Coherent light from a sodium-vapor lamp is passed through a filter that blocks everything except for light of a single wavelength. It then falls on two slits separated by 0.490 mm . In the resulting interference pattern on a screen 2.12 m away, adjacent bright fringes are separated by 2.86 mm . For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of Determining wavelength. Part A What is the wavelength of the light that falls on the slits

Answers

Answer 1

Answer:

λ = 6.61 x 10⁻⁷ m = 661 nm

Explanation:

From the Young's Double Slit experiment, the the spacing between adjacent bright or dark fringes is given by the following formula:

Δx = λL/d

where,

Δx = fringe spacing = 2.86 mm = 2.86 x ⁻³ m

L = Distance between slits and screen = 2.12 m

d = slit separation = 0.49 mm = 0.49 x 10⁻³ m

λ = wavelength of light = ?

Therefore,

2.86 x 10⁻³ m = λ(2.12 m)/(0.49 x 10⁻³ m)

(2.86 x 10⁻³ m)(0.49 x 10⁻³ m)/(2.12 m) = λ

λ = 6.61 x 10⁻⁷ m = 661 nm


Related Questions

"Determine the magnitude of the net force of gravity acting on the Moon during an eclipse when it is directly between Earth and the Sun."

Answers

Answer:

Net force = 2.3686 × 10^(20) N

Explanation:

To solve this, we have to find the force of the earth acting on the moon and the force of the sun acting on the moon and find the difference.

Now, from standards;

Mass of earth;M_e = 5.98 × 10^(24) kg

Mass of moon;M_m = 7.36 × 10^(22) kg

Mass of sun;M_s = 1.99 × 10^(30) kg

Distance between the sun and earth;d_se = 1.5 × 10^(11) m

Distance between moon and earth;d_em = 3.84 × 10^(8) m

Distance between sun and moon;d_sm = (1.5 × 10^(11)) - (3.84 × 10^(8)) = 1496.96 × 10^(8) m

Gravitational constant;G = 6.67 × 10^(-11) Nm²/kg²

Now formula for gravitational force between the earth and the moon is;

F_em = (G × M_e × M_m)/(d_em)²

Plugging in relevant values, we have;

F_em = (6.67 × 10^(-11) × 5.98 × 10^(24) × 7.36 × 10^(22))/(3.84 × 10^(8))²

F_em = 1.9909 × 10^(20) N

Similarly, formula for gravitational force between the sun and moon is;

F_sm = (G × M_s × M_m)/(d_sm)²

Plugging in relevant values, we have;

F_se = (6.67 × 10^(-11) × 1.99 × 10^(30) ×

7.36 × 10^(22))/(1496.96 × 10^(8))²

F_se = 4.3595 × 10^(20) N

Thus, net force = F_se - F_em

Net force = (4.3595 × 10^(20) N) - (1.9909 × 10^(20) N) = 2.3686 × 10^(20) N

PLEASE HELP FAST The object distance for a convex lens is 15.0 cm, and the image distance is 5.0 cm. The height of the object is 9.0 cm. What is the height of the image?

Answers

Answer:

The image height is 3.0 cm

Explanation:

Given;

object distance, [tex]d_o[/tex] = 15.0 cm

image distance, [tex]d_i[/tex] = 5.0 cm

height of the object, [tex]h_o[/tex] = 9.0 cm

height of the image, [tex]h_i[/tex] = ?

Apply lens equation;

[tex]\frac{h_i}{h_o} = -\frac{d_i}{d_o}\\\\ h_i = h_o(-\frac{d_i}{d_o})\\\\h_i = -9(\frac{5}{15} )\\\\h_i = -3 \ cm[/tex]

Therefore, the image height is 3.0 cm. The negative values for image height indicate that the image is an inverted image.

A 384 Hz tuning fork produces standing waves with a wavelength of 0.90 m inside a resonance tube. The speed of sound at experimental conditions is

Answers

Answer:

v = 345.6m/s

Explanation:

v = 384 x 0.9 = 345.6

v = 345.6m/s

Q9 A physics book slides off a horizontal tabletop with a speed of 1.10 m/s. It strikes the floor in 0.350s. ignore air resistance. Find (a) the height of the tabletop above the floor; (b) the horizontal distance from the edge of the table to the point where the book strikes the floor; (c) the horizontal and vertical components of the book's velocity, and the magnitude and direction of its velocity, just before the book reaches the floor.

Answers

Answer:

(a) 0.613 m

(b) 0.385 m

(c) vₓ = 1.10 m/s, vᵧ = 3.50 m/s

v = 3.68 m/s², θ = 72.6° below the horizontal

Explanation:

(a)  Take down to be positive.

Given in the y direction:

v₀ = 0 m/s

a = 10 m/s²

t = 0.350 s

Find: Δy

Δy = v₀ t + ½ at²

Δy = (0 m/s) (0.350 s) + ½ (10 m/s²) (0.350 s)²

Δy = 0.613 m

(b) Given in the x direction:

v₀ = 1.10 m/s

a = 0 m/s²

t = 0.350 s

Find: Δx

Δx = v₀ t + ½ at²

Δx = (1.10 m/s) (0.350 s) + ½ (0 m/s²) (0.350 s)²

Δx = 0.385 m

(c) Find: vₓ and vᵧ

vₓ = aₓt + v₀ₓ

vₓ = (0 m/s²) (0.350 s) + 1.10 m/s

vₓ = 1.10 m/s

vᵧ = aᵧt + v₀ᵧ

vᵧ = (10 m/s²) (0.350 s) + 0 m/s

vᵧ = 3.50 m/s

The magnitude is:

v² = vₓ² + vᵧ²

v = 3.68 m/s²

The direction is:

θ = atan(vᵧ / vₓ)

θ = 72.6° below the horizontal

What is temperature?
O A. The force exerted on an area
B. A measure of mass per unit volume
O C. The net energy transferred between two objects
OD. A measure of the movement of atoms or molecules within an
object​

Answers

Answer:

The net energy transferred between two objects

Explanation:

The physical property of matter that expresses hot or cold is called temperature. It demonstrates the thermal energy. A thermometer is used to measure temperature. It defines the rate to which the chemical reaction occurs. It tells about the thermal radiation emitted from an object.

The correct option that defines temperature is option C.

Answer:

A measure of the movement of atoms or molecules within an object

Explanation:

Process of elimination

Suppose you observed the equation for a traveling wave to be y(x, t) = A cos(kx − ????t), where its amplitude of oscillations was 0.15 m, its wavelength was two meters, and the period was 2/15 s. If a point on the wave at a specific time has a displacement of 0.12 m, what is the transverse speed of that point?

Answers

Answer:

15m/s

Explanation:

The equation for a traveling wave as expressed as y(x, t) = A cos(kx − [tex]\omega[/tex]t) where An is the amplitude f oscillation, [tex]\omega[/tex] is the angular velocity and x is the horizontal displacement and y is the vertical displacement.

From the formula; [tex]k =\frac{2\pi x}{\lambda} \ and \ \omega = 2 \pi f[/tex] where;

[tex]\lambda \ is\ the \ wavelength \ and\ f \ is\ the\ frequency[/tex]

Before we can get the transverse speed, we need to get the frequency and the wavelength.

frequency = 1/period

Given period = 2/15 s

Frequency = [tex]\frac{1}{(2/15)}[/tex]

frequency = 1 * 15/2

frequency f = 15/2 Hertz

Given wavelength [tex]\lambda[/tex] = 2m

Transverse speed [tex]v = f \lambda[/tex]

[tex]v = 15/2 * 2\\\\v = 30/2\\\\v = 15m/s[/tex]

Hence, the transverse speed at that point is  15m/s

Two objects, one of mass m and the other of mass 2m, are dropped from the top of a building. When they hit the ground:_______.
a) the heavier one will have four times the kinetic energy of the lighter one.
b) the heavier one will have twice the kinetic energy of the lighter one.
c) the heavier one will have times the kinetic energy of the lighter one.
d) both of them will have the same kinetic energy.

Answers

Answer:

b) the heavier one will have twice the kinetic energy of the lighter one.

Explanation:

The kinetic energy of object with mass, m

K.E₁ = ¹/₂mv²

where;

m is mass of the object

v is the velocity of the object

Since, the two objects are falling under same acceleration due to gravity, their velocity will be increasing at the same rate

The kinetic energy of object with mass, 2m

K.E₂ = ¹/₂(2m)v²

K.E₂ = 2(¹/₂mv²)

BUT K.E₁ = ¹/₂mv²

K.E₂ = 2(K.E₁)

Therefore, the heavier one will have twice the kinetic energy of the lighter one.

b) the heavier one will have twice the kinetic energy of the lighter one.

The accommodation limits for a nearsighted person's eyes are 20.0 cm and 82.0 cm. When he wears his glasses, he can see faraway objects clearly. At what minimum distance is he able to see objects clearly

Answers

Answer;

26.45cm

See attached file for explanation

The linear density rho in a rod 3 m long is 8/ x + 1 kg/m, where x is measured in meters from one end of the rod. Find the average density rhoave of the rod.

Answers

Answer:

The average density of the rod is 1.605 kg/m.

Explanation:

The average density of the rod is given by:

[tex] \rho = \frac{m}{l} [/tex]    

To find the average density we need to integrate the linear density from x₁ = 0 to x₂ = 3, as follows:

[tex] \int_{0}^{3} \frac{8}{3(x + 1)}dx [/tex]

[tex] \rho = \frac{8}{3} \int_{0}^{3} \frac{1}{(x + 1)}dx [/tex]   (1)

Using u = x+1  →  du = dx  → u₁= x₁+1 = 0+1 = 1 and u₂ = x₂+1 = 3+1 = 4

By entering the values above into (1), we have:

[tex] \rho = \frac{8}{3} \int_{0}^{3} \frac{1}{u}du [/tex]

[tex]\rho = \frac{8}{3}*log(u)|_{1}^{4} = \frac{8}{3}[log(4) - log(1)] = 1.605 kg/m[/tex]

Therefore, the average density of the rod is 1.605 kg/m.  

       

I hope it helps you!    

The average density of the rod is  [tex]1.605 \;\rm kg/m^{3}[/tex].

Given data:

The length of rod is, L = 3 m.

The linear density of rod is, [tex]\rho=\dfrac{8}{x+1} \;\rm kg/m[/tex].

To find the average density we need to integrate the linear density from x₁ = 0 to x₂ = 3,  The expression for the average density is given as,

[tex]\rho' = \int\limits^3_0 { \rho} \, dx\\\\\\\rho' = \int\limits^3_0 { \dfrac{m}{L}} \, dx\\\\\\\rho' = \int\limits^3_0 {\dfrac{8}{3(x+1)}} \, dx[/tex]............................................................(1)

Using u = x+1  

du = dx

u₁= x₁+1 = 0+1 = 1

and

u₂ = x₂+1 = 3+1 = 4

By entering the values above into (1), we have:

[tex]\rho' =\dfrac{8}{3} \int\limits^3_0 {\dfrac{1}{u}} \, du\\\\\\\rho' =\dfrac{8}{3} \times [log(u)]^{4}_{1}\\\\\\\rho' =\dfrac{8}{3} \times [log(4)-log(1)]\\\\\\\rho' =1.605 \;\rm kg/m^{3}[/tex]

Thus, we can conclude that the average density of the rod is  [tex]1.605 \;\rm kg/m^{3}[/tex].

Learn more about the average density here:

https://brainly.com/question/1371999

The magnitude of the Poynting vector of a planar electromagnetic wave has an average value of 0.724 W/m2. What is the maximum value of the magnetic field in the wave

Answers

Answer:

7.78x10^-8T

Explanation:

The Pointing Vector S is

S = (1/μ0) E × B

at any instant, where S, E, and B are vectors. Since E and B are always perpendicular in an EM wave,

S = (1/μ0) E B

where S, E and B are magnitudes. The average value of the Pointing Vector is

<S> = [1/(2 μ0)] E0 B0

where E0 and B0 are amplitudes. (This can be derived by finding the rms value of a sinusoidal wave over an integer number of wavelengths.)

Also at any instant,

E = c B

where E and B are magnitudes, so it must also be true at the instant of peak values

E0 = c B0

Substituting for E0,

<S> = [1/(2 μ0)] (c B0) B0 = [c/(2 μ0)] (B0)²

Solve for B0.

Bo = √ (0.724x2x4πx10^-7/ 3 x10^8)

= 7.79 x10 ^-8 T

A lab technician uses laser light with a wavelength of 650 nmnm to test a diffraction grating. When the grating is 42.0 cmcm from the screen, the first-order maxima appear 6.09 cmcm from the center of the pattern. How many lines per millimeter does this grating have?

Answers

Answer:

221 lines per millimetre

Explanation:

We know that for a diffraction grating, dsinθ =mλ where d = spacing between grating, θ = angle to maximum, m = order of maximum and λ = wavelength of light.

Since the grating is 42.0 cm from the screen and its first order maximum (m = 1) is at 6.09 cm from the center of the pattern,

tanθ = 6.09 cm/42.0 cm = 0.145

From trig ratios, cot²θ + 1 = cosec²θ

cosecθ = √((1/tanθ)² + 1) = √((1/0.145)² + 1) = √48.562 = 6.969

sinθ = 1/cosecθ = 1/6.969 = 0.1435

Also, sinθ = mλ/d at the first-order maximum, m = 1. So

sinθ = (1)λ/d = λ/d

Equating both expressions we have  

0.1435 = λ/d

d = λ/0.1435

Now, λ = 650 nm = 650 × 10⁻⁹ m

d = 650 × 10⁻⁹ m/0.1435

d = 4529.62 × 10⁻⁹ m per line

d = 4.52962 × 10⁻⁶ m per line

d = 0.00452962 × 10⁻³ m per line

d = 0.00452962 mm per line

Since d = width of grating/number of lines of grating

Then number of lines per millimetre = 1/grating spacing

= 1/0.00452962

= 220.77 lines per millimetre

≅ 221 lines per millimetre since we can only have a whole number of lines.

Thomas and Lilian are walking down the street to get to the corner store. They walk 5 blocks up the street and turn right by the stop sign. Once they turn at the stop sign they continue walking for 8 more blocks. They make a left, walk 2 blocks and cross the street to arrive at the corner store. While there they purchase a few snacks, sit at the curb, and then walk back home where they originally started. Thomas and Lilian are discussing their walk in reference to their overall displacement and distance. They seem to be in disagreement about their journey. Thomas says their overall displacement and distance are both zero, because they are back where they started. Lilian thinks their total distance and displacement are greater than zero.

Which person do you most agree with?
You are not expected to actually calculate in order to solve this problem.

Answers

Answer:

Thomas is correct that the zero displacements

Lilian is right that the distance is greater than zero.

Explanation:

In this problem we have to be clear about the difference between displacement and distance.

The displacement is a vector, that is, it has a modulation and direction, in this case we can draw a vector for the outward trip and another vector for the return trip, both will have the same magnitude, but their directions are opposite, so the resulting vector is zero.

The distance is a scalar and its value coincides with the modulus of the distance vector, in our case the distance is d for the outward journey and d for the return journey, so the total distance is 2d, which is different from zero.

The two students have some reason, but neither complete,

The displacement is zero because it is a vector and

the distance is different from zero (2d) because it is a scalar

 

Thomas is correct that the zero displacements

Lilian is right that the distance is greater than zero.

Therefore I agree with both, because each one has a 50% of the reason

A plastic dowel has a Young's Modulus of 1.50 ✕ 1010 N/m2. Assume the dowel will break if more than 1.50 ✕ 108 N/m2 is exerted.
(a) What is the maximum force (in kN) that can be applied to the dowel assuming a diameter of 2.40 cm?
______Kn
(b) If a force of this magnitude is applied compressively, by how much (in mm) does the 26.0 cm long dowel shorten? (Enter the magnitude.)
mm

Answers

Answer:

a

   [tex]F = 67867.2 \ N[/tex]

b

  [tex]\Delta L = 2.6 \ mm[/tex]

Explanation:

From the question we are told that

      The Young modulus is  [tex]Y = 1.50 *10^{10} \ N/m^2[/tex]

      The stress is  [tex]\sigma = 1.50 *10^{8} \ N/m^2[/tex]

      The  diameter is  [tex]d = 2.40 \ cm = 0.024 \ m[/tex]

The radius is mathematically represented as

       [tex]r =\frac{d}{2} = \frac{0.024}{2} = 0.012 \ m[/tex]

The cross-sectional area is  mathematically evaluated as

        [tex]A = \pi r^2[/tex]

         [tex]A = 3.142 * (0.012)^2[/tex]

        [tex]A = 0.000452\ m^2[/tex]

Generally the stress is mathematically represented as

        [tex]\sigma = \frac{F}{A}[/tex]

=>     [tex]F = \sigma * A[/tex]

=>    [tex]F = 1.50 *10^{8} * 0.000452[/tex]

=>    [tex]F = 67867.2 \ N[/tex]

Considering part b

      The length is given as [tex]L = 26.0 \ cm = 0.26 \ m[/tex]

Generally Young modulus is mathematically represented as

           [tex]E = \frac{ \sigma}{ strain }[/tex]

Here strain is mathematically represented as

         [tex]strain = \frac{ \Delta L }{L}[/tex]

So    

       [tex]E = \frac{ \sigma}{\frac{\Delta L }{L} }[/tex]

        [tex]E = \frac{\sigma }{1} * \frac{ L}{\Delta L }[/tex]

=>     [tex]\Delta L = \frac{\sigma * L }{E}[/tex]

substituting values

       [tex]\Delta L = \frac{ 1.50*10^{8} * 0.26 }{ 1.50 *10^{10 }}[/tex]

       [tex]\Delta L = 0.0026[/tex]

Converting to mm

      [tex]\Delta L = 0.0026 *1000[/tex]

      [tex]\Delta L = 2.6 \ mm[/tex]

How much heat is required to convert 5.0 kg of ice from a temperature of - 20 0C to water at a temperature of 205 0F

Answers

Answer:

Explanation:

To convert from °C to °F , the formula is

( F-32 ) / 9 = C / 5

F is reading fahrenheit scale and C is in centigrade scale .

F = 205 , C = ?

(205 - 32) / 9 = C / 5

C = 96°C approx .

Let us calculate the heat required .

Total heat required = heat required to heat up the ice at - 20 °C  to 0°C  + heat required to melt the ice + heat required to heat up the water at  0°C to

96°C.

=  5 x 2.04 x (20-0) +  5 x 336 + 5 x ( 96-0 ) x 4.2  kJ .

= 204 + 1680 + 2016

= 3900 kJ .

A 1.25-kg ball begins rolling from rest with constant angular acceleration down a hill. If it takes 3.60 s for it to make the first complete revolution, how long will it take to make the next complete revolution?

Answers

Answer:

The time taken is  [tex]\Delta t = 1.5 \ s[/tex]

Explanation:

From the question we are told that

   The mass of the ball is  [tex]m = 1.25 \ kg[/tex]

    The time taken to make the first complete revolution is  t= 3.60 s

    The displacement of the first complete revolution is  [tex]\theta = 1 rev = 2 \pi \ radian[/tex]

Generally the displacement for one  complete revolution is mathematically represented as

       [tex]\theta = w_i t + \frac{1}{2} * \alpha * t^2[/tex]

Now given that the stone started from rest [tex]w_i = 0 \ rad / s[/tex]

     [tex]2 \pi =0 + 0.5* \alpha *(3.60)^2[/tex]

     [tex]\alpha = 0.9698 \ s[/tex]

Now the displacement for two  complete revolution is

         [tex]\theta_2 = 2 * 2\pi[/tex]

         [tex]\theta_2 = 4\pi[/tex]

Generally the displacement for two complete revolution is mathematically represented as  

     [tex]4 \pi = 0 + 0.5 * 0.9698 * t^2[/tex]

=>   [tex]t^2 = 25.9187[/tex]

=>   [tex]t= 5.1 \ s[/tex]

So

 The  time taken to complete the next oscillation is mathematically evaluated as

     [tex]\Delta t = t_2 - t[/tex]

substituting values

      [tex]\Delta t = 5.1 - 3.60[/tex]

     [tex]\Delta t = 1.5 \ s[/tex]

           

 

The time for the ball to complete the next revolution is 1.5 s.

The given parameters;

mass of the ball, m = 1.25 kgtime of motion, t = 3.6 sone complete revolution, θ = 2π

The constant angular acceleration of the ball is calculated as follows;

[tex]\theta = \omega t \ + \ \frac{1}{2} \alpha t^2\\\\2\pi = 0 \ + \ 0.5(3.6)^2 \alpha\\\\2\pi = 6.48 \alpha \\\\\alpha = \frac{2 \pi }{6.48} \\\\\alpha = 0.97 \ rad/s^2[/tex]

The time to complete the next revolution is calculated as follows;

[tex]4\pi = 0 + \frac{1}{2} (0.97)t^2\\\\8\pi = 0.97t^2\\\\t^2 = \frac{8\pi }{0.97} \\\\t^2 = 25.91\\\\t = \sqrt{ 25.91} \\\\t = 5.1 \ s[/tex]

[tex]\Delta t = 5.1 \ s \ - \ 3.6 \ s \\\\\Delta t = 1.5 \ s[/tex]

Thus, the time for the ball to complete the next revolution is 1.5 s.

Learn more here:https://brainly.com/question/20738528

A solenoid is designed to produce a magnetic field of 3.50×10^−2 T at its center. It has a radius of 1.80 cm and a length of 46.0 cm , and the wire can carry a maximum current of 13.0 A.

Required:
a. What minimum number of turns per unit length must the solenoid have?
b. What total length of wire is required?

Answers

Answer:

a. 2143 turns/m

b. 111.5 m

Explanation:

a. The minimum number of turns per unit length (N/L) can be found using the following equation:

[tex] B = \frac{\mu_{0}NI}{L} [/tex]

[tex] \frac{N}{L} = \frac{B}{\mu_{0}I} = \frac{3.50 \cdot 10^{-2} T}{4\pi \cdot 10^{-7} Tm/A*13.0 A} = 2143 turns/m [/tex]

Hence, the minimum number of turns per unit length is 2143 turns/m.

b. The total length of wire is the following:

[tex] N = 2143 turns/m*L = 2143 turns/m*46.0 \cdot 10^{-2} m = 986 turns [/tex]

Since each turn has length 2πr of wire, the total length is:

[tex] L_{T} = N*2\pi r = 986 turn*2*\pi*1.80 \cdot 10^{-2} m = 111.5 m [/tex]

Therefore, the total length of wire required is 111.5 m.

I hope it helps you!

Krishna and Seldon now try a homework problem. A policeman sitting in his unmarked police car sees an approaching motorcyclist go through a red light two blocks away. He turns on his siren at a frequency of 1000 Hz as the motorcyclist heads directly toward him at 61 mph (27.27 m/s). What frequency does the motorcyclist hear? (Enter your answer to at least the nearest integer. Assume the speed of sound in air is 331 m/s.) Hz What frequency does the motorcyclist hear when stopped with the police car approaching at 61 mph (27.27 m/s)? (Enter your answer to at least the nearest integer. Assume the speed of sound in air is 331 m/s.) Hz

Answers

Answer:

Explanation:

We shall apply formula of Doppler's effect

Here source is fixed and observer is approaching the source

f = f₀ x [(V + v ) / V ]

f₀ is original and f is apparent frequency , V is velocity of sound and v is velocity of motorcyclist .

f = 1000 x [(331 + 27.27 ) / 331 ]

= 1082 .4 Hz

This is the frequency heard by motorcyclist .

When police car is approaching him when he is stopped

f = f₀ x [V /(V - v ) ]

v is velocity of police car .

= 1000  x 331 / (331 - 27.27)

= 1090 Hz  

hat a 15 kg body is pulled along a horizontal fictional table by a force of 4N what is the acceleration of the body ​

Answers

Answer:

Acceleration of the body is:

[tex]a=0.27\,\,m/s^2[/tex]

Explanation:

Use Newton's second Law to solve for the acceleration:

[tex]F=m\,\,a\\a=\frac{F}{m} \\a=\frac{4\,N}{15\,\,kg} \\a=0.27\,\,m/s^2[/tex]

Which of the following describes wavelength?
A.
the height of a wave
B.
the distance between crests of adjacent waves
C.
the distance a wave travels in a given amount of time
D.
the number of waves that pass a point in a given amount of time

Answers

D. The number of wave that pass a point in a given amount of time

CAN SOMEONE HELP ME PLEASE ITS INTEGRATED SCIENCE AND I AM STUCK

Answers

Answer:

[tex]\huge \boxed{\mathrm{Option \ D}}[/tex]

Explanation:

Two forces are acting on the object.

Subtracting 2 N from both forces.

2 N → Object ← 5 N

- 2 N                 - 2N

0 N → Object ← 3 N

The force 3 N is pushing the object to the left side.

The mass of the object is 10 kg.

Applying formula for acceleration (Newton’s Second Law of Motion).

a = F/m

a = 3/10

a = 0.3

Does the moon light originate from the moon only

Answers

Answer:

No

Explanation:

Moon has no light of its own. It just shines because its surface reflects light from the sun and that's what we see.

:-)

A cylindrical container with a cross-sectional area of 66.2 cm2 holds a fluid of density 856 kg/m3 . At the bottom of the container the pressure is 119 kPa . Assume Pat = 101 kPa

A) What is the depth of the fuild?

B) Find the pressure at the bottom of the container after an additional 2.35×10−3 m3 of this fluid is added to the container. Assume that no fluid spills out of the container.

Answers

Answer:

A. h = 2.15 m

B. Pb' = 122 KPa

Explanation:

The computation is shown below:

a)  Let us assume the depth be h

As we know that

[tex]Pb - Pat = d \times g \times h \\\\ ( 119 - 101) \times 10^3 = 856 \times 9.8 \times h[/tex]

After solving this,  

h = 2.15 m

Therefore the depth of the fluid is 2.15 m

b)

Given that  

height of the extra fluid is

[tex]h' = \frac{2.35 \times 10^{-3}}{ area} \\\\ h' = \frac{2.35 \times 10^{-3}} { 66.2 \times 10^{-4}}[/tex]

h' = 0.355 m

Now let us assume the pressure at the bottom is Pb'

so, the equation would be

[tex]Pb' - Pat = d \times g \times (h + h')\\\\Pb' = 856 \times 9.8 \times ( 2.15 + 0.355) + 101000[/tex]

Pb' = 122 KPa

(A)  The depth of the fluid is 2.14 m.

(B)  The new pressure at the bottom of container is 121972 Pa.

Given data:

The cross-sectional area of the container is, [tex]A =66.2 \;\rm cm^{2}=66.2 \times 10^{-4} \;\rm m^{2}[/tex].

The density of fluid is, [tex]\rho = 856 \;\rm kg/m^{3}[/tex].

The container pressure at bottom is, [tex]P=119 \;\rm kPa=119 \times 10^{3} \;\rm Pa[/tex].

The atmospheric pressure is, [tex]P_{at}=101 \;\rm kPa=101 \times 10^{3}\;\rm Pa[/tex].

(A)

The given problem is based on the net pressure on the container, which is equal to the difference between the pressure at the bottom and the atmospheric pressure. Then the expression is,

[tex]P_{net} = P-P_{at}\\\\\rho \times g \times h= P-P_{at}[/tex]

Here, h is the depth of fluid.

Solving as,

[tex]856\times 9.8 \times h= (119-101) \times 10^{3}\\\\h=\dfrac{ (119-101) \times 10^{3}}{856\times 9.8}\\\\h= 2.14 \;\rm m[/tex]

Thus, the depth of the fluid is 2.14 m.

(B)

For an additional volume of [tex]2.35 \times 10^{-3} \;\rm m^{3}[/tex] to the liquid, the new depth is,

[tex]V=A \times h'\\\\h'=\dfrac{2.35 \times 10^{-3}}{66.2 \times 10^{-4}}\\\\h'=0.36 \;\rm m[/tex]

Now, calculate the new pressure at the bottom of the container as,

[tex]P'-P_{at}= \rho \times g \times (h+h')\\\\\P'-(101 \times 10^{3})= 856 \times 9.8 \times (2.14+0.36)\\\\P'=121972 \;\rm Pa[/tex]

Thus, we can conclude that the new pressure at the bottom of container is 121972 Pa.

Learn more about the atmospheric pressure here:

https://brainly.com/question/13323291

A laboratory electromagnet produces a magnetic field of magnitude 1.38 T. A proton moves through this field with a speed of 5.86 times 10^6 m/s.

a. Find the magnitude of the maximum magnetic force that could be exerted on the proton.
b. What is the magnitude of the maximum acceleration of the proton?
c. Would the field exert the same magnetic force on an electron moving through the field with the same speed? (Assume that the electron is moving in the direction as the proton.)

1. Yes
2. No

Answers

.Answer;

Using Fmax=qVB

F=(1.6*10^-19 C)(5.860*10^6 m/s)(1.38 T)

ANS=1.29*10^-12 N

2. Using Amax=Fmax/ m

Amax =(1.29*10^-12 N) / (1.67*10^-27 kg)

ANS=1.93*10^15 m/s^2*

3. No, the acceleration wouldn't be the same. Since The magnitude of the electron is equal to that of the proton, but the direction would be in the opposite direction and also Since an electron has a smaller mass than a proton

Matter's resistance to a change in motion is called

Answers

Answer:

Inertia! I hope this helps!

Answer:

inertia

Explanation

Inertia.

An emf is induced by rotating a 1060 turn, 20.0 cm diameter coil in the Earth's 5.25 ✕ 10−5 T magnetic field. What average emf (in V) is induced, given the plane of the coil is originally perpendicular to the Earth's field and is rotated to be parallel to the field in 10.0 ms? V †

Answers

Answer:

The average emf induced in the coil is 175 mV

Explanation:

Given;

number of turns of the coil, N = 1060 turns

diameter of the coil, d = 20.0 cm = 0.2 m

magnitude of the magnetic field,  B = 5.25 x 10⁻⁵ T

duration of change in field, t = 10 ms = 10 x 10⁻³ s

The average emf induced in the coil is given by;

[tex]E = N\frac{\delta \phi}{dt} \\\\E = N\frac{\delta B}{\delta t}A[/tex]

where;

A is the area of the coil

A = πr²

r is the radius of the coil = 0.2 /2 = 0.1 m

A = π(0.1)² = 0.03142 m²

[tex]E = \frac{NBA}{t} \\\\E = \frac{1060*5.25*10^{-5}*0.03142}{10*10^{-3}} \\\\E = 0.175 \ V\\\\E = 175 \ mV[/tex]

Therefore, the average emf induced in the coil is 175 mV

Two waves are traveling in the same direction along a stretched string. The waves are 45.0° out of phase. Each wave has an amplitude of 7.00 cm. Find the amplitude of the resultant wave.

Answers

Answer:

The amplitude of the resultant wave is 12.93 cm.

Explanation:

The amplitude of resultant of two waves, y₁ and y₂, is given as;

Y = y₁ + y₂

Let y₁ = A sin(kx - ωt)

Since the wave is out phase by φ, y₂ is given as;

y₂ = A sin(kx - ωt + φ)

Y = y₁ + y₂ = 2A Cos (φ / 2)sin(kx - ωt + φ/2 )

Given;

phase difference, φ = 45°

Amplitude, A = 7.00 cm

Y = 2(7) Cos (45 /2) sin(kx - ωt + 22.5° )

Y = 12.93 cm

Therefore, the amplitude of the resultant wave is 12.93 cm.

If you wanted to make your own lenses for a telescope, what features of a lens do you think would affect the images that you can see

Answers

Answer:

Therefore the characteristics to be found are:

* the focal length must be large and the focal length of the eyepiece must be small

* The diameter of the objective lens should be as large as possible, to be able to collect small without need from light

* The system must be configured to the far sight tip,

Explanation:

The length of the telescope is

         L = f_ocular + f_objetive

the magnification of the telescope is

         m = - f_objective / f_ocular

These are the two equations that describe the behavior of the telescope. Therefore the characteristics to be found are:

* the focal length must be large and the focal length of the eyepiece must be small

* The diameter of the objective lens should be as large as possible, to be able to collect small without need from light

* The system must be configured to the far sight tip,

A student is hammering a nail into a board. Where should he hold the hammer and why?

Answers

Answer:

At the end of the handle farthest from the head of the hammer.

Explanation:

The force of the hammer is greatest the longer the radius is on a which would be the length of the handle. Simple mechanical advantage.

A roller coaster starts from rest at its highest point and then descends on its (frictionless) track. Its speed is 26 m/s when it reaches ground level. What was its speed when its height was half that of its starting point?

Answers

Answer:

The velocity is  [tex]v_h = 19.2 \ m/s[/tex]

Explanation:

From the question we are told that

   The speed of the roller coaster at ground level  is [tex]v = 26 \ m/s[/tex]

 

Generally we can define the roller coaster speed at ground level using the an equation of motion as

     [tex]v^2 = u^2 + 2 g s[/tex]

 u is  zero given that the roller coaster started from rest

      So

            [tex]26^2 = 0 + 2 * g * s[/tex]

So  

           [tex]s = \frac{26^2}{ 2 * g }[/tex]

=>       [tex]s = 37.6 \ m[/tex]

Now the displacement half way is mathematically represented as

       

    [tex]s_{h} = \frac{37.6}{2}[/tex]

     [tex]s_{h} = 18.8 \ m[/tex]

So

      [tex]v_h ^2 = u^2 + 2 * g * s_h[/tex]

Where  [tex]v_h[/tex] is the velocity at the half way point

=>  [tex]v_h = \sqrt{ 0 + 2 * 9.8 * 18.8 }[/tex]

=>   [tex]v_h = 19.2 \ m/s[/tex]

A battery establishes a voltage V on a parallel-plate capacitor. After the battery is disconnected, the distance between the plates is doubled without loss of charge. Accordingly:_____.
a. stay same
b. increases
c. decreases
d. the capacitance decreases and the voltage between the plates increases.

Answers

Answer:

d.

Explanation:

Since, the capacitance( decreases )

therefore voltage between the plates(increases ).

Hence, option d is correct.

C =εA/d.

d is doubled, therefore  C decrease ( inverse relation).

D) The capacitance decreases and the voltage between the plates increases.

Battery

A battery establishes a voltage V on a parallel-plate capacitor. After the battery is disconnected, the distance between the plates is doubled without loss of charge. Accordingly, the capacitance decreases and the voltage between the plates increases.

The capacitance - (decreases)

The voltage between the plates- (increases ).

Thus, the correct answer is D.

Learn more about "Battery":

https://brainly.com/question/15648781?referrer=searchResults

Other Questions
7 pounds of raw material are required to make 1 finished unit. The company desires an ending raw materials inventory for each month equal to 29% of the following months production (in units of raw material) . How many pounds of raw material should be purchased in May? If the processor has 32 address lines in its address bus; i.e. 32-bit address range, what is its address space or range; i.e. what is the smallest and largest address that can be represented PLEASE HELP! You do not have to answer all questions but can someone explain to me on where I am even suppose to begin? I don't even know how to answer a single one of these questions. The number 7 is a factor of A transformer consists of a 500-turn primary coil and a 2000-turn secondary coil. If the current in the secondary is 3.0 A, what is the current in the primary a family spent $93 at a carnival. *they spent $18 on tickets and $30 on food. they spent the rest of the money on games. which equation can be used to to find "g", the amount of money used on games. What is equivalent to 9 3/4? The answer is supposedly is 3 square root 3, but how is that the answer? can someone tell me the steps? 9 3/4 is a mixed fraction. Computing absorption costing gross profit Refer to your answers to Short Exercise S21-6. Product X sells for $175 per unit. Assume no beginning inventories. Calculate the gross profit using absorption costing when Adamson:a. Produces and sells 2,000 units. b. Produces 2,500 units and sells 2,000 units c. Produces 5,000 units and sells 2,000 units. Which reason(s) might provide good cause for a Christian to "count it all joy" as James says to do in James 1:2-4? A fixed 11.2-cm-diameter wire coil is perpendicular to a magnetic field 0.53 T pointing up. In 0.10 s , the field is changed to 0.24 T pointing down. What is the average induced emf in the coil? Select the function that represents a parabola with zeros at x = 2 and x = 4, and y-intercept (0,16). A (x) = x2 + 2x 8 B (x) = 2x2 + 4x 16 C (x) = x2 2x 8 D (x) = 2x2 4x 16 4 > - 4404 true or false seigel co. maintains a defined-benefit pension plan for its employees. at each balance sheet date, seigel should report a pension asset / liability equal to the The _____ act is where ideas get explained, the nooks and crannies of characters are explored, and the reasons for characters come into effect.It is important to keep in mind where characters start and _____.The more complications that arise out of the _________ and ____________ are what make the plot more interesting.An _____ does not need to be physical.Simple stories like "The Three Little Pigs" which have a beginning, a middle, and an ending show _______.Sometimes it is a good idea when writing a story to start at the _____ and then work backwards.The ____ act is where all the questions get answered.The _______ is how the story ends, the pay off, the third act. Find the inverse of the following function. Choose the word or phrase that best completes the sentence.de ayudarme. No lo puedo hacer solo.Ya voyFavor find the x value for this problem If a gas displays a solubility of 0.00290M at a partial pressure of 125 kPa, what is the proportionality constant for this gas in this solvent and at this temperature? what are two ways of determining the distance between two points A researcher wants to examine the relationship between viewing television violence and behaving aggressively. He has participants decide whether they would prefer to view a violent or a nonviolent film, and subsequently records the number of aggressive behaviors they show in a competitive game. The researcher cannot legitimately make a causal statement based on his findings because the study __________.