Mole measure the number of elementary entities of a given substance that are present in a given sample. The mass of [tex]N_{2}[/tex] with 2.28 mol is 63.84g.
What is mole?The SI unit of amount of substance in chemistry is mole. The mole is used to measure the quantity of amount of substance. Mole is inversely proportional to the molar mass of respective molecule. 1 mole contains Avogadro number of atoms, ions or molecules. Mole is extensive property as it depends on the quantity of substance.
mole of [tex]N_{2}[/tex] =given mass of [tex]N_{2}[/tex] ÷molar mass of nitrogen gas
mass of [tex]N_{2}[/tex]= mole of [tex]N_{2}[/tex] ×molar mass of nitrogen gas
mole of [tex]N_{2}[/tex]= 2.28mol
Substituting the values in the formula we get,
mass of [tex]N_{2}[/tex]= 2.28mol ×28g/mole
mass of [tex]N_{2}[/tex]= 2.28mol ×28
mass of [tex]N_{2}[/tex]=63.84g
Therefore the mass of [tex]N_{2}[/tex] is 63.84g with 2.28 mole is 63.84g.
To know more about mole, here:
https://brainly.com/question/15209553
#SPJ2
How many moles of water can be formed from 0.57 moles of hydrogen gas?
Answer:
0.57 water
Explanation:
To solve this problem, we need to write the reaction expression first.
The reactants are oxygen gas and hydrogen gas.
They react to give a product of water
2H₂ + O₂ → 2 H₂O
Given that;
Number of moles of hydrogen gas = 0.57moles
From the balanced reaction expression;
2 moles of hydrogen gas produces 2 moles of water
So;
0.57mole of hydrogen gas will also produce 0.57 water
As the food burned,
energy was
nergy. Thus, a
thermal
transformed intos
chemical
form of Select
nuclear
$ converted to a
form of
Select
energy.
Check
Answer:
I don't get it is it even a question?
Joseph Priestly is frequently credited with the discovery of oxygen, and was reported to have produced molecular oxygen from the decomposition reaction of mercury(II) oxide, which is the reverse of the synthesis of HgO depicted in the following equation. 4 Hg(l) + 2 O2(g) LaTeX: \rightarrow → 4 HgO(s) Determine the value of LaTeX: \Delta ΔH°rxn for the synthesis, given that
Joseph Priestly is frequently credited with the discovery of oxygen, and was reported to have produced molecular oxygen from the decomposition reaction of mercury(II) oxide, which is the reverse of the synthesis of HgO depicted in the following equation. [tex]4Hg(l)+2O_2(g)\rightarrow 4 HgO(s) [/tex]Determine the value of [tex]\Delta ΔH°rxn[/tex] for the synthesis, given that [tex]\Delta H_f^0[/tex] for HgO is -90.7 kJ/mol.
Answer: The enthalpy change for this reaction is, -362.8 kJ
Explanation:
The balanced chemical reaction is,
[tex]4Hg(l)+2O_2(g)\rightarrow 4HgO(s)[/tex]
The expression for enthalpy change is,
[tex]\Delta H=\sum [n\times \Delta H_f(product)]-\sum [n\times \Delta H_f(reactant)][/tex]
[tex]\Delta H=[(n_{HgO}\times \Delta H_{HgO})]-[(n_{O_2}\times \Delta H_{O_2})+(n_{Hg}\times \Delta H_{Hg})][/tex]
where,
n = number of moles
[tex]\Delta H_{O_2}=0[/tex] (as heat of formation of substances in their standard state is zero
[tex]\Delta H_{Hg}=0[/tex] (as heat of formation of substances in their standard state is zero
Now put all the given values in this expression, we get
[tex]\Delta H=[(4\times -90.7)]-[(2\times 0)+(4\times 0)][/tex]
[tex]\Delta H=-362.8kJ[/tex]
Therefore, the enthalpy change for this reaction is, -362.8 kJ
Calculate the number of oxygen atoms in a 50.0g sample of scheelite CaWO4
Answer:
0.696 atoms of oxygen
Explanation:
We'll begin by calculating the number of mole in 50 g of scheelite CaWO₄. This can be obtained as follow:
Mass of CaWO₄ = 50 g
Molar mass of CaWO₄ = 40 + 184 + (4×16)
= 40 + 184 + 64
= 288 g/mol
Mole of CaWO₄ =?
Mole = mass / Molar mass
Mole of CaWO₄ = 50 / 288
Mole of CaWO₄ = 0.174 mole
Finally, we shall determine the number of oxygen atom in 50 g (i.e 0.174 mole) of CaWO₄. This can be obtained as follow:
1 mole of CaWO₄ contains 4 atoms of oxygen.
Therefore, 0.174 mole of CaWO₄ will contain = 0.696 atoms of oxygen.
Thus, 50 g (i.e 0.174 mole) of CaWO₄ contains 0.696 atoms of oxygen.
How many significant figures are in 3.20x10^2 g?
Answer:
3
Explanation:
For numbers with decimals, count the number after the decimal.
what is the formula for H-H
Answer:
H-H equation is written as follows:
pH=pK + log
{HCO3-}(base)
{H2CO3}(acid)
A student dissolves of aniline in of a solvent with a density of . The student notices that the volume of the solvent does not change when the aniline dissolves in it. Calculate the molarity and molality of the student's solution. Be sure each of your answer entries has the correct number of significant digits.
Answer:
Molarity: 0.21M
Molality: 0.20m
Explanation:
...dissolves 3.9g of aniline (C6H5NH2) in 200.mL of a solvent with a density of 1.05 g/mL...
To solve this question, we need to find the moles of aniline in 3.9g using its molar mass. Then, we need to find the kg and Liters of solution in order to find molarity (Moles/L solution) and molality (Moles/kg of solvent):
Moles aniline:
Molar mass:
6C: 6* 12.01g/mol = 72.06g/mol
7H: 7*1.008g/mol = 7.056g/mol
N: 1*14.007g/mol = 14.007g/mol
72.06g/mol+7.056g/mol+14.007g/mol = 93.123g/mol
Moles of 3.9g: 3.9g * (1mol / 93.123g) = 0.04188moles
Liters solution:
200mL * (1L / 1000mL) = 0.200L
kg solvent:
200mL * (1.05g/mL) * (1kg/1000g) = 0.210L
Molarity:
0.04188mol / 0.200L = 0.21M
Molality:
0.04188mol / 0.210L =0.20m
An atom has 81 electrons, 84 neutrons, and 82 protons. What element is this atom?
Answer:
Lead
Explanation:
The subatomic particles within an atom can be used to know the atom or element given.
Of particular interest is the number of protons within the atom.
The periodic table is based on the atomic number of atoms. This atomic number is the number of protons within an atomic space.
So; If we know the number of protons within an atom, we can know the element.
The number of protons given is 82, the element is therefore lead.
Answer:
The atomic number of polonium is 84. The atomic number lead is 82.
Explanation:
definition of solubility
(science)
Answer:
th relative ability of a solute to devolve into a solvent
identify which element is oxidized and which element is reduced.
PLZ HELPP...
In each row, checkbox under the compound that can reasonably be expected to be more acidic in aqueous solution, e.g have the larger
Ka
H₂ SO₃ H₃ SO ₄
H₃ PO₄ H₃ PO₃
HCH₃ SO₂ HCH₃CO₂
Explanation:
H2SO3 is more acid than H2TeO3. Since S is more electronegative than Te is. In H2SO3, thus, dissociation of H+ would be smoother.
So, H2SO3's got high Ka.
HCH3SO2 is more acid than HCH3CO2. Since S is more electronegative than C. So, HCH3SO2 is a high Ka.
HClO2 is more acid than HClO. Since in HClO2, after the donation of H+ ion, the negative charge is set by two oxygen atoms, while in HClO, only one oxygen atom stabilizes the negative charge.
So, HClO2 is a high Ka
Suppose a 500.mL flask is filled with 0.40mol of N2 and 1.0mol of NO. The following reaction becomes possible:
N2g+O2g ->2NOg
The equilibrium constant K for this reaction is 5.93 at the temperature of the flask. Calculate the equilibrium molarity of N2. Round your answer to two decimal places.
Answer:
[N₂] = 1.1M
Explanation:
Based on the chemical reaction:
N₂(g) + O₂(g) ⇄ 2 NO(g)
Equilibrium constant, K, is defined as:
K = 5.93 = [NO]² / [N₂] [O₂]
Where [] are equilibrium concentrations of each specie
As initial concentrations are:
N₂ = 0.40mol / 0.500L = 0.8M
NO = 1mol / 0.500L = 2M
The equilbrium concentrations are:
[NO] = 2M - 2X
[N₂] = 0.8M +X
[O₂] = X
Replacing:
5.93 = [2 - 2X]² / [0.8+X] [X]
5.93 = 4 - 8X + 4X² / 0.8X + X²
4.744X + 5.93X² = 4 - 8X + 4X²
1.93X² + 12.744X - 4 = 0
Solving for X:
X = -6.9M → False solution. There are no negative concentrations
X = 0.3M. Real solution.
[N₂] in equilibrium is:
[N₂] = 0.8M +0.3M
[N₂] = 1.1M
You want to clean a 500-ml flask that has been used to store a 0.9M solution. Each time the flask is emptied, 1.00 ml of solution adheres to the walls, and thus remains in the flask. For each rinse cycle, you pour 9.00 ml of solvent into the flask (to make 10.00 ml total), swirl to mix uniformly, and then empty it. What is the minimum number of such rinses necessary to reduce the residual concentration of 0.00001 M or below
Answer:
In the 5th cycle rinse, the residual concentration of the solution is < 0.00001M
Explanation:
In each rinse cycle, the dilution that you are doing of the solution is from 1.00mL to 10.00mL, that is a dilution of 10
In the first rinse the concentration must be of 0.9M 10 = 0.09M
2nd = 0.009M
3rd = 0.0009M
4th = 0.00009M
5th = 0.000009M →
In the 5th cycle rinse, the residual concentration of the solution is < 0.00001MHow many moles of hydrogen gas are present in 65.0 liters at STP?
1456 moles
1.45 moles
3.00 moles
2.90 moles
Answer:
2.9moles of hydrogen gas
Explanation:
convert liters to dm³
since 1liter= 1dm³
thus, 65.0liters = 65.0dm³
number of moles = volume given/22.4dm³
= 65.0/22.4
=2.9moles
Two volumes of nitric oxide react with one volume of oxygen gas to form two volumes of a reddish-brown gas. Deduce the formula of this gas and sketch particle representations of its molecules.
Answer:
Explanation:
Nitric oxide is the gas NO, it reacts with oxygen as shown below;
2NO(g) + O2(g) -----> 2NO2(g)
Now the gas formed is the gas NO2 which is known to be reddish brown in colour.
A diagrammatic representation of this reaction is shown in the image attached to this answer.
Image credit: Chemlibretext
chemistry
Definition in your own words. I will check if you got it from online.
Word:
Malleable
(malleability)
3.4 x 10-25 kg = ? microounces
Answer: 1.2 x 10^-17 microounces
Explanation:
Ounce = 28.5G microounce = 28.5*10^-6g
3.4*10^-25 kg = 3.4*10^-22 g = (3.4/2.85)*10^(-22+5) = 1.2*10-17
Explain the differences between an ideal gas and a real gas.
Answer:
Ideal Gas
The ideal gas is extremely small and the mass is almost zero and no volume Ideal gas is also considered as a point mass.
Real Gas
The molecules of real gas occupy space though they are small particles and also have volume.
anation:
The differences between an ideal gas and a real gas are that the ideal gas follows the gas laws perfectly under all conditions. Whereas a real gas deviates from ideal gas behaviors.
The ideal gas law, also known as the general gas equation, is a fundamental principle in thermodynamics and relates the pressure, volume, temperature, and number of moles of an ideal gas.
An ideal gas is a theoretical gas that follows the gas laws perfectly under all conditions of temperature and pressure. It is assumed to have no volume, no intermolecular forces, and elastic collisions between its particles. An ideal gas also obeys the ideal gas law.
On the other hand, a real gas is a gas that does not follow the gas laws perfectly under all conditions of temperature and pressure. Real gases have volume and intermolecular forces that affect their behavior. These forces cause deviations from ideal gas behavior, especially at high pressures and low temperatures.
In summary, while an ideal gas is a theoretical gas that follows the gas laws perfectly under all conditions, a real gas is a gas that deviates from ideal gas behavior due to its volume, intermolecular forces, and non-elastic collisions between its particles.
Learn more about ideal gas law here:
https://brainly.com/question/33342075
#SPJ2
What produces the magnetic force of an electromagnet?
O magnetic fields passing through the device
O static charged particles on the wire
O movement of charged particles through the wire
O positive and negative charges repelling each other
Answer:
movement of charged particles through the wire .
Explanation:
When electricity is passed through the wire of electromagnet , moving electrons of the wire produces magnetic field . This magnetic field in increased due to high permeability of soft iron of the electromagnet . It is this magnetic field which creates magnetic force .
water is a unique material in that the density of the solid is lower than the density of the liquid (which is why ice forms at the top of a pond and why ice floats in our drinks). if the density for ice at 0C is .917g/mL and the density for water at 0C is .999 g/mL, what is the calculated free space (as %) for each of these materials. you will need to estimate the volume of water as the sum of 2 H atoms and 1 O atom with radii 37 and 66 pm respectively. note that you will also have to assume a quantity of water to perform this exercise
Answer:
% Free space in water = [tex]\frac{9.945* 10^{-7} }{1*10^{-6} }[/tex]×100 = 99.45%
% Free space in ice = [tex]\frac{9.98* 10^{-7} }{1*10^{-6} }[/tex]×100 = 99.8%
Explanation:
As given ,
Density for ice at 0⁰C = 0.917 g/ml
Density for water at 0⁰C = 0.999 g/ml
Radii of H atoms = 37 pm
Radii of O atoms = 66 pm
Now,
Consider 1 ml of water = 1 cm²
As , we know that mass of water in 1 cm² = 0.999 g
Moles of water = [tex]\frac{0.999}{18} = 0.056[/tex]
Volume of H₂O = 1.624×[tex]10^{-31}[/tex] m²
Now,
Volume occupied by water = 0.056×6.022×[tex]10^{23}[/tex]× 1.624×[tex]10^{-31}[/tex] m²
= 5.48×[tex]10^{-9}[/tex] m²
⇒Volume occupied by water = 5.48×[tex]10^{-9}[/tex] m²
Now,
Free space = 1×[tex]10^{-6}[/tex] - 5.48×[tex]10^{-9}[/tex] = 9.95×[tex]10^{-7}[/tex] m²
% Free space = [tex]\frac{9.945* 10^{-7} }{1*10^{-6} }[/tex]×100 = 99.45%
Now,
Consider 1 ml of ice = 1 cm²
S.I unit of ice = 1×[tex]10^{-6}[/tex] m²
As , we know that mass of water in 1×[tex]10^{-6}[/tex] m² = 0.917 g
Moles of ice = [tex]\frac{0.917}{18} = 0.012[/tex]
Volume of H₂O = 6.022×[tex]10^{23}[/tex] ×0.012
Volume of ice unit = [tex]\frac{4}{3} \pi (37*10^{-12})^{3} *2 + \frac{4}{3} \pi (66*10^{-12})^{3} = 1.624*10^{-31}m^{3}[/tex]
Now,
Volume occupied by water = 0.012×6.022×[tex]10^{23}[/tex]× 1.624×[tex]10^{-31}[/tex] m²
= 1.17×[tex]10^{-9}[/tex] m²
⇒Volume occupied by water = 1.17×[tex]10^{-9}[/tex] m²
Now,
Free space = 1×[tex]10^{-6}[/tex] - 1.17×[tex]10^{-9}[/tex] = 9.98×[tex]10^{-7}[/tex] m²
% Free space = [tex]\frac{9.98* 10^{-7} }{1*10^{-6} }[/tex]×100 = 99.8%
Molecule A undergoes isomerization to molecule B in acetone. Using curved arrows, showing key intermediates and any formal charges, propose a detailed mechanism for this isomerization. Provide a brief explanation why this isomerization occurs.
Answer:
hello your question is incomplete attached below is the complete question
answer :
we use Isomerization because conjugated allylic carbocation is more stable when compared to a Non-conjugated Allylic carbocation
Explanation:
Reason for the mechanism
we use Isomerization because conjugated allylic carbocation is more stable when compared to a Non-conjugated Allylic carbocation
attached below is the detailed mechanism
PREDICT How do you think the atoms in metal elements are different from those in
nonmetals or metalloids? How might the atoms of different metals vary from one another?
Answer:
See explanation
Explanation:
The atoms of metals have fewer valence electrons than the atoms of metals and metalloids.
Atoms of metals have only very few valence electrons in their outermost shells hence they donate electrons during bonding. However, atoms of nonmetals have more electrons in their outermost shells and rather accept electrons during bonding. The atoms of metalloids just have a number of valence electrons that are intermediate between those of metals and nonmetals and mostly share electrons in covalent bonds.
Similarly, atoms of metallic elements differ from each other in the number of valence electrons present in the valence shell of the atom of each element. For instance, sodium has one electron in the valence shell of its atom while aluminium has three electrons in the valence shell of its atom.
The atoms of metallic elements are different from the atoms of non metals or metalloids base on the outer electron/ valency electrons and the its bonding pattern.
The atoms of different metals varies in it ability to bond quickly.
The atoms of metallic elements are different from the atoms of non metals or metalloids base on the outer electron/ valency electrons and how it bonds.
Metallic atoms have very few electrons in the outermost shell. The valency electrons of this metallic atoms are few and are easily lost during bonding. They have the ability to release there valency electrons easily. Example of this metals are sodium, potassium , calcium etc.
On the other hand non metallic elements have numerous electron in the outermost shell and easily receive electron during bonding. Example are chlorine, fluorine, oxygen etc.
The metalloid atoms like silicon and germanium have an average number of electron in their outermost shell. They are in between.
The atoms of different metals varies in it ability to bond quickly. For example the group 1 metals are very reactive than the group 2 metals. This simply means the group 1 metals(alkali metals) goes into bonding more easily than the group 2 metals(alkali earth metals).
read more: https://brainly.com/question/1903992?referrer=searchResults
is C5H10 ionic or covalent?
A series of dilute NaCl solutions are prepared starting with an initial stock solution of 0.100 M NaCl. Solution A is prepared by pipeting 10 mL of the stock solution into a 250-mL volumetric flask and diluting to volume. Solution B is prepared by pipeting 25 mL of solution A into a 100-mL volumetric flask and diluting to volume. Solution C is prepared by pipeting 20 mL of solution B into a 500-mL volumetric flask and diluting to volume. What is the molar concentration of NaCl in solutions A, B and C
Answer:
Solution A: 0.00400M
Solution B: 0.00400M
Solution C: 4.00x10⁻⁵M
Explanation:
Solution A is diluting the 0.100M NaCl from 10mL to 250mL. That is:
250mL / 10mL = 25 times.
That means molar concentration of sln A is:
0.100M / 25 = 0.00400M
Solution B is obtained diluting 25mL to 100mL:
100mL / 25mL = 4 times
0.00400M / 4 times = 0.00100M
And solution C is obtained diluting the solution C from 20mL to 500mL:
500mL / 20mL = 25 times
Solution C:
0.00100M / 25 times = 4.00x10⁻⁵M
The formula for serial dilution can be used to obtain the molarity of solution A, B , C.
For solution AM1V1 = M2V2
M2 = 0.100 M × 10 mL/250-mL
M2 = 0.004 M
For solution BM1V1 = M2V2
M2 = 0.004 M × 25 mL/100-mL
M2 = 0.001 M
For solution CM1V1 = M2V2
M2 = 0.001 M × 20 mL/500-mL
M2 = 0.00004 M
Learn more about serial dilution: https://brainly.com/question/2167827
When preparing for work in the fume hood, be sure to gather all necessary tools, glassware, and chemicals _________ to minimize the number of times the hood sash is raised and lowered. Work as much as possible in the _________ of the work surface to keep the area tidy and promote air flow. If you need to step away from the experiment to obtain another item, _________ the sash during this time.
Answer:
In advance
middle
lower
Explanation:
These are the safety precautions needed when carrying out duties in the fume hood.
When planning and preparing to work in a fume hood (a locally designed area to reduce exposure to hazardous fumes). It is advisable to make all equipment readily available at your disposal in advance to reduce and minimize the raising and lowering of the hood sash at intervals.
It is also pertinent to understand that working in the middle of the work surface helps to promote the movement of air and keeps the area neat and tidy.
However, if any case where there is a need to get a new tool or equipment during the process of working in a fume hood, it is advisable to lower the sash at that point in time.
16. Using the average atomic masses given in the inside front cover of this book, calculate the indicated quantities.
d. the number of moles of cobalt represented by 5.99 x 1021 cobalt atoms e. the mass of 4.23 mol of cobalt
f. the number of cobalt atoms in 4.23 mol of cobalt
g. the number of cobalt atoms in 4.23 g of cobalt
Answer:
d. 9.95 × 10⁻³ mol
e. 249 g
f. 2.55 × 10²⁴ atoms
g. 4.32 × 10²² atoms
Explanation:
d. the number of moles of cobalt represented by 5.99 x 10²¹ cobalt atoms
We will use Avogadro's number: there are 6.02 × 10²³ atoms of cobalt in 1 mole of atoms of cobalt.
5.99 x 10²¹ atoms × 1 mol/6.02 × 10²³ atoms = 9.95 × 10⁻³ mol
e. the mass of 4.23 mol of cobalt
The molar mass of cobalt is 58.93 g/mol.
4.23 mol × 58.93 g/mol = 249 g
f. the number of cobalt atoms in 4.23 mol of cobalt
We will use Avogadro's number: there are 6.02 × 10²³ atoms of cobalt in 1 mole of atoms of cobalt.
4.23 mol × 6.02 × 10²³ atoms/1 mol = 2.55 × 10²⁴ atoms
g. the number of cobalt atoms in 4.23 g of cobalt
First, we will calculate the moles of cobalt using the molar mass of cobalt.
4.23 g × 1 mol/58.93 g = 0.0718 mol
Then, we will calculate the number of cobalt atoms using Avogadro's number.
0.0718 mol × 6.02 × 10²³ atoms/1 mol = 4.32 × 10²² atoms
1. Each substance written to the right of the arrow in a chemical equation is a
(1 point)
O catalyst
O reactant
O precipitate
O product
Answer: product
Explanation:
Each substance written to the right of the arrow in a chemical equation is referred to as a product.
When writing a chemical equation, the substance that's written to the left of arrow in the equation is the reactants.
On the other hand which is the right side is the product.
A species of desert plant produces flowers that only bloom at night. How does this enhance the survival of the species?
A. This allows the plants to conserve water and not bloom during the heat of the day.
B. This species relies on nocturnal animals like moths for pollination and reproduction
C. This species relies on moonlight for photosynthesis.
D.This allows flowers to stay closed durng the day when herbivores are more likely to eat them.
Od
Answer:
A. This allows the plants to conserve water and not bloom during the heat of the day
Explanation:
Most desert plants only bloom at night because they take advantage of animals like moths and insects that fly at night for pollination and reproduction.
Because these plants are in the desert and do not get enough water except from short occasional rainfalls, they conserve water and not bloom during the heat of the day. They bloom at night when the temperature is low and this enhances their water conservation and survival.
an unknown substance has a mass of 57.4 g and occupies a volume of 34.3 ml. what is the density in g/ml?
Answer:
1.6734 g\ml..hope it helps
How can you model the cycling of matter in the Earth system?
Answer:
The cycling of matter is important to many Earth processes and to the survival of organisms the existing matter must cycle continuously for this planet to support life Water, carbon, nitrogen, phosphorus, and even rocks move through cycles If these materials did not cycle, Earth could not support life.
Explanation:
Earth activities depend on matter cycling, and for organisms to survive, this planet's surface must cycle with the flow of matter.
What is Earth system?Rocks, as well as water, carbon, nitrogen, and phosphorus, go through cycles. The planet Earth could not support life if these materials did not cycle.
Subsystems exist within the Earth system. These subsystems include the exosphere, atmosphere, hydrosphere, lithosphere and geosphere, also referred to as the lithosphere, and the living environment (biosphere).
These systems are powered by energy that comes from both the Sun and the interior of the Earth. Through processes known as biogeochemical cycles, nutrients and elements also move through these systems along with energy.
Therefore, Earth activities depend on matter cycling, and for organisms to survive, this planet's surface must cycle with the flow of matter.
To learn more about Earth, refer to the link:
https://brainly.com/question/1204146
#SPJ6