Complete the following equation of nuclear transmutation.
23892U + 126C → 24498Cf + 6 ______
Complete the following equation of nuclear transmutation.
U + C → Cf + 6 ______
A) 1n
B) 0 e
C) 0 e
D) 1H
E) 0g 0 -1 +1 1 0

Answers

Answer 1

Answer:

Option A. 1 0n

Explanation:

Details on how to balanced the equation for the reaction given in the question above can be found in the attached photo.

Complete The Following Equation Of Nuclear Transmutation. 23892U + 126C 24498Cf + 6 ______ Complete The
Answer 2

The missing part of the transmutation equation as it has been shown is 1/o n. Option A

What is nuclear transmutation?

Nuclear transmutation is the process of shifting the number of protons in an atom's nucleus to change one element into another. Nuclear processes that change one atomic nucleus into another with a different atomic number are involved.

The production of nuclear energy, radioactive decay, and the creation of new isotopes for use in science and industry all depend on nuclear transmutation, a fundamental idea in nuclear physics.

We have the equation as;

238/92 U + 12/6 C  ----> 244/98 Cf + 6 1/0 n

Learn more about nuclear transmutation:https://brainly.com/question/30078683

#SPJ6


Related Questions

If one pound is the same as 454 grams, then convert the mass of 78 grams to pounds.

Answers

Answer:

0.17 lb

Explanation:

78 g * (1 lb/454 g)=0.17 lb

If you want additional help with chemistry or another subject for FREE, check out growthinyouth.org.

Which of the following happens to a molecule of an object when the object is heated? (1 point)

Answers

Answer:

They get more energy, so they vibrate!

Explanation:

The intermolecular forces present in CH 3NH 2 include which of the following? I. dipole-dipole II. ion-dipole III. dispersion IV. hydrogen bonding

Answers

Answer:

I. dipole-dipole

III. dispersion

IV. hydrogen bonding

Explanation:

Intermolecular forces are weak attraction force joining nonpolar and polar molecules together.

London Dispersion Forces are weak attraction force joining non-polar and polar molecules together. e.g O₂, H₂,N₂,Cl₂ and noble gases. The attractions here can be attributed to the fact that a non -polar molecule sometimes becomes polar because the constant motion of its electrons may lead to an uneven charge distribution at an instant.

Dispersion forces are the weakest of all electrical forces that act between atoms and molecules. The force is responsible for liquefaction or solidification of non-polar substances such as noble gas an halogen at low temperatures.

Dipole-Dipole Attractions are forces of attraction existing between polar molecules ( unsymmetrical molecules) i.e molecules that have permanent dipoles such as HCl, CH3NH2 . Such molecules line up such that the positive pole of one molecule attracts the negative pole of another.

Dipole - Dipole attractions are more stronger than the London dispersion forces but weaker than the attraction between full charges carried by ions in ionic crystal lattice.

Hydrogen Bonding is a dipole-dipole intermolecular attraction which occurs when hydrogen is covalently bonded to highly electronegative elements such as nitrogen, oxygen or fluorine. The highly electronegative elements have very strong affinity for electrons. Hence, they attracts the shared pair of electrons in the covalent bonds towards themselves, leaving a partial positive charge on the hydrogen atom and a partial negative charge on the electronegative atom ( nitrogen in the case of CH3NH2 ) . This attractive force is know as hydrogen bonding.

Answer:

The intermolecular forces present in CH_3NH_2 includes

II. (ion-dipole) and IV. (hydrogen bonding)

Explanation:

The intermolecular forces present in CH_3NH_2 includes II. (ion-dipole) and IV. (hydrogen bonding)

It is a polar molecule due to NH polar bond and it can form Hydrogen bond also due to NH bond.

Interaction will be dipole- dipole and Hydrogen dispersion forces can always be taken into account.

For more information on intermolecular forces, visit

https://brainly.com/subject/chemistry

what is ammonium nitrate

Answers

Answer:

Ammonium nitrate is a chemical compound with the chemical formula NH₄NO₃. It is a white crystalline solid consisting of ions of ammonium and nitrate.

what is the lewis structure for OP(N3)3​

Answers

Explanation:

this is the ans

hope this helps

Does the amount of methanol increase, decrease, or remain the same when an equilibrium mixture of reactants and products is subjected to the following changes?

a. the catalyst is removed
b. the temp is increased
c. the volume is decreased
d. helium is added
e. CO is added

Answers

Answer:

a. Methanol remains the same

b. Methanol decreases

c. Methanol increases

d. Methanol remains the same

e. Methanol increases

Explanation:

Methanol is produced by the reaction of carbon monoxide and hydrogen in the presence of a catalyst as follows; 2H2+CO→CH3OH.

a) The presence or absence of a catalyst makes no difference on the equilibrium position of the system hence the methanol remains constant.

b) The amount of methanol decreases because the equilibrium position shifts towards the left and more reactants are formed since the reaction is exothermic.

c) If the volume is decreased, there will be more methanol in the system because the equilibrium position will shift towards the right hand side.

d) Addition of helium gas has no effect on the equilibrium position since it does not participate in the reaction system.

e) if more CO is added the amount of methanol increases since the equilibrium position will shift towards the right hand side.

At standard temperature and pressure conditions, the volume of an ideal gas contained in a jar is 55.3 L. How many molecules are in the jar. This question is to be answered in scientific notation.(eg. 1.5 e5)

Answers

Answer:

1.49e24

Explanation:

Standars temperature and pressure are 273.15K and 1atm, respectively.

Using ideal gas law, we can find moles of an ideal gas if we know its pressure, temperature and volume as follows:

PV = nRT

PV / RT = n

Where P is pressure (1atm), V is volume (55.3L), R is gas constant (0.082atmL/molK), T is temperature (273.15K) and n moles of the ideal gas.

Replacing:

PV / RT = n

1atm*55.3L / 0.082atmL/molK*273.15K = n

2.47 moles = n

Now, the question is about the number of molecules in the jar. By definition, 1 mole = 6.022x10²³ molecules.

As we have 2.47 moles:

2.47 mol × (6.022x10²³ molecules / 1 mole) =

1.49x10²⁴ molecules that are in the jar

In scientific notation:

1.49e24

A student determines the value of the equilibrium constant to be 1.5297 x 107 for the following reaction: HBr(g) + 1/2 Cl2(g) --> HCl(g) +1/2 Br2(g) Based on this value of Keq, calculate the Gibbs free energy change for the reaction of 2.37 moles of HBr(g) at standard conditions at 298 K.

Answers

Answer:

[tex]\Delta G=-97.14kJ[/tex]

Explanation:

Hello,

In this case, the relationship between the equilibrium constant and the Gibbs free energy of reaction is:

[tex]\Delta G=-RTln(K)[/tex]

Hence, we compute it as required:

[tex]\Delta G=-8.314\frac{J}{mol\times K}*298K*ln(1.5297x10^7)\\\\\Delta G=-40.99kJ/mol[/tex]

And for 2.37 moles of hydrogen bromide, we obtain:

[tex]\Delta G=-40.99kJ/mol*2.37mol\\\\\Delta G=-97.14kJ[/tex]

Best regards.

Calculate the equilibrium constant K c for the following overall reaction: AgCl(s) + 2CN –(aq) Ag(CN) 2 –(aq) + Cl –(aq) For AgCl, K sp = 1.6 × 10 –10; for Ag(CN) 2 –, K f = 1.0 × 10 21.

Answers

Answer:

1.6x10¹¹ = Kc

Explanation:

For the reaction:

AgCl(s) + 2CN⁻(aq) ⇄ Ag(CN)₂⁻(aq) + Cl⁻(aq)

Kc is defined as:

Kc = [Ag(CN)₂⁻] [Cl⁻] / [CN⁻]²

Ksp of AgCl is:

AgCl(s) ⇄ Ag⁺(aq) + Cl⁻(aq)

Where Ksp is:

Ksp = [Ag⁺] [Cl⁻] = 1.6x10⁻¹⁰

In the same way, Kf of Ag(CN)₂⁻ is:

Ag⁺(aq) + 2CN⁻ ⇄ Ag(CN)₂⁻

Kf = [Ag(CN)₂⁻] / [CN⁻]² [Ag⁺] = 1.0x10²¹

The multiplication of Kf with Ksp gives:

[Ag⁺] [Cl⁻] *  [Ag(CN)₂⁻] / [CN⁻]² [Ag⁺] = Ksp*Kf

[Ag(CN)₂⁻] [Cl⁻] / [CN⁻]² = Ksp*Kf

Obtaining the same expression of the first reaction

That means Ksp*Kf = Kc

1.6x10⁻¹⁰*1.0x10²¹ = Kc

1.6x10¹¹ = Kc

We discussed the different types of intermolecular forces in this lesson, which can affect the boiling point of a substance.
1. Which of these has the highest boiling point?
A) Ar
B) Kr
C) Xe
D) Ne
2. Which substance has the highest boiling point?
A) CH4
B) He
C) HF
D) Cl2

Answers

Answer:

1, C, Xe 2, B,He

Explanation:

1, cause as u go down a group the boiling point increases.

2, boiling point of single element is greater than a compound

According to  periodic trends in periodic table boiling point increases down the  group and hence Xe has highest boiling point and more amount of heat is required to boil an element hence He has highest boiling point.

What is periodic table?

Periodic table is a tabular arrangement of elements in the form of a table. In the periodic table, elements are arranged according to the modern periodic law which states that the properties of elements are a periodic function of their atomic numbers.

It is called as periodic because properties repeat after regular intervals of atomic numbers . It is a tabular arrangement consisting of seven horizontal rows called periods and eighteen vertical columns called groups.

Elements present in the same group have same number of valence electrons and hence have similar properties while elements present in the same period show gradual variation in properties due to addition of one electron for each successive element in a period.

Learn more about periodic table,here:

https://brainly.com/question/11155928

#SPJ2

If 1 mol of a pure triglyceride is hydrolyzed to give 2 mol of RCOOH, 1 mol of R'COOH, and 1 mol of glycerol, which of the following compounds might be the triglyceride?
CHOC(O)R
A. CHOC(O)R
CHOC(O)R
CH,OC(O)R
B. CHOC(O)R
CH2OC(O)R
CHOC(O)R
C. CHOC(O)R
CHOC(O)R
CHOC(O)R
D. CHOC(O)R
CHOC(O)R

Answers

Answer:

The correct option is C.

Note the full question and structure of the moleculesis found in the attachment below.

Explanation:

Triglycerides or triacylglycerols are non-polar, hydrophobic lipid molecules composed of three fatty acids linked by ester bonds to a molecule of glycerol.

The fatty acids linked to the glycerol molecule are denoted by R and may be of the same kind or different. when the R group is the same, the R is attached in all the three positions for ester bonding in the glycerol molecule but when they are different are denoted by R, R' and R'' respectively.

During the hydrolysis of triglycerides, the three fatty acids molecules are obtained as well as a glycerol molecule.

From the question, when 1 mole of the triglyceride is hydrolysed, 2 moles of RCOOH, 1 mole of R'COOH and 1 mole of glycerol is obtained. The triglyceride must then be composed of two fatty acids which are the same denoted by R, and a different fatty acid molecule denoted by R'.

The correct option therefore, is C

Which of these species would you expect to have the lowest standard entropy (S°)?

a. CH4(g)
b. H2O(g)
c. NH3(g)
d. HF(g)

Answers

Answer:

d. HF(g)

Explanation:

Hello,

In this case, the standard entropy S° could be predicted by looking at the amount of bonds the compound has, thus, the fewer the number bonds, the lower the standard entropy, it means that d. HF(g) has lowest value as it has one bond only whereas methane has four bonds, water two bonds and ammonia three bonds.

Best regards.

A strand of messenger RNA coding the synthesis of a protein with 146 amino acids must have a string of___________ bases along its backbone. a. 146 b. 292 c. 438 d. 20 e. 3

Answers

Answer:

Since the relationship between amino acid and codon bases would be the values of 3 nitrogenous bases per 1 amino acid.

knowing this relationship what you would do is simply multiply 146 x 3 to find the number of codon bases which would be C. 438.

A strand of messenger RNA coding the synthesis of a protein with 146 amino acids must have a string of 438 bases along its backbone and the correct option is option C.

What is messenger RNA?

mRNA or messenger RNA is a single stranded RNA molecule. It is complementary to the DNA and carries genetic information present in the DNA. It is translated to form proteins. The genetic codes (triplet) present on mRNA get translated to amino acids, giving rise to the functional product of a gene.

So mRNA really is a form of nucleic acid, which helps the human genome which is coded in DNA to be read by the cellular machinery. mRNA is actually the translated form of DNA that the machinery can recognize and use to assemble amino acids into proteins.

Each strand has 3 bases, so 146 × 3 = 438 bases

Therefore, A strand of messenger RNA coding the synthesis of a protein with 146 amino acids must have a string of 438 bases along its backbone and the correct option is option C.

Learn more about messenger RNA, here:

https://brainly.com/question/15837874

#SPJ3

Testbank Question 47 Consider the molecular orbital model of benzene. In the ground state how many molecular orbitals are filled with electrons?

Answers

Answer:

There are fifteen molecular orbitals in benzene filled with electrons.

Explanation:

Benzene is an aromatic compound. Let us consider the number of bonding molecular orbitals that should be present in the molecule;

There are 6 C-C σ bonds, these will occupy six bonding molecular orbitals filled with electrons.

There are 6 C-H σ bonds, these will occupy another six molecular orbitals filled with electrons

The are 3 C=C π bonds., these will occupy three bonding molecular pi orbitals.

All these bring the total number of bonding molecular orbitals filled with electrons to fifteen bonding molecular orbitals.

The complex ion Fe(CN)63- is paramagnetic with one unpaired electron. The complex ion Fe(SCN)63- has five unpaired electrons. Where does SCN- lie in the spectrochemical series with respect to CN-?

Answers

Answer:

SCN- is a weak field ligand while CN- is a strong field ligand

Explanation:

The spectrochemical series is an arrangement of ligands according to their magnitude of crystal field splitting. Ligands that cause only a small degree of crystal field splitting are called weak field ligands while ligands that cause large crystal field splitting are called strong field ligands.

Strong field ligands often lead to the formation of low spin complexes with the least number of unpaired electrons while high spin complexes are formed by weak field ligands.

CN- is a strong field ligand as it lies towards the right hand side of the spectrochemical series.

SCN- is a weak field ligand hence it forms a high spin complex having the maximum number of unpaired electrons for Fe^3+, hence the answer.

SCN⁻ lies in the lower (weak field) region of the spectrochemical series while CN⁻ lies in the higher (stronger field) region.

CN⁻ is a strong field ligand with a large splitting constant, and it is high up in the spectrochemical series.

Conversely, SCN⁻ is a weak field ligand with a low splitting constant, and it is lower in the spectrochemical series.

Hence, SCN⁻ lies in the lower (weak field) region of the spectrochemical series while CN⁻ lies in the higher (stronger field) region.

Learn more here: https://brainly.com/question/14658134

Which of the following goes through the largest volumetric change? Question 4 options: A) Water when it's heated from 1oC to 99oC B) Water when it freezes into ice C) Ice when it melts into water D) Water when it boils into steam

Answers

Answer:

Water when it freezes into ice

Explanation:

Most liquids expand when heated and contract when cooled, water behaves in an anomalous fashion. Water rather expands when cooled and contracts when heated.

Water usually contracts on cooling from any temperature until 4°C, after 4°C, the water begins to expand rapidly. Hence water has its least volume at 4°C and increases rapidly afterwards.

Thus the largest volume change for water occurs during freezing since it expands when cooled.

In the laboratory, a general chemistry student measured the pH of a 0.425 M aqueous solution of benzoic acid, C6H5COOH to be 2.270.

Use the information she obtained to determine the Ka for this acid.

Ka(experiment) = _____

Answers

Answer:

Ka = 6.87x10⁻⁵

Explanation:

The equilibrium of benzoic acid in water is:

C₆H₅COOH(aq) + H₂O(l) ⇄ C₆H₅COO⁻(aq) + H₃O⁺(aq)

The equilibrium constant, Ka, is:

Ka = [C₆H₅COO⁻] [H₃O⁺] / [C₆H₅COOH]

The initial concentration of benzoic acid is 0.425M. In equilibrium its concentration is 0.425M - X and [C₆H₅COO⁻] [H₃O⁺] = X.

X is the reaction coordinate. How many acid produce C₆H₅COO⁻ and H₃O⁺ until reach equilibrium.

Concentrations in equilibrium are:

[C₆H₅COOH] = 0.425M - X[C₆H₅COO⁻] = X [H₃O⁺] = X

pH is defined as -log [H₃O⁺]. As pH = 2.270

2.270 = -log [H₃O⁺]

10^-2.270 = [H₃O⁺]

5.37x10⁻³M = [H₃O⁺] = X.

Replacing, concentrations in equilibrium are:

[C₆H₅COOH] = 0.425M - 5.37x10⁻³M = 0.4196M

[C₆H₅COO⁻] = 5.37x10⁻³M

[H₃O⁺] = 5.37x10⁻³M

Ka = [5.37x10⁻³M] [5.37x10⁻³M] / [0.4196M]

Ka = 6.87x10⁻⁵

If the heat of combustion for a specific compound is −1320.0 kJ/mol and its molar mass is 30.55 g/mol, how many grams of this compound must you burn to release 617.30 kJ of heat?

Answers

Answer:

14.297 g

Explanation:

From the question;

1 mo of the compound requires 1320.0 kJ

From the molar mass;

1 ml of the compound weighs 30.55g

How many grams requires 617.30kJ?

1 ml = 1320

x mol = 617.30

x = 617.30 / 1320

x = 0.468 mol

But 1 mol = 30.55

0.468 mol = x

x = 14.297 g

The gas with an initial volume of 24.0 L at a pressure of 565 torr is compressed until the volume is 16.0 L. What is the final pressure of the gas, assuming the temperature and amount of gas does not change

Answers

Answer:

848 torr  

Explanation:

The only variables are the pressure and the volume, so we can use Boyle's Law.

p₁V₁ = p₂V₂

Data:

p₁ = 565 torr; V₁ = 24.0 L

p₂ = ?;            V₂ =  16.0 L

Calculations:

[tex]\begin{array}{rcl}p_{1}V_{1} & = & p_{2}V_{2}\\\text{565 torr} \times \text{24.0 L} & = & p_{2} \times \text{16.0 L}\\\text{13 560 torr} & = & 16.0p_{2}\\p_{2} & = & \dfrac{\text{13 560 torr}}{16.0}\\\\& = &\textbf{848 torr}\\\end{array}\\\text{The final pressure of the gas is $\large \boxed{\textbf{848 torr}}$}[/tex]

Experiment:
Part I: Voltaic Cell
Assume that you are provided with the following materials:
Strips of metallic zinc, metallic copper, metallic iron
1M aqueous solutions of ZnSO4, CuSO4, FeSO4, and aqueous iodine (I2)
Other required materials to create Voltaic cells such as beakers, porous containers, graphite rods, a voltmeter, and a few wires with alligator clips.
In this modified version of the lab, after thoroughly studying the lab hand out and watching the videos, identify 4 different combinations of Voltaic cells that are possible to be created with the above materials.
For each cell created, include the following details.
Which electrode was the anode and which was the Cathode?
The anode and cathode half reactions.
Balanced equation for each cell you propose to construct.
Calculated Eocell
Short hand notation (line notation) for each cell (be sure to include the inactive electrode if needed)

Answers

Answer:

Here are four possible voltaic cells.  

Explanation:

1. Standard reduction potentials

                                         E°/V

I₂(s) + 2e⁻ ⟶ 2I⁻(aq);        0.54

Cu²⁺(aq) + 2e⁻ ⟶ Cu(s);   0.34

Fe²⁺(aq) + 2e⁻ ⟶ Fe(s);   -0.41

Zn²⁺(aq) + 2e⁻ ⟶ Zn(s);   -0.76

2. Possible Voltaic cells

(a) Zn/I₂

                                                                       E°/V

Anode:     Zn(s) ⟶ Zn²⁺(aq) + 2e⁻;                 0.76

Cathode:  I₂(s) + 2e⁻ ⟶ 2I⁻(aq);                     0.54

Cell:         Zn(s) +  I₂(s) ⟶  Zn²⁺(aq) + 2I⁻(aq); 1.30

Zn(s)|Zn²⁺(aq)∥I⁻(aq)|I₂(s)|C(s, graphite)

Zn is the anode; graphite is the cathode.

(b) Zn/Cu²⁺

                                                                          E°/V

Anode:     Zn(s) ⟶ Zn²⁺(aq) + 2e⁻;                    0.76

Cathode:  Cu²⁺(aq) + 2e⁻ ⟶ Cu(s);                  0.34

Cell:          Zn(s) +  Cu²⁺(s) ⟶  Zn²⁺(aq) + Cu(s); 1.10

Zn(s)|Zn²⁺(aq)∥Cu²⁺(aq)|Cu(s)

Zn is the anode; Cu is the cathode.

(c) Zn/Fe²⁺

                                                                            E°/V

Anode:     Zn(s) ⟶ Zn²⁺(aq) + 2e⁻;                     0.76

Cathode:  Fe²⁺(aq) + 2e⁻ ⟶ Fe(s);                    -0.41

Cell:          Zn(s) +  Fe²⁺(s) ⟶  Zn²⁺(aq) + Fe(s);  0.35

Zn(s)|Zn²⁺(aq)∥Fe²⁺(aq)|Fe(s)

Zn is the anode; Fe is the cathode.

(d) Fe/I₂

                                                                         E°/V

Anode:     Fe(s) ⟶ Fe²⁺(aq) + 2e⁻;                   0.41

Cathode: I₂(s) + 2e⁻ ⟶ 2I⁻(aq);                     0.54

Cell:         Zn(s) +  I₂(s) ⟶  Zn²⁺(aq) + 2I⁻(aq); 0.95

Fe(s)|Fe²⁺(aq)∥I⁻(aq)|I₂(s)|C(s, graphite)

Fe is the anode; graphite is the cathode.

 

105/22 • (1.251 - 0.620)=

Answers

Answer:

105/22*(1.251-0.620)

105/22*0.631

4.772*0.631

3.011132

Hope it helps

Answer:

3.0

Explanation:

First, complete the operations inside the parenthesis according to the normal rules for significant figures. Because there are subsequent calculations, keep at least one extra significant figure when possible: (4.7727) × (0.631).

The final product will be rounded to two significant figures because it can’t be more precise than the least precise number in the problem, 22. The final product is 3.0.

How are Math, Physics, Chemistry, and Biology all related?

Answers

Answer:

- you have to do maths in all 3

- atoms make up everything even parts of a cel and theyre studied in chem and physics

- chemistry is used in biology by finding out what different substances are eg cytoplasm in a cell

Nitric oxide (NO) can be formed from nitrogen, hydrogen and oxygen in two steps. In the first step, nitrogen and hydrogen react to form ammonia: (g) (g) (g) In the second step, ammonia and oxygen react to form nitric oxide and water: (g) (g) (g) (g) Calculate the net change in enthalpy for the formation of one mole of nitric oxide from nitrogen, hydrogen and oxygen from these reactions. Round your answer to the nearest .

Answers

Answer: [tex]\Delta H = -272.25kJ[/tex] for 1 mole of NO.

Explanation: Hess' Law of Constant Summation or Hess' Law states that the total enthalpy change of a reaction with multiple stages is the sum of the enthalpies of all the changes.

For this question:

1) [tex]N_{2}_{(g)} + 3H_{2}_{(g)}[/tex] => [tex]2NH_{3}_{(g)}[/tex]       [tex]\Delta H=-92kJ[/tex]

2) [tex]4NH_{3}_{(g)}+5O_{2}_{(g)}[/tex] => [tex]4NO_{(g)}+6H_{2}O_{(g)}[/tex]       [tex]\Delta H=-905kJ[/tex]

Amonia ([tex]NH_{3}_{(g)}[/tex]) appeares as product in the first equation and as reagent in the 2 reaction, so when adding both, there is no need to inverse reactions. However, in the 2nd, there are 4 moles of that molecule, so to cancel it, you have to multiply by 2 the first chemical equation and enthalpy:

[tex]2N_{2}_{(g)} + 6H_{2}_{(g)}[/tex] => [tex]4NH_{3}_{(g)}[/tex]     [tex]\Delta H=-184kJ[/tex]

Now, adding them:

[tex]2N_{2}_{(g)} + 6H_{2}_{(g)}[/tex] => [tex]4NH_{3}_{(g)}[/tex]     [tex]\Delta H=-184kJ[/tex]  

[tex]4NH_{3}_{(g)}+5O_{2}_{(g)}[/tex] => [tex]4NO_{(g)}+6H_{2}O_{(g)}[/tex]       [tex]\Delta H=-905kJ[/tex]

[tex]2N_{2}_{(g)}+6H_{2}_{(g)}+5O_{2}_{(g)}=>4NO_{(g)}+6H_{2}O_{(g)}[/tex]  [tex]\Delta H = -185-905[/tex]

[tex]2N_{2}_{(g)}+6H_{2}_{(g)}+5O_{2}_{(g)}=>4NO_{(g)}+6H_{2}O_{(g)}[/tex]  [tex]\Delta H = -1089kJ[/tex]

Note net enthalpy is for the formation of 4 moles of nitric oxide.

For 1 mole:

[tex]\Delta H = \frac{-1089}{4}[/tex]

[tex]\Delta H=-272.25kJ[/tex]

To form 1 mol of nitric oxide from nitrogen, oxygen and hydrogen, net change in enthalpy is [tex]\Delta H=-272.25kJ[/tex].

Calculate the amount of heat needed to melt of ice () and bring it to a temperature of . Round your answer to significant digits. Also, be sure your answer contains a unit symbol.

Answers

Answer:

your answer is given below

Explanation:

Take it stepwise, and you are going to have to look up the various heat values.

You have 36.5grams of ice, presumably at 0C.  You will need to add heat to take the ice at 0 C to water at 0 C. (Latent heat of melting)  Then you add in a different heat value to take the water at 0 C to water at 82.3 C. (Specific heat of water)

Add the two heat amounts together.

According to specific heat capacity, to calculate the amount of heat needed to melt ice given mass of ices is multiplied by specific heat of ice and the temperature change which it undergoes.

What is specific heat capacity?

Specific heat capacity is defined as the amount of energy required to raise the temperature of one gram of substance by one degree Celsius. It has units of calories or joules per gram per degree Celsius.

It varies with temperature and is different for each state of matter. Water in the liquid form has the highest specific heat capacity among all common substances .Specific heat capacity of a substance is infinite as it undergoes phase transition ,it is highest for gases and can rise if the gas is allowed to expand.

It is given by the formula ,

Q=mcΔT

Learn more about specific heat capacity,here:

https://brainly.com/question/28941910

#SPJ5

The decomposition of ethylene oxide(CH₂)₂O(g) → CH₄(g) + CO(g)is a first order reaction with a half-life of 58.0 min at 652 K. The activation energy of the reaction is 218 kJ/mol. Calculate the half-life at 629 K.

Answers

Answer:

Half-life at 629K = 252.4min

Explanation:

Using Arrhenius equation:

[tex]ln\frac{K_1}{K_2} = \frac{Ea}{R} (\frac{1}{T_2} -\frac{1}{T_1})[/tex]

And as Half-life in a first order reaction is:

[tex]t_{1/2}=\frac{ln2}{K}[/tex]

We can convert the half-life of 58.0min to know K₁ adn replacing in Arrhenius equation find half-life at 629K:

[tex]58.0min=\frac{ln2}{K}[/tex]

K = 0.01195min⁻¹ = K₁

[tex]ln\frac{0.01195min^{-1}}{K_2} = \frac{218kJ/mol}{8.314x10^{-3}kJ/molK} (\frac{1}{629K} -\frac{1}{652K})[/tex]

[tex]ln\frac{0.01195min^{-1}}{K_2} =1.47[/tex]

[tex]\frac{0.01195min^{-1}}{K_2} =4.35[/tex]

K₂ = 2.75x10⁻³ min⁻¹

And, replacing again in Half-life expression:

[tex]t_{1/2}=\frac{ln2}{2.75x10^{-3}min^{-1}}[/tex]

Half-life at 629K = 252.4min

The half-life of the first-order reaction of ethylene oxide decomposition at 629 K is 251.1 min when the half-life at 652 K is 58.0 min and the activation energy is 218 kJ/mol.   

The activation energy of a reaction is related to its rate constant as follows:  

[tex] k = Ae^{-\frac{E_{a}}{RT}} [/tex]   (1)

Where:

k: is the rate constant A: is the pre-exponential factor[tex]E_{a}[/tex]: is the activation energy of the reaction = 218 kJ/mol R: is the gas constant = 8.314 J/(K*mol)T: is the temperature  

   

We can find the rate constant of the first-order reaction at 652 K with the half-life as follows:

[tex]k_{652} = \frac{ln(2)}{t_{1/2}_{(652)}}[/tex]   (2)

Where [tex]t_{1/2}_{(652)}[/tex] is the half-life at 652 K= 58.0 min

Hence, the rate constant at 652 K is:                            

[tex] k_{652} = \frac{ln(2)}{58.0 min} = 0.012 min^{-1} [/tex]

Now, from equation (1) we can find the pre-exponential factor (A):

[tex]A = \frac{k_{652}}{e^{(-\frac{E_{a}}{RT_{1}})}} = \frac{0.012 \:min{-1}}{e^{(-\frac{218\cdot 10^{3} \:J/mol}{8.314 \:J/(K*mol)*652 \:K})}} = 3.51 \cdot 10^{15} min^{-1}[/tex]  

With the pre-exponential factor we can calculate the rate constant at 629 K (eq 1):

[tex]k_{629} = 3.51 \cdot 10^{15} min^{-1}*e^{(-\frac{218 \cdot 10^{3} J/mol}{8.314 J/(K*mol)*629 K})} = 2.76 \cdot 10^{-3} min^{-1}[/tex]

Finally, the half-life at 629 K is (eq 2):

[tex] t_{1/2}_{629} = \frac{ln(2)}{2.76\cdot 10^{-3} min^{-1}} = 251.1 min [/tex]

Therefore, the half-life at 629 K is 251.1 min.

Find more about activation energy here:

https://brainly.com/question/14725142?referrer=searchResultshttps://brainly.com/question/11334504?referrer=searchResults          

I hope it helps you!

11mg of cyanide per kilogram of body weight is lethal for 50% of domestic chickens. How many grams per kilogram of body weight is a lethal dose for 50% of domestic chickens?

Answers

Answer:

[tex]0.033g[/tex]

Explanation:

Hello,

In this case, since 11 mg per kilogram of body weight has the given lethality, the mg that turn out lethal for a chicken weighting 3 kg is computed by using a rule of three:

[tex]11mg\longrightarrow 1kg\\\\x\ \ \ \ \ \ \longrightarrow 3kg[/tex]

Thus, we obtain:

[tex]x=\frac{3kg*11mg}{1kg}\\ \\x=33mg[/tex]

That in grams is:

[tex]=33mg*\frac{1g}{1000mg} \\\\=0.033g[/tex]

Regards.

Calculate the pH of a solution formed by mixing 250.0 mL of 0.15 M NH4Cl with 200.0 mL of 0.12 M NH3. The Kb for NH3 is 1.8 × 10-5.

Answers

Answer:

The pH of the solution is 9.06.

Explanation:

The reaction of the dissociation of NH₃ in water is:

NH₃(aq) + H₂O(l)  ⇄  NH₄⁺(aq) + OH⁻(aq)     (1)

[NH₃] - x                     [NH₄⁺] + x     x  

The concentration of NH₃ and NH₄⁺ is:

[tex] [NH_{3}] = \frac{n_{NH_{3}}}{V_{T}} = \frac{C_{i}_{(NH_{3})}*Vi_{NH_{3}}}{V_{NH_{3}} + V_{NH_{4}^{+}}} = \frac{0.12 M*0.2 L}{0.2 L + 0.25 L} = 0.053 M [/tex]

[tex] [NH_{4}^{+}] = \frac{C_{i}_{(NH_{4}^{+})*V_{NH_{4}^{+}}}}{V_{NH_{3}} + V_{NH_{4}^{+}}} = \frac{0.15 M*0.25 L}{0.2 L + 0.25 L} = 0.083 M [/tex]

From equation (1) we have:

[tex]Kb = \frac{[NH_{4}^{+}][OH^{-}]}{[NH_{3}]}[/tex]

[tex] 1.8 \cdot 10^{-5} = \frac{(0.083 + x)*x}{0.053 - x} [/tex]

[tex] 1.8 \cdot 10^{-5}(0.053 - x) - (0.083 + x)*x = 0 [/tex]

By solving the above equation for x we have:

x =  1.15x10⁻⁵ = [OH⁻]

The pH of the solution is:

[tex] pOH = -log([OH^{-}]) = -log(1.15 \cdot 10^{-5}) = 4.94 [/tex]

[tex] pH = 14 - pOH = 14 - 4.94 = 9.06 [/tex]

Therefore, the pH of the solution is 9.06.

I hope it helps you!

Beginning with Na, record the number of energy levels, number of protons, and atomic radius for each element in period 3.

Answers

Answer:

Sodium, magnesium, aluminium, silicon, phosphorus, sulfur, chlorine, and argon are the elements of third period.

Explanation:

There are three energy levels in sodium atom. It has 11 electrons revolving around the nucleus. the atomic radius of sodium atom is 227 ppm. Magnesium, aluminium, silicon, phosphorus, sulfur, chlorine, and argon has also three energy levels like sodium because all these elements belongs to third period. There are 12 electrons present in magnesium, 13 in aluminium, 14 in silicon, 15 in phosphorus, 16 in sulfur, 17 in chlorine, and 18 electrons in argon. The atomic radius of magnesium atom is 173 ppm.  The atomic radius of aluminium atom is 143 ppm.  The atomic radius of silicon atom is 111 ppm.  The atomic radius of phosphorus atom is 98 ppm.  The atomic radius of sulfur atom is 87 ppm. The atomic radius of chlorine atom is 79 ppm and the atomic radius of argon atom is 71 ppm.

2NH3 → N2 + 3H2 If 2.22 moles of ammonia (NH3) decomposes according to the reaction shown, how many moles of hydrogen (H2) are formed? A) 2.22 moles of H2 B) 1.11 moles of H2 C) 3.33 moles of H2 D) 6.66 moles of H2

Answers

Answer:

C

Explanation:

According to the mole ratio, using 2NH3 will give you 3H2. Which means in order to find the moles of H2 you would only need to divide 2 and multiply 3 to get the amount of moles of H2 produced.

Answer:

I think it's C

Explanation:

Please, tell me if I'm incorrect.

Determine which set of properties correctly describes copper (Cu)?
A. Giant structure, conducts electricity, high melting point, soluble in water, malleable
B. Malleable, brittle, soluble in oil or gasoline, high melting point, simple structure
C. Ionic lattice, conducts electricity, soluble in oil or gasoline, low melting point, ductile
D. Malleable, conducts electricity, high melting point, giant structure, metallic lattice

Answers

Answer:

D. Malleable, conducts electricity, high melting point, giant structure, metallic lattice

Explanation:

Copper is a metal with an atomic number of 29. This metal is soft and reddish in color which explains why it is very malleable(beaten to form various shapes without breaking).

All metals are good conductors of electricity including copper which is also a metal. Metals generally are insoluble in water. Copper also has a high melting point which is a characteristic of metals due to their giant structure and metallic lattice which makes it difficult to be broken down.

Other Questions
What is the solution to X+9 = 24? A. x = 33B. x= 15C. x= 18D. x= 9 Determine whether the normal sampling distribution can be used. The claim is p < 0.015 and the sample size is n A ship drops its anchor into the water and creates a circular ripple. The radius of the ripple increases ata rate of 50 cm/s. If the origin is used as the location where the anchor was dropped into the water.Find the equation for the circle 12 seconds after the anchor is droppedPlease write all the steps its for my summer school test and I need it done quick as possible thanks. A bag of chocolates weighs 70 grams. If the weight of the bag increases by 25% find the new weight of the bag. Solve the equation 7b-27=8(6+4b) Which of the following is the correct factorization of 64x + 8? (2x + 4)(4x - 8x + 16) (4x + 2)(16x - 8x + 4) (4x - 2)(16x + 8x + 4) (2x - 4)(4x + 8x + 16) An experimental probability is ______ likely to approach the theoretical probability if the number of trials simulated is larger. A. as B. more C. less D. not This rectangular wall is to be painted. Paint is sold in tins. How much does it cost to paint the wall? if it can be assumed that the population is normal, then what is the probability that one man sampled from this population has a weight between 72kg and 88kg Will a precipitate (ppt) form when 300. mL of 2.0 10 5 M AgNO 3 are added to 200. mL of 2.5 10 9 M NaI? Answer yes or no, and identify the precipitate if there is one solve for k k + (2 - 5k)(6) = k + 12 Choose only one correct option. Explanation needed. Which is the correct definition of metallic bonding? Select one: a. an array of positive ions in a sea of electrons b. complete transfer of valence electrons c. atoms share electrons to to be stable Please help me!!Which of the following functions shows the linear parent function, Fx) = X,shifted right?5F(x) = x5A. G(x) = x + 2B. G(x) = 4xC. G(x) = x - 9D. G(x) = -x A zoo train ride costs $4 per adult and $1 per child. On a certain day, the total number of adults (a) and children (c) who took the ride was 27, and the total money collected was $60. What was the number of children and the number of adults who took the train ride that day, and which pair of equations can be solved to find the numbers? 1) 11 children and 16 adults Equation 1: a + c = 27 Equation 2: 4a + c = 60 2) 16 children and 11 adults Equation 1: a + c = 27 Equation 2: 4a + c = 60 3) 11 children and 16 adults Equation 1: a + c = 27 Equation 2: 4a c = 60 4) 16 children and 11 adults Equation 1: a + c = 27 Equation 2: 4a c = 60 Two birds sit at the top of two different trees. The distance between the first bird and a birdwatcher on the ground is 32 feet. The distance between the birdwatcher and the second bird is 45 feet. A triangle is created from point Bird Watcher, point First Bird, and point Second Bird. Angle First Bird is a right angle, and angle Second Bird measures x degrees. What is the angle measure, or angle of depression, between this bird and the birdwatcher? Round your answer to the nearest tenth. 35.4 44.7 45.3 54.6 State three things a person personal clothing tells about them source of corruption Effective I messages Include: A 58 g firecracker is at rest at the origin when it explodes into three pieces. The first, with mass 12 g , moves along the x axis at 37 m/s in the positive direction. The second, with mass 22 g , moves along the y axis at 34 m/s in the positive direction. Find the velocity of third piece.