)*(5^2*7)=2^3*3^2*(5^2*7^2)^2\\\\Both\ numbers\ are\ greater\ than\ their HCF\\a=175*k_1\\b=175*k_2\\\\k_1=2^3\ and\ k_2=3^2\\\\a=175*2^3=1400\\b=175*3^2=1575\\\\[/tex]
What is the remainder when () = 3 − 11 − 10 is divided by x+3
Answer:
-18/x+3
Step-by-step explanation:
Which expression is equivalent to (3 squared) Superscript negative 2?
Answer:
–81
Step-by-step explanation:
Find the quotient of 90 over -10
90/-10
= 9/-1
= -9
So, -9 is the quotient.
find the LCM of 210, 280, 360 by prime factorisation
Answer:
Step-by-step explanation:
210=2x3x5x7
280=2x2x2x5x7
360=2x2x2x3x3x5
Answer:
210= 2×3×5×7
280=2×2×2×5×7
360=2×2×2×3×3×5
common factors=2×2×2×3×5×7=840
uncommon factors=3
L.C.M=Common factors× uncommon factors
L.C.M=840×3
L.C.M=2520
Step-by-step explanation:
i hope it will be helpful
plzz mark as brainliest
the ratio of sadia's age to her father's age is 3:6. The sum of their age is 96 .What is sadia's age
We have,
[tex]a:b=3:6,a+b=96[/tex]
Introduce variable [tex]x[/tex] such that [tex]a=3x,b=6x[/tex]
The sum [tex]a+b=96[/tex] is therefore [tex]9x=96\implies x=10.\overline{6}[/tex]
So,
[tex]a=3\cdot10.\overline{6}=\boxed{32}[/tex] (sadia's age)
[tex]b=6\cdot10.\overline{6}=\boxed{64}[/tex] (father's age)
Hope this helps :)
Factors and rewrite the expression 25x-15
Answer:
5(5x-3)
Step-by-step explanation:
The common factor in this expression is 5 so divide 5 to all the values
25/5=5
-15/5= -3
Put these values into parenthesis and leave the 5 on the left side and out of the parenthesis
5(5x-3)
Answer:
5(5x - 3)
Step-by-step explanation:
The greatest common factor here is 5. Divide each term by 5 and simplify.
25x/5 = 5x
15/5 = 3
Therefore, the answer is 5(5x - 3).
(b) An economy has an agricultural industry and a textile industry. Each unit of agricultural output requires 0.4 unit of agricultural input and 0.1 unit of textiles input. Each unit of textiles output requires 0.1 unit of agricultural input and 0.2 unit of textiles input.
(i) Write the technology matrix for this economy. [2 marks]
(ii) If surpluses of 5 units of agricultural products and 195 units of textiles are desired, find the gross production of each industry
Leontief input output model (technology matrix) is an economic model that shows the quantitative relationship and sectorial interdependency in a national economy
The responses with regards to the question are;
(i) The technology matrix for the economy is presented as follows;
[tex]\mathbf{ A} =\left[\begin{array}{ccc}Agric&&Textile\\0.4&&0.1\\&&\\0.1&&0.2\end{array}\right] \begin{array}{ccc}\mathbf{Per \ Unit}\\Agriculture\\\\Textile\end{array}\right][/tex]
(ii) The required gross production of each industry to meet the desired surplus are;
50 units of agriculture and 250 units of textile
The reason the above values are correct is as follows:
(i) The given parameters are;
The industries in the economy = Agricultural industry and textile industry
Units of agricultural input required per unit of agricultural output = 0.4
Units of textile input required per unit of agricultural output = 0.1
Units of agricultural input required per unit of textile output = 0.1
Units of textile input required per unit of textile output = 0.2
Let X represent agriculture, and let Y represent textile, we have;
[tex]Agric \ for \ agric = \dfrac{0.4 \ units \ of \ agriculture}{1\ unit \ of \ agric \ produced} \times X \ Agric \ produced= 0.4 \cdot X[/tex]
[tex]Agric \ for \ textile = \dfrac{0.1 \ units \ of \ agriculture}{1\ unit \ of \ textile \ produced} \times Y \ textile \ produced= 0.1 \cdot Y[/tex]
We also have;
Textile for agriculture = 0.1·X
Textile for textile = 0.2·Y
Therefore;
X = 0.4·X + 0.1·Y
Y = 0.1·X + 0.2·Y
Therefore;
The technology matrix for the economy is presented as follows;
[tex]\mathbf{Technology \ matrix, A} =\left[\begin{array}{ccc}Agric&&Textile\\0.4&&0.1\\&&\\0.1&&0.2\end{array}\right] \begin{array}{ccc}\mathbf{Per \ Unit}\\Agriculture\\\\Textile\end{array}\right][/tex]
(ii) Let P represent the production vector, and let d represent the demand vector, we have;
[tex]P = \left[\begin{array}{c}X \\Y\end{array}\right][/tex], [tex]d = \left[\begin{array}{c}5 \\195\end{array}\right][/tex]
P = A·P + d
∴ P - A·P = d
Therefore;
[tex]P = \mathbf{ \dfrac{d}{(I - A)}}[/tex]
Where I = The 2 by 2 identity matrix
We get;
[tex]I - A =\left[\begin{array}{ccc}1&&0\\&&\\0&&1\end{array}\right] - \left[\begin{array}{ccc}0.4&&0.1\\&&\\0.1&&0.2\end{array}\right] = \mathbf{\left[\begin{array}{ccc}0.6&&-0.1\\&&\\-0.1&&0.8\end{array}\right]}[/tex]
With the use of a graphing calculator, we have;
[tex]P =\left[\begin{array}{c}X \\Y\end{array}\right] = \dfrac{\left[\begin{array}{c}5 \\195\end{array}\right]}{\left[\begin{array}{ccc}0.6&&-0.1\\&&\\-0.1&&0.8\end{array}\right]} = \left[\begin{array}{ccc}50\\\\\ 250\end{array}\right][/tex]
The required gross product of agriculture, X = 50 units
The required gross product of textile, Y = 250 units
Learn more about the Leontief input output model here:
https://brainly.com/question/15417573
We have that he technology matrix for this economy and the the gross production of each industry are
a) [tex]X= \begin{vmatrix}0.4 & 0.1 \\0.1 & 0.2\end{vmatrix}[/tex]
b) [tex]\begin{vmatrix}A\\T\end{vmatrix}=\begin{vmatrix}50\\250\end{vmatrix}[/tex]
From the Question we have told that
Each unit of agricultural output requires 0.4 unit of agricultural input
Each unit of agricultural output requires 0.1 unit of textiles input.
Each unit of textiles output requires 0.1 unit of agricultural input
Each unit of textiles output requires 0.2 unit of textiles input.
Generally the technology matrix for this economy is given below
With
X =Agricultural industry Gross output
Y= Textile industry Gross Output
Therefore
[tex]X= \begin{vmatrix}0.4 & 0.1 \\0.1 & 0.2\end{vmatrix}[/tex]
b)
From the Question we are told that
Surpluses of 5 units of agricultural products and 195 units of textiles are desired.
Therefore, we have Desired surplus matrix of
[tex]D= \begin{vmatrix}5\\195\end{vmatrix}[/tex]
Generally the Technology equation is mathematically given as
[tex](I-X)\phi=D[/tex]
Where
X =Agricultural industry Gross output
I=A Unit matrix
\phi=Matrix of gross production
Therefore
[tex]\begin{vmatrix}1 & 0\\0 & 1\end{vmatrix}-(\begin{vmatrix}0.4 & 0.1 \\0.1 & 0.2\end{vmatrix}))\begin{vmatrix}A\\T\end{vmatrix}=\begin{vmatrix}5\\195\end{vmatrix}[/tex]
[tex]\begin{vmatrix}A\\T\end{vmatrix}=\begin{vmatrix}50\\250\end{vmatrix}[/tex]
In conclusion
The technology matrix for this economy and the the gross production of each industry are
[tex]X= \begin{vmatrix}0.4 & 0.1 \\0.1 & 0.2\end{vmatrix}[/tex]
[tex]\begin{vmatrix}A\\T\end{vmatrix}=\begin{vmatrix}50\\250\end{vmatrix}[/tex] Respectively
In conclusion
https://brainly.com/question/16863924
Rotation 90° counterclockwise around the origin of the point (-8,1)
Find the output, hhh, when the input, ttt, is 353535.
h = 50 - \dfrac{t}{5}h=50−
5
t
h, equals, 50, minus, start fraction, t, divided by, 5, end fraction
h=
9514 1404 393
Answer:
43
Step-by-step explanation:
Put the value where t is and do the arithmetic.
h = 50 -t/5
h = 50 -35/5 = 50 -7 = 43
The output, h, is 43 when the input is 35.
Answer:
43
Step-by-step explanation:
The answer is 43 on Khan :)
create a graph of 4.95 + 3.99
Answer:
????
Step-by-step explanation:
as in y = 4.95 + 3.99 or points? if so just draw a horizontal line at 8.94
Let h(x)=20e^kx where k ɛ R (Picture attached. Thank you so much!)
Answer:
A)
[tex]k=0[/tex]
B)
[tex]\displaystyle \begin{aligned} 2k + 1& = 2\ln 20 + 1 \\ &\approx 2.3863\end{aligned}[/tex]
C)
[tex]\displaystyle \begin{aligned} k - 3&= \ln \frac{1}{2} - 3 \\ &\approx-3.6931 \end{aligned}[/tex]
Step-by-step explanation:
We are given the function:
[tex]\displaystyle h(x) = 20e^{kx} \text{ where } k \in \mathbb{R}[/tex]
A)
Given that h(1) = 20, we want to find k.
h(1) = 20 means that h(x) = 20 when x = 1. Substitute:
[tex]\displaystyle (20) = 20e^{k(1)}[/tex]
Simplify:
[tex]1= e^k[/tex]
Anything raised to zero (except for zero) is one. Therefore:
[tex]k=0[/tex]
B)
Given that h(1) = 40, we want to find 2k + 1.
Likewise, this means that h(x) = 40 when x = 1. Substitute:
[tex]\displaystyle (40) = 20e^{k(1)}[/tex]
Simplify:
[tex]\displaystyle 2 = e^{k}[/tex]
We can take the natural log of both sides:
[tex]\displaystyle \ln 2 = \underbrace{k\ln e}_{\ln a^b = b\ln a}[/tex]
By definition, ln(e) = 1. Hence:
[tex]\displaystyle k = \ln 2[/tex]
Therefore:
[tex]2k+1 = 2\ln 2+ 1 \approx 2.3863[/tex]
C)
Given that h(1) = 10, we want to find k - 3.
Again, this meas that h(x) = 10 when x = 1. Substitute:
[tex]\displaystyle (10) = 20e^{k(1)}[/tex]
Simplfy:
[tex]\displaystyle \frac{1}{2} = e^k[/tex]
Take the natural log of both sides:
[tex]\displaystyle \ln \frac{1}{2} = k\ln e[/tex]
Therefore:
[tex]\displaystyle k = \ln \frac{1}{2}[/tex]
Therefore:
[tex]\displaystyle k - 3 = \ln\frac{1}{2} - 3\approx-3.6931[/tex]
Solve each system by graphing.
Answer:
(2,-1)
Step-by-step explanation:
Solved using math.
Answer:
The solution is (2, -1) to show this by graphing do y = -1 by making a straight horizontal line at (0,-1) . And then for the other equation make a line where it starts at (0,4) and passes point (2,-1). Just plot those two points and connect them and you'll have made the line.
Step-by-step explanation:
Fill in the blanks.
(3b^3)^2 = _b^_
We can seperate (3b³) into two different parts, the constant and the variable.
The constant (3) and the variable (b) can both be squared and multiplied to get the correct answer, so:
3² = 9
(b³)² = [tex]b^{6}[/tex]
So, [tex](3b^{3})^{2} = 9b^{6}[/tex]
The 4th of an AP is 15 and the 9th term is 35. find the 15th term
Consecutive terms in this sequence are separated by a constant c, so if the 4th term is 15, then the next terms would be
5th: 15 + c
6th: (15 + c) + c = 15 + 2c
7th: (15 + 2c) + c = 15 + 3c
and so on. More generally, since any given number in the sequence depends on the number that came before it, we can write the n-th term in terms of the 4th term,
n-th: 15 + (n - 4) c
Then the 9th term in the sequence is
15 + (9 - 4) c = 35
and solving for c gives
15 + 5c = 35 ==> 5c = 20 ==> c = 4
Then the 15th term would be
15 + (15 - 4)×4 = 15 + 11×4 = 15 + 44 = 59
The total number of branches in a tree diagram will be which of the following values?
the probability of an event occurring
the denominator of a probability
the numerator of a probability
Answer:
The total number of branches = total possibilities = the denominator of a probability.
So the second choice is correct.
Let me know if this helps!
Answer:
Step-by-step explanation: answer B (the denominator of a probability)
100 x 20 + 30 help me
[tex]\boxed{\underline{\bf \: Answer}}[/tex]
[tex] \sf100 \times 20 + 30[/tex]
First multiply 100 & 20 together.
[tex] \sf= 2000 + 30[/tex]
Now add 2000 & 30. You'll get :-
[tex]= \boxed{ \bf 2030}[/tex]
____
Hope it helps.
RainbowSalt2222
[tex]\\ \rm\longmapsto 100\times 20+30[/tex]
[tex]\\ \rm\longmapsto (100\times 20)+30[/tex]
Solve bracket[tex]\\ \rm\longmapsto 2000+30[/tex]
[tex]\\ \rm\longmapsto 2030[/tex]
The probability distribution of a random variable X is given. x 1 2 3 4 P(X = x) 0.4 0.1 0.3 0.2 Compute the mean, variance, and standard deviation of X. (Round your answers to two decimal places.) mean variance standard deviation
Mean:
[tex]E(X) = \displaystyle \sum_{x\in\{1,2,3,4\}}x\,P(X=x) = 1\times0.4 + 2\times0.1 + 3\times0.3 + 4\times0.2 = \boxed{2.3}[/tex]
Variance:
[tex]\displaystyle V(X) = E\left((X-E(X))^2\right) = E(X^2) - E(X)^2 \\\\ E(X^2) = \sum_{x\in\{1,2,3,4\}}x^2\,P(X=x) = 1^2\times0.4 + 2^2\times0.1 + 3^2\times0.3 + 4^2\times0.2 = 6.7 \\\\ \implies V(X) = 6.7 - 2.3^2 = \boxed{1.41}[/tex]
Standard deviation:
[tex]\sigma_X = \sqrt{V(X)} = \sqrt{1.41} \approx \boxed{1.19}[/tex]
Surface Area of cones
Instructions: Find the surface area of each figure. Round your answers to the nearest tenth, if necessary.
9514 1404 393
Answer:
64.1 ft²
Step-by-step explanation:
The area of the cone is given by ...
A = πr(r +h) . . . . for radius r and slant height h
A = π(2 ft)(2 ft +8.2 ft) ≈ 64.1 ft²
If ‘BOXES’ is OBXSE, then BOARD is
9514 1404 393
Answer:
OBADR
Step-by-step explanation:
The first two letters are swapped, and the last two letters are swapped.
BOARD . . . becomes
OBADR
If p is true and ~ q is false, then p ~ q is _____ false.
a. sometimes
b. always
c. never