Answer:
Physical properties are properties that can be measured or observed without changing the chemical nature of the substance. Some examples of physical properties are:
color (intensive)
density (intensive)
volume (extensive)
mass (extensive)
boiling point (intensive): the temperature at which a substance boils
melting point (intensive): the temperature at which a substance melts
Explanation:
A projectile is fired into the air from the top of a 200-m cliff above a valley as shown below. Its initial velocity is 60 m/s at 60° above the horizontal. Calculate (a) the maximum height, (b) the time required to reach its highest point, (c) the total time of flight, (d) the components of its velocity just before striking the ground, and (e) the horizontal distance traveled from the base of the cliff.
a) y(max) = 337.76 m
b) t₁ = 5.30 s the time for y maximum
c)t₂ = 13.60 s time for y = 0 time when the fly finish
d) vₓ = 30 m/s vy = - 81.32 m/s
e)x = 408 m
Equations for projectile motion:
v₀ₓ = v₀ * cosα v₀ₓ = 60*(1/2) v₀ₓ = 30 m/s ( constant )
v₀y = v₀ * sinα v₀y = 60*(√3/2) v₀y = 30*√3 m/s
a) Maximum height:
The following equation describes the motion in y coordinates
y = y₀ + v₀y*t - (1/2)*g*t² (1)
To find h(max), we need to calculate t₁ ( time for h maximum)
we take derivative on both sides of the equation
dy/dt = v₀y - g*t
dy/dt = 0 v₀y - g*t₁ = 0 t₁ = v₀y/g
v₀y = 60*sin60° = 60*√3/2 = 30*√3
g = 9.8 m/s²
t₁ = 5.30 s the time for y maximum
And y maximum is obtained from the substitution of t₁ in equation (1)
y (max) = 200 + 30*√3 * (5.30) - (1/2)*9.8*(5.3)²
y (max) = 200 + 275.40 - 137.64
y(max) = 337.76 m
Total time of flying (t₂) is when coordinate y = 0
y = 0 = y₀ + v₀y*t₂ - (1/2)* g*t₂²
0 = 200 + 30*√3*t₂ - 4.9*t₂² 4.9 t₂² - 51.96*t₂ - 200 = 0
The above equation is a second-degree equation, solving for t₂
t = [51.96 ±√ (51.96)² + 4*4.9*200]/9.8
t = [51.96 ±√2700 + 3920]/9.8
t = [51.96 ± 81.36]/9.8
t = 51.96 - 81.36)/9.8 we dismiss this solution ( negative time)
t₂ = 13.60 s time for y = 0 time when the fly finish
The components of the velocity just before striking the ground are:
vₓ = v₀ *cos60° vₓ = 30 m/s as we said before v₀ₓ is constant
vy = v₀y - g *t vy = 30*√3 - 9.8 * (13.60)
vy = 51.96 - 133.28 vy = - 81.32 m/s
The sign minus means that vy change direction
Finally the horizontal distance is:
x = vₓ * t
x = 30 * 13.60 m
x = 408 m
Grog (born in 600 BC) Euriados (born in 50 AD) Nicholas (born in 1600 AD) Describe how each one of these Men would perform their duties as an astronomer, and what information would be important to them?
All these people perform similar duties due to their similar profession.
All these People are the astronomers so they used various instruments that are present at their time in order to study the heavenly bodies such as stars and planets present in the sky. They also analyze their findings with the help of researches and experiments. They also develop theories that are based on personal observations and tested the theories of other astronomers in order to verify their theories.
https://brainly.com/question/24373447
What is tensor quantity?
Is Inertia a tensor? give reason
Answer:
A tensor is a quantity, for example a stress or a strain, which has magnitude, direction, and a plane in which it acts. Stress and strain are both tensor quantities. ... A tensor is a quantity, for example a stress or a strain, which has magnitude, direction, and a plane in which it acts.
Inertia Tensor. where I = the inertia tensor. The angular momentum of a rigid body rotating about an axis passing through the origin of the local reference frame is in fact the product of the inertia tensor of the object and the angular velocity. ... As shown in [7], the inertia tensor is symmetric.
Explanation:
Hope dis help
a bullet is dropped from the same height when another bullet is fired horizontally they will hit the ground
Answer:
simultaneously
Time taken to reach the ground depends on the vertical component of velocity, not horizontal component of velocity.
what is simple machine?
Explanation:
Those tools that helps to make our work easier ,faster and more convenient in our daily life it is called simple Machine.
why meter cube is called derived unit
Answer:
Because it is the result of two more fundamental units, a derived unit is termed that. For volume, the cubic meter (m³) is the fundamental unit of area. Any number that cannot be measured directly with any equipment is referred to as a derived unit. For example, we can't quantify a substance's density using a rule, scale, or bucket.
OAmalOHopeO
Susan is quite nearsighted; without her glasses, her far point is 34 cm and her near point is 17 cm . Her glasses allow her to view distant objects with her eye relaxed. With her glasses on, what is the closest object on which she can focus?
Answer:
[tex]u=34cm[/tex]
Explanation:
From the question we are told that:
Far point is [tex]V=34 cm[/tex]
Near point is [tex]u=17 cm[/tex]
Therefore
Focal Length
[tex]f=-34cm[/tex]
Generally the equation for the Lens is mathematically given by
[tex]\frac{1}{u}=\frac{1}{f}-\frac{1}{v}[/tex]
[tex]\frac{1}{u}=\frac{1}{-34}-\frac{1}{-17}[/tex]
[tex]u=34cm[/tex]
14. What's one of the two requirements electric current?
A. There must be an electric potential between two bodies
B. There must be no valence electrons that make their element unstable
C. There must be a carbon element present in the electric current
D. There must be a magnetic force between two bodies
Marko
One of the two requirements of electric current is there must be an electric potential between two bodies
For electric current to flow, there must be an electric potential between two bodies.
This is because electric charge flows from a higher electric potential to a lower electric potential just as, water flows from a higher gravitational potential to a lower gravitational potential.
The difference between the electric potential between the two bodies causes the electric charge to flow between the two bodies.
This flow of electric charge constitutes electric current and electric current will only flow when there is an electric potential between two bodies.
So, one of the two requirements of electric current is there must be an electric potential between two bodies.
So, the answer is A
Learn more about electric current here:
https://brainly.com/question/13562393
How is centripetal force affected if an object increases its speed?
A. Decreases
B. Increases
C. Cut in half
D. No effect
Answer:
B. Increases.
Explanation:
[tex]{ \bf{F = \frac{m {v}^{2} }{r} }} \\ { \bf{F \: \alpha \: {v}^{2} }}[/tex]
Keeping mass, and radius constant, speed or velocity is directly proportioanal to centripetal force.
,In order to increase the speed of an object on a circular path, YOU have to increase the centripetal force acting on it.
please answer all of them
I'll give brainly if answer for points will be reported
Answer:
Level 1-
1. It depends of the sense and the magnitude of the force
2. Electric force
3. A contact force need to touch to act in the object, like push a box for example. A non-contact force don't need to touch to act in the object, like an magnet attracting other magnet
4. The pressure is the force divided by the area. The unit for pressure in the international system is Pascal
5. Because the pressure is applied in all the surface of our bodies, so the force is divided by the surface area of our bodies.
Level 2-
1. The balloons stick to the walls because when she rubbed they in her clothes they earned eletric charge, and when they touched the wall, the electric charges of the wall got polarized and it creats a attraction force.
The same happened with the water stream. The balloons were charged with electric charges and the water was attracted by it.
2. Mass is the amount of matter, it's an scalar quantity. Weight is the force created by the attraction of a massive body as the Earth, and another body as a human, and a force is a vector
3. It's for increase the surface area, so the pressure will be decreased
4. When a person pulls up the syringe plunger the pressure inside the syringe is smaller than the pressure outside, so the pressure push the liquid into the syringe
5. a) The stream of the top is falling closer than the stream from the bottom, causa in the top the pressure is lower than in the bottom. In the bottom, beyond the air pressure, it has also the whole column of water making more pressure, so it goes far.
b) The streams are all near because the holes are in the same height, so the pressure is divided for all the holes.
Level 3-
1. The girl.
pressure of the girl: 50/1 = 50
pressure of the man: 100/25 = 4
pressure of the elephant: 4500/250 = 18
So, the girl exerts more pressure.
2. When the can is heated the air inside expands and get out of it. If you seal the mouth of the can, the air cannot return to inside it, and when it get colder the air inside will shrink back to the normal volume, so it will occupy less space and the outside pressure will exerts a force and deform the can.
Meaning of power in physics
Answer:
The rate of doing work is called power.
Answer:
The amount of energy transported or transformed per unit time is referred to as power in physics. The watt, which is equal to one joule per second in the International System of Units, is the unit of power.
OAmalOHopeO
A hot-air balloon plus cargo has a mass of 308 kg and a volume of 2910 m3 on a day when the outside air density is 1.22 kg/m3. The balloon is floating at a constant height of 9.14 m above the ground.
Required:
What is the density of the hot air in the balloon?
9514 1404 393
Answer:
1.114 kg/m³
Explanation:
The total mass of the air in the balloon and the balloon + cargo will be the mass of the displaced air. If d is the density of the air in the balloon, then we have ...
2910d +308 = 2910×1.22
Solving for d, we find ...
2910d = 2919(1.22) -308
d = 1.22 -308/2910
d ≈ 1.114 . . . kg/m³
The density of the hot air is about 1.114 kg/m³.
8. A mass of 10 Kg is accelerating at 3 m/s2. What is the applied net force?
Answer:
Explanation:
F = ma
F = (10)(3)
F = 30 N
Answer:
[tex]\boxed {\boxed {\sf 30 \ Newtons}}[/tex]
Explanation:
We are asked to find the applied net force. According to Newton's Second of Law, force is the product of mass and acceleration.
[tex]F= m \times a[/tex]
The object has a mass of 10 kilograms and it is accelerating at 3 meters per second squared.
m= 10 kg a= 3 m/s²Substitute the known values into the formula.
[tex]F= 10 \ kg \times 3 \ m/s ^2[/tex]
Multiply.
[tex]F= 30 \ kg \times m/s^2[/tex]
1 kilogram meter per second squared is equal to 1 Newton, so our answer of 30 kg × m/s² is equal to 30 N.
[tex]F= 30 \ N[/tex]
The applied net force is 30 Newtons.
A mass is hanging from the end of a horizontal bar that pivots around an axis through its center, but it is being held stationary. The bar is then released and begins to rotate. As the bar rotates from horizontal to vertical, the magnitude of the torque on the bar: ________
Answer:
The torque decreases because as the hanging mass goes down, the moment arm about the pivot point decreases. Since the torque is directly proportional to the length of the moment arm, torque decreases.
The torque decreases because as the hanging mass goes down, the moment arm about the pivot point decreases. Since the torque is directly proportional to the length of the moment arm, torque decreases.
What is the difference between atomic number and atomic mass ?Atomic number of an element is defined as total number of protons present in the nucleus, neutrons carry no net electrical charge, so it is the charge number of the nucleus.
atomic mass of an element can be defined as the atomic weight is measured total mass of an element’s atom, the total number of neutrons and protons in the nucleus of an atom.
Both Atomic mass and an atomic number of elements are closely related if atomic number is high, then the atomic mass is also said to be high.
For more details regarding fire mass , visit
brainly.com/question/16858932
#SPJ2
Simple Pendulum: A 34-kg child on an 18-kg swing set swings back and forth through small angles. If the length of the very light supporting cables for the swing is 4.9 m, how long does it take for each complete back-and-forth swing
Answer:
The correct answer is "4.443 sec".
Explanation:
Given:
Mass of child,
= 34 kg
Mass of swing,
= 18 kg
Length,
= 4.9 m
The time period of pendulum will be:
T = [tex]2 \pi \sqrt{4g}[/tex]
= [tex]2 \pi \sqrt{\frac{4.9}{9.8} }[/tex]
= [tex]4.443 \ sec[/tex]
Answer:
The time taken to back and forth is 4.4 s .
Explanation:
Length, L = 4.9 m
let the time period is T.
Acceleration due to gravity, g = 9.8 m/s^2
Use the formula of time period
[tex]T = 2 \pi\sqrt{L}{g}\\\\T = 2 \times 3.14\sqrt{4.9}{9.8}\\\\T = 4.4 s[/tex]
trong cùng một nhiệt độ, lượng năng lượng trên mỗi mol của chất khí nào lớn nhất
a) Khí đơn nguyên tử
b) Khí có từ ba nguyên tử
c) Khí lưỡng nguyên tử
May someone help...please. Pretty please...
If a person is 18 % shorter than average, what is the ratio of his walking pace (that is, the frequency 'f' of his motion) to the walking pace of a person of average height? Assume that a person's leg swings like a pendulum and that the angular amplitude of everybody's stride is about the same.
f(short)/f(avg)=?
We have that the ratio of his walking pace to the walking pace of a person of average height is
[tex]\frac{V_2}{V_1}=1.10[/tex]
given the assumption and the calculation given below
From the question we are told that:
Consider a person 18\% shorter than average
Let average height of a person be [tex]10m[/tex]
Therefore
The height of an [tex]18\%[/tex] shorter man is mathematically given as
H=10*0.18
H=8.2m
Generally, the equation for velocity is mathematically given by
[tex]v=\frac{1}{2\pi} \sqrt{{g}{l}}[/tex]
Where we have the Assumption that a person's leg swings like a pendulum and that the angular amplitude of everybody's stride is about the same
Therefore
[tex]\frac{V_1}{V_2}=\frac{l_1}{l_2}[/tex]
[tex]\frac{V_1}{V_2}={82}{100}[/tex]
[tex]\frac{V_2}{V_1}=1.10[/tex]
In conclusion
The ratio of his walking pace (that is, the frequency 'f' of his motion) to the walking pace of a person of average height is
[tex]\frac{V_2}{V_1}=1.10[/tex]
For more information on this visit
https://brainly.com/question/21196186
A 4kg block is attached to a vertical spring with a spring constant of 800N/m. How much elastic potential energy is stored in the system?
E= [tex]\frac{1}{2}[/tex]×k×x² = 1J
given k=800n/m x=0.05m
Calculate the self-inductance (in mH) of a 45.0 cm long, 10.0 cm diameter solenoid having 1000 loops. mH (b) How much energy (in J) is stored in this inductor when 21.0 A of current flows through it? J (c) How fast (in s) can it be turned off if the induced emf cannot exceed 3.00 V? s
Answer:
(a) The self inductance, L = 21.95 mH
(b) The energy stored, E = 4.84 J
(c) the time, t = 0.154 s
Explanation:
(a) Self inductance is calculated as;
[tex]L = \frac{N^2 \mu_0 A}{l}[/tex]
where;
N is the number of turns = 1000 loops
μ is the permeability of free space = 4π x 10⁻⁷ H/m
l is the length of the inductor, = 45 cm = 0.45 m
A is the area of the inductor (given diameter = 10 cm = 0.1 m)
[tex]A = \pi r^2 = \frac{\pi d^2}{4} = \frac{\pi \times (0.1)^2}{4} = 0.00786 \ m^2[/tex]
[tex]L = \frac{(1000)^2 \times (4\pi \times 10^{-7}) \times (0.00786)}{0.45} \\\\L = 0.02195 \ H\\\\L = 21.95 \ mH[/tex]
(b) The energy stored in the inductor when 21 A current ;
[tex]E = \frac{1}{2}LI^2\\\\E = \frac{1}{2} \times (0.02195) \times (21) ^2\\\\E = 4.84 \ J[/tex]
(c) time it can be turned off if the induced emf cannot exceed 3.0 V;
[tex]emf = L \frac{\Delta I}{\Delta t} \\\\t = \frac{LI}{emf} \\\\t = \frac{0.02195 \times 21}{3} \\\\t = 0.154 \ s[/tex]
An object of mass 80 kg is released from rest from a boat into the water and allowed to sink. While gravity is pulling the object down, a buoyancy force of 1/50 times the weight of the object is pushing the object up (weight=mg). If we assume that water resistance exerts a force on the abject that is proportional to the velocity of the object, with proportionality constant 10 N-sec/m, find the equation of motion of the object. After how many seconds will the velocity of the object be 40 m/s? Assume that the acceleration due to gravity is 9.81 m/sec^2.
Answer:
a) Fnet = mg - Fb - Fr
b) 8.67 secs
Explanation:
mass of object = 80 kg
Buoyancy force = 1/50 * weight ( 80 * 9.81 ) = 15.696
Proportionality constant = 10 N-sec/m
a) Calculate equation of motion of the object
Force of resistance on object due to water = Fr ∝ V
= Fr = Kv = 10 V
Given that : Fb( due to buoyancy ) , Fr ( Force of resistance ) acts in the positive y-direction on the object while mg ( weight ) acts in the negative y - direction on the object.
Fnet = mg - Fb - Fr
∴ Equation of motion of the object ( Ma = mg - Fb - Fr )
b) Calculate how long before velocity of the object hits 40 m/s
Ma = mg - Fb - Fr
a = 9.81 - 0.1962 - 0.125 V = 9.6138 - 0.125 V
V = u + at ---- ( 1 )
u = 0
V = 40 m/s
a = 9.6138 - 0.125 V
back to equation 1
40 = 0 + ( 9.6138 - 0.125 (40) ) t
40 = 4.6138 t
∴ t = 40 / 4.6138 = 8.67 secs
You are outdoors when you hear the constant chirp of a still cricket. You start walking toward the cricket and at some point you are able to detect that the intensity of the chirp of the cricket has increased by a factor of 4. What of the following statements is true at your new position with respect to the cricket?
a. The power delivered by the sound wave you hear has doubled.
b. The speed of the sound wave emitted by the cricket has decreased by a factor of 4.
c. The distance between you and the cricket has decreased by a factor of 2
Answer:
C
Explanation:
intensity = Power delivered by the sound (Watt)/ Surounding Area (m²)
I = P/A
A = πr²
r = is the distance between you and the cricket.
so in other form we can get
I = P/πr²
let take I(1) as first intensitilynyou heard and I(2) as the increased intensity.
I(1) / I(2) = r(2)² / r(1)²
1/4 = r(2)²/r(1)²
1/2 = r(2) / r(1)
r(2) = ½ r(1)
or r(2) is decreaases by a factor of 2.
a stone is thrown vertically upwards with a velocity of 20 m per second determine the total time of flight of stone in air
Answer:
Explanation:
The best way to do this is to remember the rule about the halfway mark in a parabolic path. At a trajectory's half way point in its travels, it will be at its max height. To get the total time in the air, we take that time at half way and double it. Here's what we know that we are told:
initial velocity is 20 m/s
Here's what we know that we are NOT told:
a = -9.8 m/s/s and
final velocity is 0 at an object's max height in parabolic motion.
We will use the equation:
[tex]v=v_0+at[/tex] where v is final velocity and v0 is initial velocity. Filling in:
0 = 20 + (-9.8)t and
-20 = -9.8t so
t = 2 seconds. The stone reaches its max height 2 seconds after it is thrown; that means that after another 2 seconds it will be on the ground. Total air time is 4 seconds.
As a skydiver accelerates downward, what force increases? A. Gravity B. Thrust C. Air resistance D. Centripetal
Answer:
(A) Gravity is you're answer.
Explanation:
When an object or human is falling at an increased rate, The force of gravity is taking place.
You have 150 W/m^2 hitting your roof each day. You can convert 13% of it into
usable energy, and you need 3.5 kW to run your house for a day. Show the MATH,
answer and units, to determine the size solar panel you will need to succeed.
Answer:
Energy = .13 W / m^2 energy of incident energy
N = 3500 Watts / day power needed
N = 3500 Watts (3600 * 24 sec) = .0405 Watts/sec
The problem must mean that one needs 3.5 Kw-days
3.5 Kw-days = 3500 watts * 86400 sec = 3.02E8 joules
150 J/sec-m^2 * .13 = 19.5 J / sec-m^2 usable energy
In one day 19.5 J/sec-m^2 = 1.68E6 J/m^2 usable energy received
Area = 3.028E8 J / 1.68E6 J/m2 = 180 m^2
One would need 180 m^2 of solar panels
That's quite a lot of energy
A 1100 watt microwave oven uses 1.1 kW while running so 3.5 kW for 24 hours seems to be quite a lot.
A block of mass 2 kg starts from rest at the top of a friction quarter of a circle of radius R. The block then slides over frictionless curved surface in the shape of a eventually comes to rest 8 m from the beginning s a horizontal rough surface where e of the horizontal surface. The coefficient kinetic friction between the rough surface and the block is 0.4 . determine the acceleration of the block over the rough surface length 8m
The acceleration of the block over the rough surface is 1.22625 m/s²
The process through which the acceleration is obtained is presented as follows of approach to
The given parameters are;
Mass of block, m = 2 kg
Nature of the surface of the quarter circle = Frictionless
The length of the horizontal, d = 8 m
The coefficient of friction of the horizontal surface, μ = 0.4
The unknown parameter;
The acceleration of the block over the rough surface
Method;
Find the work done by friction to stop the block and divide the result by the mass of the block
The work done by friction, [tex]W_f[/tex] = (Force of friction) × (Distance the block moves on the rough surface before coming to rest)
[tex]\mathbf{W_f}[/tex] = [tex]\mathbf{F_f}[/tex] × d
[tex]F_f[/tex] = Normal reaction of surface on block, [tex]N_r[/tex] × μ
Normal reaction on block, [tex]\mathbf{N_r}[/tex] = Weight of block
[tex]\mathbf{N_r}[/tex] ≈ 2 kg × 9.81 m/s² = 19.62 N
Therefore;
The work done by friction [tex]\mathbf{W_f}[/tex] = [tex]\mathbf{F_f}[/tex] × d = [tex]\mathbf{N_r}[/tex] × μ × d
[tex]\mathbf{W_f}[/tex] = 19.62 N × 0.4 × 8 m = 62.784 J
The work done by the block, W = Force, F × d
Force, F = m × a
Where;
a = The acceleration of the block
According to the principle of conservation of energy, we have;
[tex]\mathbf{W_f}[/tex] = W
∴ 19.62 J = 2 kg × a × 8 m
a = 19.62/(2 kg × 8 m) = 1.22625 m/s²
The acceleration of the block over the rough surface, a = 1.22625 m/s²
Learn more about work done due and friction here;
https://brainly.com/question/21854305
https://brainly.com/question/1942288
the mass of an object is 10 kg and the velocity is 4 m/s, what is the momentum?
The answer is 40 kg. m/s.
Formula for momentum:
p=mv
p=(10 kg.)(4 m/s)
So, therefore, the final answer is p=40 kg. m/s.
I hope this helped answer your question. Enjoy your day, and take care!
Answer: its 400 n/s
Explanation:
cus my thing said it was right
Select the correct answer. Which of Newton's laws explains why your hands get red when you press them hard against a wall? A. Newton's law of gravity B. Newton's first law of motion C. Newton's second law of motion D. Newton's third law of motion
Answer:
D newton third law
Explanation:
good luck
A train starts from rest (at position zero) and moves with constant acceleration. On the first observation, its velocity is 20m/s and 80seconds later the velocity became 60m/s. At 80s calculate the position, average velocity, and the constant acceleration over the interval.(7-points)
The value of the acceleration is a = 0.5 m/s². The position at 80 s is x = 3200 m and finally the average velocity is v = 40 m/s.
Acceleration:
We can use the fallowing kinematic equation to get the acceleration at 80 s.
[tex]a=\frac{v_{f}-v_{i}}{t}[/tex]
Where:
v(i) is the initial velocity (20 m/s)v(f) is the final velocity (60 m/s)t is the interval (80 s)The, we have:
[tex]\vec{a}=\frac{60-20}{80}[/tex]
[tex]\vec{a}=0.5\: m/s^{2}[/tex]
Position:
Knowing the acceleration we can find the position using the falling equation.
[tex]\vec{x}=v_{i}t+0.5at^{2}[/tex]
[tex]\vec{x}=20*80+0.5*0.5*80^{2}[/tex]
[tex]\vec{x}=3200 m[/tex]
Average velocity:
The definition of the average velocity is:
[tex]\vec{v}=\frac{\Delta x}{t}[/tex]
[tex]\vec{v}=\frac{x_{f}-x_{i}}{t}[/tex]
[tex]\vec{v}=\frac{3200-0}{80}[/tex]
[tex]\vec{v}=40\: m/s[/tex]
Learn more about the kinematic equations here:
https://brainly.com/question/13143668
I hope it helps you!
Particle A has less mass than particle B. Both are pushed forward across a frictionless surface by equal forces for 1 s. Both start from rest. Which is true? A. A has more momentum. B. B has more momentum. C. A and B have the same momentum D. Not enough information.
Answer:
Both will have the same momentum.
P = M v momentum
v = a t for uniform acceleration
P = M a t
But a = F / M
P = M (F / M) t = F t so both have the same momentum
A 1050 kg car accelerates from 11.3 m/s to 26.2 m/s . What impulse does the engine give?
Answer:
I = 15,645. kg*m/s or 15,645 N*s
Explanation:
I = m(^v)
I = 1050kg((26.2m/s-11.3m/s)
I = 15,645. kg*m/s