Consider a simple pendulum that consists of a massless 2.00-meter length of rope attached to a 5.00-kg mass at one end. What is the period of oscillation for this simple pendulum

Answers

Answer 1

Answer:

2.8 seconds

Explanation: Given that a simple pendulum that consists of a massless 2.00-meter length of rope attached to a 5.00-kg mass at one end. What is the period of oscillation for this simple pendulum

The parameters given are :

Length = 2 m

Mass = 5kg

Using the formula below

T = 2 pi × sqrt ( L / g )

Substitute all the parameters into the formula.

T = 2 × 3.143 × sqrt ( 2 / 9.8 )

T = 2 × 3.143 × 0.4517

T = 2.838 s

Therefore, the period of oscillation for this simple pendulum is 2.8 s approximately.


Related Questions

If 1.02 ✕ 1020 electrons move through a pocket calculator during a full day's operation, how many coulombs of charge moved through it?

Answers

Answer:

Explanation:

one electron has [tex]1.60217662*10^{-19}~coulombs~then\\\\1.02*10^{20}~electrons------->1.02*10^{20}*1.60217662*10^{-19}~coulombs= 16.3422~coulombs[/tex]

A car moving in a straight line uniformly accelerated speed increased from 3 m / s to 9 m / s in 6 seconds. With what acceleration did the car move?


a.
2 m/s2


b.
1 m/s2


c.
0 m/s2


d.
3 m/s2

Answers

I think it’s 1 . The answer is B

Answer:

b) 1 m/s

I am sure...........

A string that is under 50.0N of tension has linear density 5.0g/m. A sinusoidal wave with amplitude 3.0cm and wavelength 2.0m travels along the string. What is the maximum speed of a particle on the string

Answers

Answer:

9.42 m/s

Explanation:

Applying,

V' = Aω.............. Equation 1

Where V' = maximum speed of the string, A = Amplitude of the wave, ω = angular velocity.

But,

ω = 2πf................. Equation 2

Where f = frequency, π = pie

And,

f = v/λ................ Equation 3

Where, λ = wave length, v = velocity

Also,

v = √(T/μ)................. Equation 4

Where T = Tension, μ = linear density.

From the question,

Given: T = 50.0 N, μ = 5.0 g/m = 0.005 kg/m

Substitute into equation 4

v = √(50/0.005)

v = √(10000)

v = 100 m/s

Also Given: λ = 2.0 m

Substitute into equation 3

f = 100/2

f = 50 Hz.

Substitute the value of f into equation 2

Where π = constant = 3.14

ω = 2(3.14)(50)

ω = 314 rad/s

Finally,

Given: A = 3.0 cm = 0.03 m

Substitute into equation 1

V' = 0.03(314)

V' = 9.42 m/s

If the pressure of a gas is really due to the random collisions of molecules with the walls of the container, why do pressure gauges – even very sensitive ones – give perfectly steady readings? Shouldn't the gauge be continually jiggling and fluctuating? Explain.

Answers

Answer:

there is no fluctuation in the measurement because the quantity of molecule is too large and a quantity of some molecules is imperceptible.

Explanation:

The pressure measurement is carried out by calibrating the force exerted by the air on a surface of known area, suppose a small area 1 mm² = 0.01 cm²

To find out if the random movement of air molecules affects the pressure reading, let's calculate the number of molecules that reaches the pressure gauge.

In a system at atmospheric pressure and in a volume of 1 m³ (walls of 1 m each) there is one mole of air molecules, this mole is evenly distributed, so how many molecules fall on our surface

           # _molecule = 6.02 10²³ 0.01 10⁻⁴ / 1

           #_molecular = 6.02 10¹⁷ molecules per second

therefore the variation of the number of molecules is not very important

Consequently there is no fluctuation in the measurement because the quantity of molecule is too large and a quantity of some molecules is imperceptible.

Which option is the best blackbody radiator?

A.
The Sun

B.
A red laser pointer

C.
A tennis ball

D.
Boiling water

Answers

Answer:

A. The Sun

Explanation:

The Sun is to be considered a perfect black body.

Using only astronomical data from the Appendix E in the textbook, calculate the speed of the planet Venus in its essentially circular orbit around the sun.
Venus = 4.87x10^24

Answers

Answer:

[tex]v=3.49\times 10^4\ m/s[/tex]

Explanation:

Given that,

Mass of Venus, [tex]M_V=4.87\times 10^{24}\ kg[/tex]

We know that,

Mass of Sun, [tex]M_s=1.98\times 10^{30}\ kg[/tex]

The distance between the center of Sun and the center of Venus is [tex]1.08\times 10^{11}\ m[/tex]

We need to find the peed of the planet Venus in its essentially circular orbit around the sun. using the formula,

[tex]v=\sqrt{\dfrac{GM_s}{r}}[/tex]

Put all the values,

[tex]v=\sqrt{\dfrac{6.67\times 10^{-11}\times 1.98\times 10^{30}}{1.08\times 10^{11}}}\\\\v=3.49\times 10^4\ m/s[/tex]

So, the speed of the planet venus is [tex]3.49\times 10^4\ m/s[/tex].

A hoop rolls with constant velocity and without sliding along level ground. Its rotational kinetic energy is:______a- half its translational kinetic energyb- the same as its translational kinetic energyc- twice its translational kinetic energyd- four times its translational kinetic energy

Answers

Answer:

The same as its translational KE.

The easy way to do this is to make up numbers and use them.

So, I'll say m=2 and r=3. I will also say v=3 .

Rot. Inertia of a hoop is mr^2. So the rot KE is: 1/2 (mr^2)(w^2)

note: (1/2*I*w^2)

Translational kinetic energy is basically normal KE, so 1/2(m)(v^2)

Now, lets plug our made up values in:

Rot Ke : 1/2 (9*2)(3/3) *note w = v/r

Tran Ke: 1/2(2)(9)

Rot Ke: 9

Tran Ke: 9

9=9, same.

A block of mass m is moved over a distance d. An applied force F is directed perpendicularly to the block’s displacement. How much work is done on the block by the force F?​

Answers

zero

Explanation:

Work W is defined as

W = Fd = Fdcos(theta)

and it is a dot product of the force and displacement and theta is angle between F and d Since the force is perpendicular to d, angle is 90° thus cos90 = 0. Hence work is zero.

why are cows is important?​

Answers

Answer:

cause they give u milk

Explanation:

Answer:

Cows are important as they provide humans many things for survival. They provide milk, meat, and leather, all of these are important resources.

a. A horse pulls a cart along a flat road. Consider the following four forces that arise in this situation.

1. the force of the horse pulling on the cart
2. the force of the cart pulling on the horse
3. the force of the horse pushing on the road
4. the force of the road pushing on the horse

b. Suppose that the horse and cart have started from rest; and as time goes on, their speed increases in the same direction. Which one of the following conclusions is correct concerning the magnitudes of the forces mentioned above?

1. Force 1 exceeds Force 2.
2. Force 2 is less than Force 3.
3. Force 2 exceeds Force 4.
4. Force 3 exceeds Force 4.
5. Forces 1 and 2 cannot have equal magnitudes.

Answers

Answer:

a) F₁ = F₂,  F₃ = F₄,  b)  the correct answer is 3

Explanation:

a) In this exercise we have several action and reaction forces, which are characterized by having the same magnitude, but different direction and being applied to different bodies

Forces 1 and 2 are action and reaction forces F₁ = F₂

Forces 3 and 4 are action and reaction forces F₃ = F₄

as it indicates that the

b) how the car increases if speed implies that force 1> force3

      F₁ > F₃

therefore the correct answer is 3

Sunsets are a deep red because A) tiny particles in the air are more efficient at scattering short wavelength light than they are at scattering long wavelength light. Hence, long wavelength light ends up coming directly towards you. B) most polluting gases and dust particles in the air are reddish in color and lend their color to that of the sky. C) air molecules absorb red light more efficiently than they do blue light because of their electron orbitals. D) air molecules absorb blue light more efficiently than they do red light because of their electron orbitals.

Answers

Answer:

i think its A

Answer:tiny particles in the air are more efficient at scattering short wavelength light than they are at scattering long

Explanation:

15. A car travelling towards the right has a mass of 1332 kg and has a speed of 25 m/s. A truck is
travelling towards the left with a mass of 3000 kg and a speed of 15 m/s. They collide head
on with each other. What is the total momentum after the crash? In which direction will the
vehicles travel after the collision?

Answers

Explanation:

Given that,

The mass of a car, m₁ = 1332 kg

The speed of the car, u₁ = 25 m/s (right)

The mass of a truck, m₂ = 3000 kg

The speed of the truck, u₂ = -15 m/s

The total momentum after the crash is given by :

p=m₁u₁ + m₂u₂

Put all the values,

P = 1332(25) + 3000(-15)

= −11700 kg-m/s

So, the total momentum after the crash is equal to 11700 kg-m/s and it is in the left direction.

instrument used in measurement Amount of substance

Answers

Answer:

For liquids: A measuring cylinder is used.

For solid: Over flow can is used

Answer:

i think a measuring cylinder

Two identical satellites orbit the earth in stable orbits. Onesatellite orbits with a speed vat a distance rfrom the center of the earth. The second satellite travels at aspeed that is less than v.At what distance from the center of the earth does the secondsatellite orbit?At a distance that is less than r.At a distance equal to r.At a distance greater than r.Now assume that a satellite of mass m is orbiting the earth at a distance r from the center of the earth with speed v_e. An identical satellite is orbiting the moon at thesame distance with a speed v_m. How does the time T_m it takes the satellite circling the moon to make onerevolution compare to the time T_e it takes the satellite orbiting the earth to make onerevolution?T_m is less than T_e.T_m is equal to T_e.T_m is greater than T_e.

Answers

Answer:

a. At a distance greater than r

b. T_m is greater than T_e.

Explanation:

a. Two identical satellites orbit the earth in stable orbits. One satellite orbits with a speed vat a distance r from the center of the earth. The second satellite travels at a speed that is less than v. At what distance from the center of the earth does the second satellite orbit?

Since the centripetal force on any satellite, F equals the gravitational force F' at r,

and F = mv²/r and F' = GMm/r² where m = mass of satellite, v = speed of satellite, G = universal gravitational constant, M = mass of earth and r = distance of satellite from center of earth.

Now, F = F'

mv²/r = GMm/r²

v² = GM/r

v = √GM/r

Since G and M are constant,

v ∝ 1/√r

So, if the speed decreases, the radius of the orbit increases.

Since the second satellite travels at a speed less than v, its radius, r increases since v ∝ 1/√r.

So, the distance the second satellite orbits is at a distance greater than r

b. An identical satellite is orbiting the moon at the same distance with a speed v_m. How does the time T_m it takes the satellite circling the moon to make one revolution compare to the time T_e it takes the satellite orbiting the earth to make one revolution?

Since the speed of the satellite, v = √GM/r where M = mass of planet

Since the satellite is orbiting at the same distance, r is constant

So, v ∝ √M

Since mass of earth M' is greater than mass of moon, M", the speed of satellite circling moon, v_m is less than v the speed of satellite circling earth at the same distance, r

Now, period T = 2πr/v where r = radius of orbit and v = speed of satellite

Since r is constant for both orbits, T ∝ 1/v

Now, since the speed of the speed of the satellite on earth orbit v  is greater than the speed of the satellite orbiting the moon, v_m, and T ∝ 1/v, it implies that the period of the satellite orbiting the earth, T_e is less than the period of the satellite orbiting the moon, T_m since there is an inverse relationship between T and v. T_e is less T_m implies T_m is greater than T_e

So, T_m is greater than T_e.

A boy throws a ball straight up with a speed of 21.5 m/s. The ball has a mass of 0.19 kg. How much gravitational potential energy will the ball have at the top of its flight? (Assume there is no air resistance.) A. 43.9 J B. 37.5 J C. 48.5 J D. 41.2 J​

Answers

Answer:

Explanation:

The equation fo potential energy is PE = mgh, where m is the mass of the ball, g is the pull of gravity (constant at 9.8), and h is the max height of the ball. What we do not have here is that height. We need to first solve for it using one-dimensional equations. What we have to know above all else, is that the final velocity of an object at its max height is always 0. That allows us to use the equation

[tex]v_f=v_0+at[/tex] where vf is the final velocity and v0 is the initial velocity. We will find out how long it takes for the object to reach that max height first and then use that time to find out what that max height is. Baby steps here...

0 = 21.5 + (-9.8)t and

-21.5 = -9.8t so

t = 2.19 seconds (Keep in mind that if I used the rules correctly for sig fig's, the answer you SHOULD get is not one shown, so I had to adjust the sig fig's and break the rules. But you know what they say about rules...)

Now we will use that time to find out the max height of the object in the equation

Δx = [tex]v_0t+\frac{1}{2}at^2[/tex] and filling in:

Δx = [tex]21.5(2.19)+\frac{1}{2}(-9.8)(2.19)^2[/tex] which simplifies down a bit to

Δx = 47.1 - 23.5 so

Δx = 23.6 meters.

Now we can plug that in to the PE equation to find the PE of the object:

PE = (.19)(9.8)(23.6) so

PE = 43.9 J

What are the messing forces that would make the object be in equilibrium?

Answers

Answer:

A) 20 N, B) 20 N, & C) 8 N

Explanation:

For the object to be in equilibrium, the upward forces must be equal to the downward forces and the forward forces must be equal to the backward forces.

1. Determination of A and B.

Forward forces = Backward forces

A + 10 + B = 25 + 25

A + 10 + B = 50

Collect like terms

A + B = 50 – 10

A + B = 40

Assume A and B to be equal. Thus, A is 20 N and B is 20 N.

2. Determination of C

Upward forces = Downward forces

C + 112 = 20 + 100

C + 112 = 120

Collect like terms

C = 120 – 112

C = 8 N

Thus, for the object to be in equilibrium, A must be 20 N, B must be 20 N and C must be 8N.

A ship is flying away from Earth at 0.9c (where c is the speed of light). A missile is fired that moves toward the Earth at a speed of 0.5c relative to the ship. How fast does the missile move relative to the Earth

Answers

Answer:

the required speed with which the missile move relative to the Earth is -0.727c

Explanation:

Given the data in the question;

relative velocity relation;

u' = u-v / 1 - [tex]\frac{uv}{c^2}[/tex]

so let V[tex]_B[/tex] represent the velocity as seen by an external reference frame; u=V[tex]_B[/tex]

and let V[tex]_A[/tex] represent the speed of the secondary reference frame; v=V[tex]_A[/tex]

hence, u' is the speed of B as seen by A

so

u' = V[tex]_B[/tex]-V[tex]_A[/tex] / 1 - [tex]\frac{V_BV_A}{c^2}[/tex]

now, given that; V[tex]_A[/tex] = 0.9c  and V[tex]_B[/tex]  = 0.5c

we substitute

u' = ( 0.5c - 0.9c ) / 1 - [tex]\frac{(0.5c)(0.9c)}{c^2}[/tex]

u' = ( 0.5c - 0.9c ) / 1 - [tex]\frac{c^2(0.5)(0.9)}{c^2}[/tex]

u' = ( 0.5c - 0.9c ) / 1 - (0.5 × 0.9)

u' = ( -0.4c ) / 1 - 0.45

u' = -0.4c / 0.55

u' = -0.727c

Therefore, the required speed with which the missile move relative to the Earth is -0.727c

N 4. Which of the following can cause a short circuit?

Answers

Answer:

pretty sure its A

Explanation:

please give brainliest if i'm correct

Answer:

A.

Explanation:

I have done this and that was correct

hope this helps

According to the model, when was the universe at its most dense?

A) During the Dark Ages where matter increased in mass.

B) Just before the Big Bang where all matter existed in a singularity.

C) During the nuclear fusion events, as the atoms become more massive.

D) Current day, as the number of galaxies, solar systems, and planets have increased.

Answers

it d cus you look at the gragh

Answer:

The Answer is D

Explanation:

Hope this helps!!!!

A car moves at a constant speed of 90km/h from a starting point. Another car moves at 70km/h after 2hours from the same starting point. if both cars moves in the same direction, after how many hours will the distance between the first car and the second car to be 40 km.​

Answers

Answer:

400

Explanation:

why the walls of tyres becomes warm as the car moves​

Answers

Answer:

the particles vibrate inside the tyre

Explanation:

as the car moves kinetic energy is transfered in the tyres which causes the particles to vibrate inside the tyre so the kinetic store is. transferred into thermal

The efficiency of a machine can be increased by

Answers

Explanation:

the efficiency of a machine can be increased by reducing the friction

please mark the brainliest

Reducing the friction

The lever of a car lift has an area of 0.2 meters squared, and the area of the lift under the car is 8
meters squared. If you push with a force of 3 newtons, how much force will be applied to the
car?

Answers

Answer:

THE ANSWER IS SOMETHING LIKE 55

A scenario where reaction time is important is when driving on the highway. During the delay between seeing an obstacle and reacting to avoid it (or to slam on the brakes!) you are still moving at full highway speed. Calculate how much distance you cover in meters before you start to put your foot on the brakes if you are travelling 65 miles per hour.

Answers

Answer:

66.83 meters

Explanation:

After a quick online search, it seems that scientists calculate the average reaction time of individuals as 2.3 seconds between seeing an obstacle and putting their foot on the brakes. Now that we have this reaction time we need to turn the miles/hour into meters/second.

1 mile = 1609.34 meters  (multiply these meters by 65)

65 miles = 104,607 meters

1 hour = 3600 seconds

Therefore the car was going 104,607 meters every 3600 seconds. Let's divide these to find the meters per second.

[tex]\frac{104,607}{3600} = \frac{29.0575 meters}{1 second}[/tex]

Now we simply multiply these meters by 2.3 seconds to find out the distance covered before the driver puts his/her foot on the brakes...

29.0575m * 2.3s = 66.83 meters

What is 3*10^-6 divided by 2.5*10^6 expressed in standard notation?​

Answers

Answer:

1.2 x 10^-12

Explanation:

3/2.5 x 10^-6/10^6

1.2 x 10^-6 x 10^-6

1.2 x 10^-12

The image shows the right-hand rule being used for a current-carrying wire.

An illustration with a right hand with fingers curled and thumb pointed up.

Which statement describes what the hand shows?

When the current flows down the wire, the magnetic field flows out on the left side of the wire and in on the right side of the wire.
When the current flows up the wire, the magnetic field flows out on the left side of the wire and in on the right side of the wire.
When the current flows down the wire, the magnetic field flows in on the left side of the wire and out on the right side of the wire.
When the current flows up the wire, the magnetic field flows in on the left side of the wire and out on the right side of the wire.

Answers

D PLS MARK ME AS BRAINLY

Answer:

The answer is (D): When the current flows up the wire, the magnetic field flows in on the left side of the wire and out on the right side of the wire.

Explanation:

Calculate the equivalent resistance

Answers

Not enough information

The latent heat of vaporization of water is roughly 10 times the latent heat of fusion of water. The amount of heat required to boil away 1 kg of water is __________ the amount of heat required to melt 1 kg of ice.

Answers

Answer:

The amount of heat required to boil away 1 kg of water is 10 times the amount of heat required to melt 1 kg of ice

Explanation:

let the latent heat of fusion of ice  = L

then, the latent heat of vaporization of water = 10L

The heat of fusion of 1 kg of ice = 1 x L = L

The heat of vaporization 1 kg of water = 1 x 10L = 10L

Therefore, the amount of heat required to boil away 1 kg of water is 10 times the amount of heat required to melt 1 kg of ice

eididjsmsisijsjsiakaksannnahshsjeejekekekkeie​

Answers

Answer:

ok

Explanation:

nskakkskdnsksmskzkksnsnxksjsjos

Calculate the period of a spring if it has a mass of 5 kg and a spring constant of 6 N/m

Answers

Answer: The period of a spring if it has a mass of 5 kg and a spring constant of 6 N/m is 5.73 sec.

Explanation:

Given: Mass = 5 kg

Spring constant = 6 N/m

Formula used to calculate period is as follows.

[tex]T = 2 \pi \sqrt\frac{m}{k}[/tex]

where,

T = period

m = mass

k = spring constant

Substitute the values into above formula as follows.

[tex]T = 2 \pi \sqrt\frac{m}{k}\\= 2 \times 3.14 \times \sqrt\frac{5}{6}\\= 5.73 s[/tex]

Thus, we can conclude that the period of a spring if it has a mass of 5 kg and a spring constant of 6 N/m is 5.73 sec.

Other Questions
Plant cell walls connect with other plant cell walls to create plantsA. organellesB. mega cellsC. vacuolesD. tissue Which line is parallel to line CD in this figure?line FAline FCline ADA figure with 4 lines. Line A F is the same distance from line C D at every point. Line A D intersects line A F at point A and line C D at point D. Line F C intersects line A F at point F and line C D at point C. water strider able to walk on the surface of the lake Will mark brainliest! Problem is in pic below, no links please. Thanks. The length of a rectangle is three times its width.The perimeter of the rectangle is 96 cm.Label the diagram with the correct length and width for the rectanglecmcm Brainliest, 35 points Do anyone know this question? What did cueca supposedly originate with?O the Spanish FandangoO an Asian danceO an Indonesian musicO a Russian traditional dance Define the term climate change and briefly explain why it is important Bacterial pathogens are grown in devices using a __________ developed to optimize the yield of the antigen while maintaining it's integrity. How can we avoid water pollution? Help yo girl out (again) thank you TvT Keeping the place of the digit 6 in the number 6350947 same, the smallest number obtained byrearranging other digits is When someone inhales large amounts of carbon monoxide, they can...A. suffer from carbon monoxide suffocation.B. get oxygen poisoning.C. get carbon monoxide poisoning. What is the main function of the endocrine system?A. secrete hormonesB. send nerve impulsesC. produce blood cellsD. produce DNA help meeeeeeeeeee!!! PLS HELP! If m(x) = 2x3 3x + 12, what is the value of m(-2)? Henry mixed salt and water together in a cup until he observed a clear solution. He measured the mass of the solution. Then he placed the cup outside for several sunny days during the summer. After a week, he observed that only solid salt remained in the cup and the mass had decreased. Henry concluded that a physical and chemical change occurred in this investigation.Which statements correctly defend or dispute his conclusion?He is correct. Dissolving salt in water is a physical change, but evaporating the water is a chemical change. Formation of a solid is evidence that a chemical change occurred.He is correct. Evaporation is a physical change, but dissolving salt in water is a chemical change. The change in mass is evidence that a chemical change occurred.He is incorrect. Dissolving salt in water and evaporation of the water are both physical changes. The reappearance of salt is evidence that the change was reversible by a physical change, so it could not be a chemical change.He is incorrect. Dissolving salt in water and evaporation of the water are both chemical Suppose that 0.10 of population is colourblind if 25of sample drown from this population find probability that at least 7 have coroblind Zwhat type of economic system of government in eastern Europe lead to the employer use of resources