Answer:
(a) 1.341
(b) -2.539
(c) -2.160 and 2.160
Step-by-step explanation:
(a) We have to find the critical value(s) for a right-tailed test of a population mean at the alpha = 0.10 level of significance with 15 degrees of freedom.
Since the degrees of freedom are included here, so we will use t table here for a population mean test.
In the table there are two values given, one is the degrees of freedom and another is the value of P.
P is the level of significance at which the critical values are calculated.
So, here the degrees of freedom (n - 1) = 15 and the level of significance for a right-tailed test is 0.10, i.e. P = 10%
Now, looking in the t table with P = 10% and [tex]\nu[/tex] = 15, we get the critical value of 1.341.
(b) We have to find the critical value(s) for a left-tailed test of a population mean at the alpha = 0.01 based on a sample size of n = 20.
Since the degrees of freedom are included here, so we will use t table here for a population mean test.
In the table there are two values given, one is the degrees of freedom and another is the value of P.
P is the level of significance at which the critical values are calculated.
So, here the degrees of freedom (n - 1) = 20 - 1 = 19 and the level of significance for a left-tailed test is 0.01, i.e. P = 1%
Now, looking in the t table with P = 1% and [tex]\nu[/tex] = 19, we get the critical value of 2.539. But since it is a left-tailed test, so the critical value will be -2.539.
(c) We have to find the critical value(s) for a two-tailed test of a population mean at the alpha = 0.05 level of significance based on a sample size of n = 14.
Since the degrees of freedom are included here, so we will use t table here for a population mean test.
In the table there are two values given, one is the degrees of freedom and another is the value of P.
P is the level of significance at which the critical values are calculated.
So, here the degrees of freedom (n - 1) = 14 - 1 = 13 and the level of significance for a two-tailed test is [tex]\frac{0.05}{2}[/tex] is 0.025, i.e. P = 2.5%.
Now, looking in the t table with P = 2.5% and [tex]\nu[/tex] = 13, we get the critical value of -2.160 and 2.160 for a two-tailed test.
In this triangle, which of the following is true?
We know that this is a right triangle, so one of the sides has to be 90 (indicated by the square on the corner) The angles of all triangles must add to exactly 180. Subtract 90 and 35 from 180
If we do that, we get 55. We know that the unknown angle is 55 now. Now, it asks us for b. We can pythagoras theorem which states that (a^2 + b^2 = c^2) We already know c (c is 20) It does not tell us 2 of the sides but we do know that the answer is either B or D.
The side opposite of 90* should be the largest. The size opposite of 55 would be the second largest one. The side opposite of 35 would be the smallest one. Using pythagoras theorem again, I can try plugging in both 11.47 and 16.38 with c^2 - b^2 = a^2
11.47:
400 - 132 =268 (sq root now = 16.37) this would mean that A is larger than B. B should be larger than A. Try the other one
16.37:
400 -268 = 132 (sq root = 16.37) this would mean that B is larger than A which is what we want.
Thus, 16.37 = B and the last option would be correct (D)
Hope this helps, give an honest rating for me please
I need someone to answer this question for me correctly please?
Answer:
[tex]\boxed{x \leq -4}[/tex]
Step-by-step explanation:
Hey there!
Well to solve for x in,
16x - 7 ≤ -71
We need to single out x.
16x - 7 ≤ -71
+7 to both sides
16x ≤ -64
Divide both sides by 16
x ≤ -4
Hope this helps :)
Answer:
x ≤ -4
I hope this helps!
(x-2) is a factor of x^2-3x^2+kx+14. The value of k is?
Answer:
k = 5
Step-by-step explanation:
I will assume that your polynomial is
x^2 - 3x^2 + kx + 14
If x - a is a factor of this polynomial, then a is a root.
Use synthetic division to divide (x - 2) into x^2 - 3x^2 + kx + 14:
2 / 1 -3 k 14
2 -2 2k - 4
-------------------------------------
1 -1 (k - 2) 2k - 10
If 2 is a root (if x - 2 is a factor), then the remainder must be zero.
Setting 2k - 10 = to zero, we get k = 5.
The value of k is 5 and the polynomial is x^2 - 3x^2 + 5x + 14
Mary subscribed to a cell phone plan with a $50 monthly fee and a charge of $0.25 for each minute she talks. Find an equation for the total cost for her plan when she uses minutes.
Answer:
c = 0.25m + 50
Step-by-step explanation:
Let c = cost; let m = number of minutes.
c = 0.25m + 50
Subtract 5p + 8q from the sum of 5p + 4q and – 9p + 69.
Answer:
-9p -4q + 69
Step-by-step explanation:
5p +4q + (-9p +69)
=> 5p + 4q -9p +69
=> -4p +4q +69
Now, we need to subtract 5p +8q from -4p + 4q +69
=> -4p +4q +69 - (5p +8q)
=> -4p + 4q +69 - 5p -8q
=> -9p -4q + 69
Decide all proper subsets of A { 8 ,7 ,6 ,5 ,4 ,3 ,2 ,1} = A 1- { 4 ,3 ,2 ,1} 2- { } 3- { 9 ,8 ,7 } 4- { 11 ,2} 5- { 5 }
Answer:
A, E
Step-by-step explanation:
There should be 2^8-1 proper subsets of A. Its every one besides { }
A report states that the mean yearly salary offer for students graduating with a degree in accounting is $48,722. Suppose that a random sample of 50 accounting graduates at a large university who received job offers resulted in a mean offer of $49,870 and a standard deviation of $3900. Do the sample data provide strong support for the claim that the mean salary offer for accounting graduates of this university is higher than the national average of $48,722? Test the relevant hypotheses using α = 0.05. State your conclusion.A. Reject H0. We do not have convincing evidence that the mean salary offer for accounting graduates of this university is higher than the national average of $48,722.B. Do not reject H0. We do not have convincing evidence that the mean salary offer for accounting graduates of this university is higher than the national average of $48,722.C. Reject H0. We have convincing evidence that the mean salary offer for accounting graduates of this university is higher than the national average of $48,722.D. Do not reject H0. We have convincing evidence that the mean salary offer for accounting graduates of this university is higher than the national average of $48,722.
Answer:
Option C - Reject H0. We have convincing evidence that the mean salary offer for accounting graduates of this university is higher than the national average of $48,722.
Step-by-step explanation:
First of all let's define the hypothesis;
Null hypothesis;H0; μ = $48,722
Alternative hypothesis;Ha; μ > $48,722
Now, let's find the test statistic for the z-score. Formula is;
z = (x' - μ)/(σ/√n)
We are given;
x' = 48,722
μ = 49,870
σ = 3900
n = 50
Thus;
z = (49870- 48722)/(3900/√50)
z = 2.08
So from online p-value calculator as attached, using z = 2.08 and α = 0.05 ,we have p = 0.037526
This p-value of 0.037526 is less than the significance value of 0.05,thus, we reject the claim that that the mean salary offer for accounting graduates of this university is higher than the national average of $48,722
16
Select the correct answer.
If function g is defined by the equation Y-3X = -14, which equation represents the function in function notation?
OA. gx) = 3X - 14
OB. gx) = -3X - 14
OC. g(x) = 3X + 14
OD. gx) = -3X + 14
Reset
Next
Answer: A) g(x) = 3x - 14
Step-by-step explanation:
Solve the equation for y and replace y with g(x):
y - 3x = -14
y = 3x - 14
g(x) = 3x - 14
Solve the equation for x. √x+5-3=4
Answer:
x=4
Step-by-step explanation:
To solve for x, we must get x by itself on one side of the equation.
[tex]\sqrt{x} +5-3=4[/tex]
First, we can combine like terms on the left side. Subtract 3 from 5.
[tex]\sqrt{x} +(5-3)=4[/tex]
[tex]\sqrt{x} +2=4[/tex]
2 is being added on to the square root of x. The inverse of addition is subtraction. Subtract 2 from both sides of the equation.
[tex]\sqrt{x} +2-2=4-2[/tex]
[tex]\sqrt{x} = 4-2[/tex]
[tex]\sqrt{x} =2[/tex]
The square root of x is being taken. The inverse of a square root is a square. Square both sides of the equation.
[tex](\sqrt{x} )^{2} =2^2[/tex]
[tex]x=2^2[/tex]
Evaluate the exponent.
2^2= 2*2 =4
[tex]x=4[/tex]
Let's check our solution. Plug 4 in for x and solve.
[tex]\sqrt{x} +5-3=4[/tex]
[tex]\sqrt{4} +5-3=4[/tex]
[tex]2+5-3=4[/tex]
[tex]7-3=4[/tex]
[tex]4=4[/tex]
Our solution checks out, so we know x=4 is correct.
Find the limit, if it exists. (If an answer does not exist, enter DNE.) lim (x, y) → (0, 0) x4 − 34y2 x2 + 17y2
Answer:
DNEStep-by-step explanation:
Given the limit of the function [tex]\lim_{(x,y) \to (0,0)} \frac{x^4-34y^2}{x^2+17y^2}[/tex], to find the limit, the following steps must be taken.
Step 1: Substitute the limit at x = 0 and y = 0 into the function
[tex]= \lim_{(x,y) \to (0,0)} \frac{x^4-34y^2}{x^2+17y^2}\\= \frac{0^4-34(0)^2}{0^2+17(0)^2}\\= \frac{0}{0} (indeterminate)[/tex]
Step 2: Substitute y = mx int o the function and simplify
[tex]= \lim_{(x,mx) \to (0,0)} \frac{x^4-34(mx)^2}{x^2+17(mx)^2}\\\\= \lim_{(x,mx) \to (0,0)} \frac{x^4-34m^2x^2}{x^2+17m^2x^2}\\\\\\= \lim_{(x,mx) \to (0,0)} \frac{x^2(x^2-34m^2)}{x^2(1+17m^2)}\\\\\\= \lim_{(x,mx) \to (0,0)} \frac{x^2-34m^2}{1+17m^2}\\[/tex]
[tex]= \frac{0^2-34m^2}{1+17m^2}\\\\= \frac{34m^2}{1+17m^2}\\\\[/tex]
Since there are still variable 'm' in the resulting function, this shows that the limit of the function does not exist, Hence, the function DNE
Find the surface area of the regular pyramid shown in the accompanying diagram. If necessary, express your answer in simplest radical form.
Answer:
The area of the pyramid is 360 unit²
Step-by-step explanation:
Given
Base Edge, a = 10
Height, h = 12
Required
Determine the surface area
The surface area of a regular pyramid is calculated as thus;
[tex]A = a^2 + 2a\sqrt{\frac{a^2}{4} + h^2}[/tex]
Substitute values for a and h
[tex]A = 10^2 + 2 * 10 * \sqrt{\frac{10^2}{4} + 12^2}[/tex]
Evaluate all squares
[tex]A = 100 + 2 * 10 * \sqrt{\frac{100}{4} + 144}[/tex]
[tex]A = 100 + 2 * 10 * \sqrt{25 + 144}[/tex]
[tex]A = 100 + 2 * 10 * \sqrt{169}[/tex]
Take positive square root of 169
[tex]A = 100 + 2 * 10 * 13[/tex]
[tex]A = 100 + 260[/tex]
[tex]A = 360[/tex]
Hence, the area of the pyramid is 360 unit²
Answer:
B.) 360 units2
Step-by-step explanation:
I got it correct on founders education
given the vector with a manitude of 9m at an angle a of -80 degrees, decompose this vector into two vector components oarallel to the x axis with a slope of
Answer:
We have the magnitude, M, and the angle A.
(The angle is always measured from the +x-axis)
Then we have that:
x = M*cos(A)
y = M*sin(A)
in this case:
M = 9m
A = -80°
x = 9m*cos(-80°) = 1.562
y = 9m*sin(-80) = -8.86m
Now, the component parallel to the x axis is:
x = 9m*cos(-80°) = 1.562 m
And the slope of something parallel to the x-axis is always zero, as this is a constant line.
Find the doubling time of an investment earning 8% interest if interest is compounded continuously. The doubling time of an investment earning 8% interest if interest is compounded continuously is ____ years.
Answer:
Step-by-step explanation:
Using FV = PV(1 + r)^n where FV = future value, PV = present value, r = interest rate per period, and n = # of periods
1/PV (FV) = (PV(1 + r^n)1/PV divide by PV
ln(FV/PV) = ln(1 + r^n) convert to natural log function
ln(FV/PV) = n[ln(1 + r)] by simplifying
n = ln(FV/PV) / ln(1 + r) solve for n
n = ln(2/1) / ln(1 + .08) solve for n, letting FV + 2, PV = 1 and rate = 8% or .08 compound annually
n = 9
n = ln(2/1) / ln(1 + .08/12) solve for n, letting FV + 2, PV = 1 and rate = .08/12 compound monthly
n = 104 months or 8.69 years
n = ln(2/1) / ln(1 + .08/365) solve for n, letting FV + 2, PV = 1 & rate = .08/365 compound daily
n = 3163 days or 8.67 years
Alternatively
A = P e ^(rt)
Given that r = 8%
= 8/100
= 0.08
2 = e^(0.08t)
ln(2)/0.08 = t
0.6931/0.08 = t
t= 8.664yrs
t = 8.67yrs
Which ever approach you choose to use,you will still arrive at the same answer.
You meet with the financial aid office to discuss your costs for attending LSU next semester.Tuition is $113.67 per credit hour, and fees are a flat rate of $660. You have a grant of $350 and a scholarship of $400. If you are taking 15 credit hours what amount will you need go pay for your classes next semester?
Show you work
Answer:
$1615.05Step-by-step explanation:
Scholarship and grants are money given to the candidates to support his financial needs in school. It will serves as the means of revenue for the student.
Revenue generated = Grant + Scholarship amount
Revenue generated = $350 + $400
Revenue generated= $750
Total money needed to be spent in school = Tuition + fees
If tuition is $113.67 per credit hour and I used 15 credit hours, total amount of tuition paid = 15* $113.67 = $1705.05
Total fees = $660
Total money needed to be spent in school = $1705.05 + $660
Total money needed to be spent in school = $2365.05
Amount I will need to pay for classes next semester = Total money that will be spent - (grant+scholarship)
= $2365.05 - $750
= $1615.05
Hence, the amount I will need to pay for classes next semester is $1615.05
PLEASE HELP ASAP RN!!!!!!
Answer:
3sqrt(2)
Step-by-step explanation:
sqrt(32) - sqrt(2)
rewriting sqrt(32)
sqrt(16*2) - sqrt(2)
sqrt(16) * sqrt(2) - sqrt(2)
4 sqrt(2) - sqrt(2)
3sqrt(2)
Two charged particles, Q1, and Q2, are a distance r apart with Q2 = 5Q1 Compare the forces they exert on one another when F1 is the force Q2 exerts on Q1and F2 is the force Q1 exerts on Q2.
a) F2 = 5F1.
b) F2 =-5F1.
c) F2 = F1.
d) F2 = -F1.
e) 5F2 = F1.
Answer:
d) F2 = -F1.
Step-by-step explanation:
According to Coulomb's law of forces on electrostatic charges, the force of attraction is proportional to the product of their charges, and inversely proportional to the square of their distance apart.
What this law means is that both particles will experience an equal amount of force on them, due to the presence of the other particle. This force is not just as a result of their individual charges, but as a result of the product of their charges. Also, the force is a vector quantity that must have a direction alongside its magnitude, and the force on the two particles will always act in opposite direction, be it repulsive or attractive.
Why do interest rates on loans tend to be higher in a strong economy than in a weak one?
11
12
13
14
15
16
Write the appropriate pronoun that can replace the subject in this sentence.
Tomás va a comer galletas.
ella
O él
Ο Ο Ο Ο
O nosotros
O usted
Answer:
The answer is usted
Step-by-step explanation:
And if you want to learn more download duolingo
Hugo scored 18 points in a recent basketball game, which was 5 points fewer than
Toby scored. Write an equation for this situation, where tis the number of points
Toby scored, and find how many points Toby scored.
A) 18 = t + 5, Toby scored 13 points
B) 18 = t-5, Toby scored 23 points
C) 18 = t - 5, Toby scored 13 points
D) 18 = t + 5, Toby scored 23 points
Question
The point (-2,r) lies on the graph of 2x + y = 7 in the xy-plane. What is the value of r?
Answer: r = 11
Step-by-step explanation:
We know that the point (-2, r) lies on the graph of:
2*x + y = 7.
Then, if we that point is on the graph of the equation, we can replace the values and we will have:
2*(-2) + r = 7
and now we solve this for r-
-4 + r = 7
r = 7 + 4 = 11
r = 11
What are the solutions of the equation 3x^2+6x-24=0
Answer:
x = - 4, x = 2
Step-by-step explanation:
Given
3x² + 6x - 24 = 0 ( divide through by 3 )
x² + 2x - 8 = 0 ← in standard form
(x + 4)(x - 2) = 0 ← in factored form
Equate each factor to zero and solve for x
x + 4 = 0 ⇒ x = - 4
x - 2 = 0 ⇒ x = 2
The P-value is the probability of getting a test statistic at least as extreme as the one representing the sample data, assuming that ________.
Answer:
The P-value is the probability of getting a test statistic at least as extreme as the one representing the sample data, assuming that the null hypothesis is true.
Step-by-step explanation:
The P-value is the probability of getting a test statistic at least as extreme as the one representing the sample data, assuming that the null hypothesis is true.
The p-value is the probability that, if the null hypothesis were true,sampling variation would yield and estimate that is further away from the hypothesised value than our data estimate. The p-value shows us how possible it is to get a result like this if the null hypothesis is true.
Assuming we have a null hypothesis and an alternative hypothesis computed as follows.
[tex]H_o : \mu = 5 \\ \\ H_1 : \mu \neq 0.5[/tex]
If P-value is less than or equal to [tex]\mu[/tex] , we will reject the null hypothesis.
Consider the following ordered data. 6 9 9 10 11 11 12 13 14 (a) Find the low, Q1, median, Q3, and high. low Q1 median Q3 high (b) Find the interquartile range.
Answer:
Low Q1 Median Q3 High
6 9 11 12.5 14
The interquartile range = 3.5
Step-by-step explanation:
Given that:
Consider the following ordered data. 6 9 9 10 11 11 12 13 14
From the above dataset, the highest value = 14 and the lowest value = 6
The median is the middle number = 11
For Q1, i.e the median of the lower half
we have the ordered data = 6, 9, 9, 10
here , we have to values as the middle number , n order to determine the median, the mean will be the mean average of the two middle numbers.
i.e
median = [tex]\dfrac{9+9}{2}[/tex]
median = [tex]\dfrac{18}{2}[/tex]
median = 9
Q3, i.e median of the upper half
we have the ordered data = 11 12 13 14
The same use case is applicable here.
Median = [tex]\dfrac{12+13}{2}[/tex]
Median = [tex]\dfrac{25}{2}[/tex]
Median = 12.5
Low Q1 Median Q3 High
6 9 11 12.5 14
The interquartile range = Q3 - Q1
The interquartile range = 12.5 - 9
The interquartile range = 3.5
i need help thank u so much in advance !
Answer:
Questions .(1) 2/m. (2). m-1 . (3) 2 . (4) m
Answer:
(2m²-4m)/2(m-2)=2m(m-2)/2(m-2)= m
the answer is mm²-2m+1/m-1 ⇒ (factorize the nominator)(m-1)(m-1)/m-1 ⇒ ( m-1/m-1)=1
then answer is m-1(m²-3m+2)/(m²-m)=the answer is (m-2)/mm²-m-2/m²-1=(m-2)(m+1)/(m-1)(m+1)=the answer is m-2/m-1Evaluate the expression you got in part f for d = 5.
Answer:
2(8-d)
2(8-5) (substituting d=5)
2(3)
=6
Step-by-step explanation:
The required expression is f = 6 for d =5 in the for the expression f = 2 (8 -d).
What is an algebraic expression?An algebraic expression is consists of variables, numbers with various mathematical operations,
The expression,
f = 2 (8 - d) (1)
To evaluate the expression for d = 5
Substitute the value of d = 5 in equation (1),
f = 2 (8 - 5)
f = 2 x 3
f = 6
The required expression is f=6.
To know more about Algebraic expression on:
https://brainly.com/question/19245500
#SPJ2
If A = { 10, 30,} B = { 10, 20, 30, 40, 50, 60, 70, 80,90} find A ∩ B There are options. Choose one option only: A- { 30 ,10} B- { 90 ,30 ,10} C- { 90 } D- { 80, 70, 60, 50, 40, 20 }
[tex]A \cap B=\{10,30\}[/tex]
Answer:
[tex] \boxed{ \purple{10 \: , 30}}[/tex]Option A is the correct option
Step-by-step explanation:
[tex] \mathrm{Given}[/tex]
A = { 10 , 30 }
B = { 10 , 20 , 30 , 40 , 50 , 60 , 70 , 80 , 90 }
Now, let's find A ∩ B
A ∩ B = { 10 , 30 } ∩ { 10 , 20 , 30 , 40 , 50 , 60 , 70 , 80 , 90 }
The intersection of sets A and B is the set of all elements which belong to both A and B
A ∩ B = { 10 , 30 }
The intersection of sets A and B is denoted by ( A ∩ B ) and read as A intersection B.
Hope I helped!
Best regards!
For
90° < 0 < 270°
, which of the primary trigonometric functions may have positive values?
Answer:
sine and tangent
will be positive.
How would the margin of error change if the sample size increased from 200 to 400 students? Assume that the proportion of students who say yes does not change significantly.
Answer:
(MOE) the Margin of Error will decrease by the square root of 2
Step-by-step explanation:
The Margin of Error (MOE) is an inverse function of sample size n ( more precisely of the square root of sample size ). That relation means changes in sample size ( keeping constant other variables of the distribution) will imply opposite changes in the Margin of Error. If we double the sample size increasing it from 200 up to 400, the Margin of Error will decrease by the square root of 2
sin
3/5
4/5
3/4
5/4
Answer:
[tex]\boxed{\frac{3}{5}}[/tex]
Step-by-step explanation:
The trigonometric functions are described as follows:
[tex]sin = \frac{opposite}{hypotenuse}\\\\cos = \frac{adjacent}{hypotenuse}\\\\tan = \frac{opposite}{adjacent}[/tex]
Using reference angle ∠A, use the sin trigonometric function. This will be the side opposite (cannot be the hypotenuse) of ∠A over the side adjacent (cannot be the hypotenuse).
The side opposite of ∠A is 3. The hypotenuse of the triangle is 5.
[tex]\boxed{\frac{3}{5}}[/tex] is the final answer!
One number is 4 times a first number. A third number is 100 more than the first number. If the sum of the three numbers is 370, find the numbers.
The three numbers are
(Use a comma to separate answers as needed.)
Answer:
45, 180, 145
Step-by-step explanation:
Let n represent the first number. Then "one number" is 4n, and the third number is n+100. The sum of the three numbers is ...
n + 4n + (n+100) = 370
6n = 270
n = 45
4n = 180
n+100 = 145
The three numbers are 45, 180, 145.