Two hot air balloons are flying above a park. One balloon started at a height of 3,000 feet above the ground and is decreasing in height at a rate
of 40 feet per minute. The second balloon is rising at a rate of 50 feet per minute after beginning from a height of 1.200 feet above the ground.
Given that his the height of the balloons after m minutes, determine which system of equations represents this situation.

Two Hot Air Balloons Are Flying Above A Park. One Balloon Started At A Height Of 3,000 Feet Above The

Answers

Answer 1

Answer:

a

Step-by-step explanation:

its a

Answer 2

The answer is m = 3000 - 40h

m = 1200 + 50h.

The answer is option A.

What is a problem in problem-solving?

Problem-solving is the act of defining a problem; figuring out the reason for the hassle; identifying, prioritizing, and selecting options for an answer; and enforcing an answer.

What is an example of problem-solving?

Problem-solving begins with identifying the issue. For example, a teacher would possibly need to parent out a way to enhance scholar performance on writing scalability take a look at it. To do this, the trainer will assess the writing tests seeking out regions for improvement.

Learn more about Problem-solving here: https://brainly.com/question/13818690

#SPJ2


Related Questions

I NEED this answered within the next 30 minutes! Please it is simple. There is an error in this. What is it?

Answers

Answer:

(a). x = 80°

(b). x = 7.2 units

Step-by-step explanation:

Angle formed between the tangents from a point outside the circle measure the half of the difference of intercepted arcs.

(a). Here the intercepted arcs are,

    Measure of major arc = 360° - 100°

                                        = 260°

    Measure of minor arc = 100°

   x° = [tex]\frac{1}{2}[m(\text{Major arc})-m(\text{Minor arc})][/tex]

       = [tex]\frac{1}{2}(260-100)[/tex]

    x = 80°

(b). If a secant and tangent are drawn form a point outside the circle, then square of the measure of tangent is equal to the product of the measures of the secant segment and and its external segment.

x² = 4(4 + 9)

x² = 4 × 13

x² = 52

x = √52

x = 7.211 ≈ 7.2 units

The cost of a daily rental car is as follows: The initial fee is $39.99 for the car, and it costs $0.20 per mile. If Julie's final bill was $100.00 before taxes, how many miles did she drive?

Answers

Answer:

300.05 miles

Step-by-step explanation:

initial fee= $39.99

final bill = $ 100

cost =$ 0.20 per mile

remaining amount = $ 60.01

solution,

she drive = remaining amount / cost

=60.01/0.20

=300.05 miles

Answer:

500 miles

Step-by-step explanation:

Let us use cross multiplication to find the unknown amount.

Given:

1) Cost for 1 mile=$0.20

2)Cost for x miles=$100

Solution:

No of miles                             Cost

1) 1                                             $0.20

2)x                                             $100

By cross multiplying,

100 x 1= 0.20x

x=100/0.20

x=500 miles

Thank you!

A machine used to fill​ gallon-sized paint cans is regulated so that the amount of paint dispensed has a mean of ounces and a standard deviation of ounce. You randomly select cans and carefully measure the contents. The sample mean of the cans is ounces. Does the machine need to be​ reset? Explain your reasoning. ▼ Yes No ​, it is ▼ very unlikely likely that you would have randomly sampled cans with a mean equal to ​ounces, because it ▼ lies does not lie within the range of a usual​ event, namely within ▼ 1 standard deviation 2 standard deviations 3 standard deviations of the mean of the sample means.

Answers

Complete question is;

A machine used to fill gallon-sized paint cans is regulated so that the amount of paint dispensed has a mean of 128 ounces and a standard deviation of 0.20 ounce. You randomly select 35 cans and carefully measure the contents. The sample mean of the cans is 127.9 ounces. Does the machine need to be? reset? Explain your reasoning.

(yes/no)?, it is (very unlikely/ likely) that you would have randomly sampled 35 cans with a mean equal to 127.9 ?ounces, because it (lies/ does not lie) within the range of a usual? event, namely within (1 standard deviation, 2 standard deviations 3 standard deviations) of the mean of the sample means.

Answer:

Yes, we should reset the machine because it is unusual to have a mean equal to 127.9 from a random sample of 35 as the mean of 127.9 doesn't fall within range of a usual event with 2 standard deviations of the mean of the sample means.

Step-by-step explanation:

We are given;

Mean: μ = 128

Standard deviation; σ = 0.2

n = 35

Now, formula for standard error of mean is given as;

se = σ/√n

se = 0.2/√35

se = 0.0338

Normally, the range of values should be within 2 standard deviations of mean. In this case, normal range of values will be;

μ ± 2se = 128 ± 0.0338

This gives; 127.9662, 128.0338

So, Yes, we should reset the machine because it is unusual to have a mean equal to 127.9 from a random sample of 35 as the mean of 127.9 doesn't fall within range of a usual event with 2 standard deviations of the mean of the sample means.

10) How many possible outfit combinations come from six shirts, three
slacks, and five ties? *
A 15
B 18
C 30
D 90

Answers

Answer:

The answer is D)90

Hope I helped

Use Lagrange multipliers to minimize the function subject to the following two constraints. Assume that x, y, and z are nonnegative. Question 18 options: a) 192 b) 384 c) 576 d) 128 e) 64

Answers

Complete Question

The complete question is shown on the first uploaded image

Answer:

Option C is the correct option

Step-by-step explanation:

From the question we are told that

   The equation is  [tex]f (x, y , z ) = x^2 +y^2 + z^2[/tex]

    The constraint is  [tex]P(x, y , z) = x + y + z - 24 = 0[/tex]

Now using Lagrange multipliers  we have that  

   [tex]\lambda = \frac{ \delta f }{ \delta x } = 2 x[/tex]  

   [tex]\lambda = \frac{ \delta f }{ \delta y } = y[/tex]  

   [tex]\lambda = \frac{ \delta f }{ \delta z } = 2 z[/tex]

=>       [tex]x = \frac{ \lambda }{2}[/tex]

          [tex]y = \frac{ \lambda }{2}[/tex]

         [tex]z = \frac{ \lambda }{2}[/tex]

From the constraint  we have

      [tex]\frac{\lambda }{2} + \frac{\lambda }{2} + \frac{\lambda }{2} = 24[/tex]

=>   [tex]\frac{3 \lambda }{2} = 24[/tex]

=>   [tex]\lambda = 16[/tex]

substituting for x, y, z

=>   x =  8

=>  y =  8

=>   z =  8        

Hence

    [tex]f (8, 8 , 8 ) = 8^2 +8^2 + 8^2[/tex]

    [tex]f (8, 8 , 8 ) = 192[/tex]

 

find the area of square whose side is 2.5 cm

Answers

Answer:

6.25

Step-by-step explanation:

2.5 *2.5=6.25

Answer:

6.25cm^2.

Step-by-step explanation:

To find the area of a square, you multiply the two sides, 2.5✖️2.5.

This gives the area of 6.25cm^2.

Hope this helped!

Have a nice day:)

Use the two highlighted points to find the
equation of a trend line in slope-intercept
form.

Answers

Answer: y=(4/3)x+2/3

Step-by-step explanation:

Slope-intercept form is expressed as y=mx+b

First, find the slope (m):

m= rise/run or vertical/horizontal or y/x (found between the highlighted points)

m = 4/3

Second, find b:

Use one of the highlighted points for (x, y)

2=4/3(1)+b

6/3=4/3+b

2/3=b

b=2/3

Plug it into the equation:

You get y=(4/3)x+2/3 :)

one third multiplied by the sum of a and b

Answers

Answer:

1/3(a+b)

hope it helps :>

a+b/3
This is the answer of ur question

A research center claims that ​% of adults in a certain country would travel into space on a commercial flight if they could afford it. In a random sample of adults in that​ country, ​% say that they would travel into space on a commercial flight if they could afford it. At ​, is there enough evidence to reject the research

Answers

Complete Question

A research center claims that ​30% of adults in a certain country would travel into space on a commercial flight if they could afford it. In a random sample of 700 adults in that​ country, ​34% say that they would travel into space on a commercial flight if they could afford it. At ​, is there enough evidence to reject the research center's claim

Answer:

Yes there is  sufficient evidence to reject the research center's claim.

Step-by-step explanation:

From the question we are told that

     The population proportion is  p = 0.30

      The sample proportion is  [tex]\r p = 0.34[/tex]

       The  sample size is  n = 700

The null hypothesis is  [tex]H_o : p = 0.30[/tex]

 The  alternative hypothesis is  [tex]H_a : p \ne 0.30[/tex]

Here we are going to be making use of  level of significance  =  0.05 to carry out this test

Now we will obtain the critical value of  [tex]Z_{\alpha }[/tex] from the normal distribution table , the value is  [tex]Z_{\alpha } = 1.645[/tex]

 Generally the test statistics is mathematically represented as

            [tex]t = \frac{ \r p - p }{ \sqrt{ \frac{ p (1-p)}{n} } }[/tex]

substituting values

              [tex]t = \frac{ 0.34 - 0.30 }{ \sqrt{ \frac{ 0.30 (1-0.30 )}{ 700} } }[/tex]

              [tex]t = 2.31[/tex]

Looking at the values of t  and  [tex]Z_{\alpha }[/tex] we see that [tex]t > Z_{\alpha }[/tex] hence the null hypothesis is rejected

 Thus we can conclude that there is  sufficient evidence to reject the research center's claim.

Hey market sales six cans of food for every seven boxes of food the market sold a total of 26 cans and boxes today how many of each kind did the market sale

Answers

Answer:

It sold 14 cans boxes of food and 12 cans of food.

Step-by-step explanation:

The factor for the food cans depend upon every seven food boxes .So, the same no. of sets of food cans will be sold.

Let the no. of sets of food boxes be x.

According to the question,

6x+7x=26

13x=26

x=26/13

x=2

No. of food cans =6x=6×2=12 cans

No. of food boxes=7x=7×2=14 boxes

Please mark brainliest ,if it is truly the best ! Thank you!

The cost, C, in United States Dollars ($), of cleaning up x percent of an oil spill along the Gulf Coast of the United States increases tremendously as x approaches 100. One equation for determining the cost (in millions $) is:

Answers

Complete Question

On the uploaded image is a similar question that will explain the given question

Answer:

The value of k is  [tex]k = 214285.7[/tex]

The percentage  of the oil that will be cleaned is [tex]x = 80.77\%[/tex]

Step-by-step explanation:

From the question we are told that

   The  cost of cleaning up the spillage is  [tex]C = \frac{ k x }{100 - x }[/tex]  [tex]x \le x \le 100[/tex]

     The  cost of cleaning x =  70% of the oil is  [tex]C = \$500,000[/tex]

   

Now at  [tex]C = \$500,000[/tex] we have  

       [tex]\$ 500000 = \frac{ k * 70 }{100 - 70 }[/tex]

       [tex]\$ 500000 = \frac{ k * 70 }{30 }[/tex]

      [tex]\$ 500000 = \frac{ k * 70 }{30 }[/tex]

      [tex]k = 214285.7[/tex]

Now  When  [tex]C = \$900,000[/tex]

       [tex]x = 80.77\%[/tex]

       

 

Find a cubic polynomial with integer coefficients that has $\sqrt[3]{2} + \sqrt[3]{4}$ as a root.

Answers

Find the powers [tex]a=\sqrt{2}+\sqrt{3}[/tex]

$a^{2}=5+2 \sqrt{6}$

$a^{3}=11 \sqrt{2}+9 \sqrt{3}$

The cubic term gives us a clue, we can use a linear combination to eliminate the root 3 term $a^{3}-9 a=2 \sqrt{2}$ Square $\left(a^{3}-9 a\right)^{2}=8$ which gives one solution. Expand we have $a^{6}-18 a^{4}-81 a^{2}=8$ Hence the polynomial $x^{6}-18 x^{4}-81 x^{2}-8$ will have a as a solution.

Note this is not the simplest solution as $x^{6}-18 x^{4}-81 x^{2}-8=\left(x^{2}-8\right)\left(x^{4}-10 x^{2}+1\right)$

so fits with the other answers.

Answer:

[tex]y^3 -6y-6[/tex]

88 feet/second = 60 miles/hour. How many feet per second is 1 mile/hour? (Hint: divide both sides of the equation
by the same amount.)
Round to the nearest thousandth.
One mile per hour is equivalent to
ao feet/second

Answers

Answer: 1ft/sec = 0.618 mi/hr

Explanation:

88 ft/sec = 60 mi/hr
88/88 ft/sec = 60/88 mi/hr (divide both sides by 88)
1 ft/sec = 60/88 mi/hr
1 ft/sec = 15/22 mi/hr
1 ft/sec = 0.681 mi/hr

Findℒ{f(t)}by first using a trigonometric identity. (Write your answer as a function of s.)f(t) = 12 cost −π6

Answers

Answer:

[tex]L(f(t)) = \dfrac{6}{S^2+1} [\sqrt{3} \ S +1 ][/tex]

Step-by-step explanation:

Given that:

[tex]f(t) = 12 cos (t- \dfrac{\pi}{6})[/tex]

recall that:

cos (A-B) = cos AcosB + sin A sin B

[tex]f(t) = 12 [cos\ t \ cos \dfrac{\pi}{6}+ sin \ t \ sin \dfrac{\pi}{6}][/tex]

[tex]f(t) = 12 [cos \ t \ \dfrac{3}{2}+ sin \ t \ sin \dfrac{1}{2}][/tex]

[tex]f(t) = 6 \sqrt{3} \ cos \ (t) + 6 \ sin \ (t)[/tex]

[tex]L(f(t)) = L ( 6 \sqrt{3} \ cos \ (t) + 6 \ sin \ (t) ][/tex]

[tex]L(f(t)) = 6 \sqrt{3} \ L [cos \ (t) ] + 6\ L [ sin \ (t) ][/tex]

[tex]L(f(t)) = 6 \sqrt{3} \dfrac{S}{S^2 + 1^2}+ 6 \dfrac{1}{S^2 +1^2}[/tex]

[tex]L(f(t)) = \dfrac{6 \sqrt{3} +6 }{S^2+1}[/tex]

[tex]L(f(t)) = \dfrac{6( \sqrt{3} \ S +1 }{S^2+1}[/tex]

[tex]L(f(t)) = \dfrac{6}{S^2+1} [\sqrt{3} \ S +1 ][/tex]

Question 1: A triangle has sides with lengths 5, 6, and 7. Is the triangle right, acute, or obtuse?
A)Right
B)Obtuse
C)Can't be determined
D) Acute

Question 2: A 15-foot statue casts a 20-foot shadow. How tall is a person who casts a 4-foot-long shadow?
A)0.33 feet
B)3.75 feet
C)3 feet
D)5 feet

Question 3: A triangle has sides with lengths 17, 12, and 9. Is the triangle right, acute, or obtuse?
A)Acute
B)Right
C)Can't be determined
D)Obtuse

Question 4: Two friends are standing at opposite corners of a rectangular courtyard. The dimensions of the courtyard are 12 ft. by 25 ft. How far apart are the friends?
A)21.34 ft.
B)21.93 ft.
C)27.73 ft.
D)19.21 ft.

Answers

Answer:

Question 1 = D) Acute

Question 2 = C)3 feet

Question 3 = D) Obtuse

Question 4 = C)27.73 ft.

Step-by-step explanation:

Question 1: A triangle has sides with lengths 5, 6, and 7. Is the triangle right, acute, or obtuse?

In order to be able to accurately classify that a triangle with 3 given sides is either a right , acute or obtuse angle, we use the Pythagoras Theorem

Where:

If a² + b² = c² = Right angle triangle

If a² +b² > c² = Acute triangle.

If a² +b² < c² = Obtuse triangle.

It is important to note that the length ‘‘c′′ is always the longest.

Therefore, for the above question, we have lengths

5 = a, 6 = b and c = 7

a² + b² = c²

5² + 6² = 7²

25 + 36 = 49

61 = 49

61 ≠ 49, Hence 61 > 49

Therefore, this is an Acute Triangle

Question 2: A 15-foot statue casts a 20-foot shadow. How tall is a person who casts a 4-foot-long shadow?

This is question that deals with proportion.

The formula to solve for this:

Height of the statue/ Length of the shadow of the person = Height of the person/ Length of the shadow of the person

Height of the statue = 15 feet

Length of the shadow of the person = 20 feet

Height of the person = unknown

Length of the shadow of the person = 4

15/ 20 = Height of the person/4

Cross Multiply

15 × 4 = 20 × Height of the person

Height of the person = 15 × 4/20

= 60/20

Height of the person = 3 feet

Therefore, the person is 3 feet tall.

Question 3: A triangle has sides with lengths 17, 12, and 9. Is the triangle right, acute, or obtuse?

In order to be able to accurately classify that a triangle with 3 given sides is either a right , acute or obtuse angle, we use the Pythagoras Theorem

Where:

If a² + b² = c² = Right angle triangle

If a² +b² > c² = Acute triangle.

If a² +b² < c² = Obtuse triangle.

It is important to note that the length ‘‘c′′ is always the longest.

Therefore, for the above question, we have lengths 17, 12, 9

9 = a, 12 = b and c = 17

a² + b² = c²

9² + 12² = 17²

81 + 144 = 289

225 = 289

225 ≠ 289

225 < 289

Hence, This is an Obtuse Triangle.

Question 4: Two friends are standing at opposite corners of a rectangular courtyard. The dimensions of the courtyard are 12 ft. by 25 ft. How far apart are the friends?

To calculate how far apart the two friends are we use the formula

Distance = √ ( Length² + Breadth²)

We are given dimensions: 12ft by 25ft

Length = 12ft

Breadth = 25ft

Distance = √(12ft)² + (25ft)²

Distance = √144ft²+ 625ft²

Distance = √769ft²

Distance = 27.730849248ft

Approximately ≈27.73ft

Therefore, the friends are 27.73ft apart.

find the perimeter of a square of sides 10.5cm​

Answers

Answer:

Perimeter = 42 cm

Step-by-step explanation:

A square has all equal sides so you would just add 10.5 + 10.5 + 10.5 + 10.5 to get 42 cm.

Answer:

42 cm

Step-by-step explanation:

Side of square = 10.5 cm (given)

Perimeter of square = Side X 4

                                  = 10.5 X 4

                                  = 42 cm

HOPE THIS HELPED YOU !

:)

solve for x: -3(x + 1)= -3(x + 1) - 5

Answers

Answer:

No solution : 0= -5

Step-by-step explanation:

[tex]-3\left(x+1\right)=-3\left(x+1\right)-5\\\\\mathrm{Add\:}3\left(x+1\right)\mathrm{\:to\:both\:sides}\\\\-3\left(x+1\right)+3\left(x+1\right)=-3\left(x+1\right)-5+3\left(x+1\right)\\\\\mathrm{Simplify}\\\\0=-5\\\\\mathrm{The\:sides\:are\:not\:equal}\\\\\mathrm{No\:Solution}[/tex]

Max believes that the sales of coffee at his coffee shop depend upon the weather. He has taken a sample of 5 days. Below you are given the results of the sample.
Cups of Coffee Sold Temperature
350 50
200 60
210 70
100 80
60 90
40 100
A. Which variable is the dependent variable?
B. Compute the least squares estimated line.
C. Compute the correlation coefficient between temperature and the sales of coffee.
D. Predict sales of a 90 degree day.

Answers

Answer:

1. cups of coffee sold

2.Y = 605.7 - 5.943x

3. -0.952

4. 70.84

Step-by-step explanation:

1. the dependent variable in this question is the cups of coffee sold

2. least square estimation line

Y = a+bx

we have y as the cups of coffee sold

x as temperature.

first we will have to solve for a and then b

∑X = 450

∑Y = 960

∑XY = 61600

∑X² = 35500

∑Y² = 221800

a = ∑y∑x²-∑x∑xy/n∑x²-(∑x)²

a = 960 * 35500-450*61600/6*35500-450²

a = 6360000/10500

= 605.7

b = n∑xy - ∑x∑y/n∑x²-(∑x)²

= 6*61600 - 450*960/6*35500 - 450²

= -5.943

the regression line

Y = a + bx

Y = 605.7 - 5.943x

3. we are to find correlation coefficient

r = n∑xy - ∑x∑y multiplied by√(n∑x²-(∑x)² * (n∑y² - (∑y)²)

= 6*61600 -960*450/√(6*35500 - 450²)*(6*221800 - 960²)

=-62400/√4296600000

= -62400/65548.5

= -0.952

4. we have to predict sales of a 90 degree day fro the regression line

Y = 605.7 - 5.943x

y = 605.7 - 5.943(90)

y = 605.7 - 534.87

= 70.84

Transform the given parametric equations into rectangular form. Then identify the conic.

Answers

Answer:

Solution : Option B

Step-by-Step Explanation:

We have the following system of equations at hand here.

{ x = 5 cot(t), y = - 3csc(t) + 4 }

Now instead of isolating the t from either equation, let's isolate cot(t) and csc(t) --- Step #1,

x = 5 cot(t) ⇒ x - 5 = cot(t),

y = - 3csc(t) + 4 ⇒ y - 4 = - 3csc(t) ⇒ y - 4 / - 3 = csc(t)

Now let's square these two equations. We know that csc²θ - cot²θ = 1, so let's subtract the equations  as well. --- Step #2

 

( y - 4 / - 3 )² = (csc(t))²

- ( x - 5 / 1 )² = (cot(t))²  

___________________

(y - 4)² / 9 - x² / 25 = 1

And as we are subtracting the two expressions, this is an example of a hyperbola. Therefore your solution is option b.

5x+4(-x-2)=-5x+2(x-1)+12

Answers

Answer:

x=9/2

Step-by-step explanation:

Let's solve your equation step-by-step.

5x+4(−x−2)=−5x+2(x−1)+12

Step 1: Simplify both sides of the equation.

5x+4(−x−2)=−5x+2(x−1)+12

5x+(4)(−x)+(4)(−2)=−5x+(2)(x)+(2)(−1)+12 (Distribute)

5x+−4x+−8=−5x+2x+−2+12

(5x+−4x)+(−8)=(−5x+2x)+(−2+12) (Combine Like Terms)

x+−8=−3x+10

x−8=−3x+10

Step 2: Add 3x to both sides.

x−8+3x=−3x+10+3x

4x−8=10

Step 3: Add 8 to both sides.

4x−8+8=10+8

4x=18

Step 4: Divide both sides by 4.

4x/4=18/4

x=9/2

The dot plot represents a sampling of ACT scores: dot plot titled ACT Scores with Score on the x axis and Number of Students on the y axis with 1 dot over 24, 3 dots over 26, 3 dots over 27, 5 dots over 28, 3 dots over 30, 3 dots over 32, 1 dot over 35 Which box plot represents the dot plot data? box plot titled ACT Score with a minimum of 24, quartile 1 of 25, median of 26, quartile 3 of 29, and maximum of 35 box plot titled ACT Score with a minimum of 23, quartile 1 of 25, median of 26, quartile 3 of 29, and maximum of 36 box plot titled ACT Score with a minimum of 23, quartile 1 of 27, median of 30, quartile 3 of 34, and maximum of 36 box plot titled ACT Score with a minimum of 24, quartile 1 of 27, median of 28, quartile 3 of 30, and maximum of 35

Answers

Answer:

box plot titled ACT Score with a minimum of 24, quartile 1 of 27, median of 28, quartile 3 of 30, and maximum of 35

Step-by-step explanation:

The scores of the students represented on the dot plot are:

1 dot => 24

3 dots => 26, 26, 26

3 dots => 27, 27, 27

5 dots => 28, 28, 28, 28, 28

3 dots => 30, 30, 30

3 dots => 32, 32, 32

1 dot => 35

Quickly, we can ascertain 3 values from these data points of which we can use to find out which box plot represents the dot plot data.

The minimum score = 24

The maximum score = 35

The median score is the 10th value, which is the middle value of the data point = 28

Therefore, we can conclude that: "box plot titled ACT Score with a minimum of 24, quartile 1 of 27, median of 28, quartile 3 of 30, and maximum of 35".

Time

(minutes)

Water

(gallons)

1

16.50

1.5

24.75

2

33

find the constant of proportionality for the second and third row

Answers

Answer:

16.50

Step-by-step explanation:

Constant of proportionality = no of gallons of water per 1 minute.

In the first row, we have 16.50 gallons of water per 1 minute.

In the 2nd row, we have 24.75 gallons of water in 1.5 minutes. In 1 minute, we will have 24.75 ÷ 1.5 = 16.50 gallons

In the 3rd row, we have 33 gallons in 2 minutes. In 1 minute, we will have 33 ÷ 2 = 16.50 gallons.

We can see that there seems to be the same constant of proportionality for the 2nd and 3rd row, which is 16.50.

Thus, a relationship between gallons of water (w) and time (t), considering the constant, 16.50, can be written as: [tex] w = 16.50t [/tex]

This means the constant of proportionality, 16.50, is same for all rows.

Salaries of 42 college graduates who took a statistics course in college have a​ mean, ​, of . Assuming a standard​ deviation, ​, of ​$​, construct a ​% confidence interval for estimating the population mean .

Answers

Answer:

The 99% confidence interval for estimating the population mean μ is ($60,112.60, $68087.40).

Step-by-step explanation:

The complete question is:

Salaries of 42 college graduates who took a statistics course in college have a​ mean, [tex]\bar x[/tex] of, $64, 100. Assuming a standard​ deviation, σ of ​$10​,016 construct a ​99% confidence interval for estimating the population mean μ.

Solution:

The (1 - α)% confidence interval for estimating the population mean μ is:

[tex]CI=\bar x\pm z_{\alpha/2}\frac{\sigma}{\sqrt{n}}[/tex]

The critical value of z for 99% confidence interval is:

[tex]z_{\alpha/2}=z_{0.01/2}=z_{0.005}=2.57[/tex]

Compute the 99% confidence interval for estimating the population mean μ as follows:

[tex]CI=\bar x\pm z_{\alpha/2}\frac{\sigma}{\sqrt{n}}[/tex]

     [tex]=64100\pm 2.58\times\frac{10016}{\sqrt{42}}\\\\=64100+3987.3961\\\\=(60112.6039, 68087.3961)\\\\\approx (60112.60, 68087.40)[/tex]

Thus, the 99% confidence interval for estimating the population mean μ is ($60,112.60, $68087.40).

Find the interest on a Principal Balance of $10,000 over the course of eight years with an interest rate of 5.5%. Do this for: Simple Interest.

Answers

Answer:

Simple Interest : $ 4400

Step-by-step explanation:

We want to calculate the interest on $ 10,000, at 5.5% interest rate per year, over a course of 8 years.

We can use the simple interest formula here, or :

I = P × r × t,

Where P is the principle amount, $ 10,000, r is the interest rate, 5.5% each year, or in decimal form 5.5 / 100 = 0.055. t is the time, 8 years.

Simple Interest : 10000 × 0.055 × 8 =  $4400.00

Then again the interest can be added to the principal amount ( $10,000 ) to receive some new amount after 8 years, which is $ 14,000. However the simple interest earned in 8 years at a rate of 5.5% should be $4400.

The simple interest earned on the amount is $4,400

Interest is the total amount that would be paid or earned from making an investment or taking a loan over a period of time.

Simple Interest  = principal x time x interest rate

principal = amount borrowed = $10,000

time = 8 years

Interest rate = 5.5%

10,000 x 0.055 x 8 = $4,400

To learn more about simple interest, please check: https://brainly.com/question/9352088?referrer=searchResults

The heat evolved in calories per gram of a cement mixture is approximately normally distributed. The mean is thought to be 100, and the standard deviation is 2. You wish to test H0: μ = 100 versus H1: μ ≠ 100 with a sample of n = 9 specimens.
A. If the acceptance region is defined as 98.5 le x- 101.5, find the type I error probability alpha.
B. Find beta for the case where the true mean heat evolved is 103.
C. Find beta for the case where the true mean heat evolved is 105. This value of beta is smaller than the one found in part (b) above. Why?

Answers

Answer:

A.the type 1 error probability is [tex]\mathbf{\alpha = 0.0244 }[/tex]

B. β  = 0.0122

C. β  = 0.0000

Step-by-step explanation:

Given that:

Mean = 100

standard deviation = 2

sample size = 9

The null and the alternative hypothesis can be computed as follows:

[tex]\mathtt{H_o: \mu = 100}[/tex]

[tex]\mathtt{H_1: \mu \neq 100}[/tex]

A. If the acceptance region is defined as [tex]98.5 < \overline x > 101.5[/tex] , find the type I error probability [tex]\alpha[/tex] .

Assuming the critical region lies within [tex]\overline x < 98.5[/tex] or [tex]\overline x > 101.5[/tex], for a type 1 error to take place, then the sample average x will be within the critical region when the true mean heat evolved is [tex]\mu = 100[/tex]

[tex]\mathtt{\alpha = P( type \ 1 \ error ) = P( reject \ H_o)}[/tex]

[tex]\mathtt{\alpha = P( \overline x < 98.5 ) + P( \overline x > 101.5 )}[/tex]

when  [tex]\mu = 100[/tex]

[tex]\mathtt{\alpha = P \begin {pmatrix} \dfrac{\overline X - \mu}{\dfrac{\sigma}{\sqrt{n}}} < \dfrac{\overline 98.5 - 100}{\dfrac{2}{\sqrt{9}}} \end {pmatrix} + \begin {pmatrix}P(\dfrac{\overline X - \mu}{\dfrac{\sigma}{\sqrt{n}}} > \dfrac{101.5 - 100}{\dfrac{2}{\sqrt{9}}} \end {pmatrix} }[/tex]

[tex]\mathtt{\alpha = P ( Z < \dfrac{-1.5}{\dfrac{2}{3}} ) + P(Z > \dfrac{1.5}{\dfrac{2}{3}}) }[/tex]

[tex]\mathtt{\alpha = P ( Z <-2.25 ) + P(Z > 2.25) }[/tex]

[tex]\mathtt{\alpha = P ( Z <-2.25 ) +( 1- P(Z < 2.25) })[/tex]

From the standard normal distribution tables

[tex]\mathtt{\alpha = 0.0122+( 1- 0.9878) })[/tex]

[tex]\mathtt{\alpha = 0.0122+( 0.0122) })[/tex]

[tex]\mathbf{\alpha = 0.0244 }[/tex]

Thus, the type 1 error probability is [tex]\mathbf{\alpha = 0.0244 }[/tex]

B. Find beta for the case where the true mean heat evolved is 103.

The probability of type II error is represented by β. Type II error implies that we fail to reject null hypothesis [tex]\mathtt{H_o}[/tex]

Thus;

β = P( type II error) - P( fail to reject [tex]\mathtt{H_o}[/tex] )

[tex]\mathtt{\beta = P(98.5 \leq \overline x \leq 101.5) }[/tex]

Given that [tex]\mu = 103[/tex]

[tex]\mathtt{\beta = P( \dfrac{98.5 -103}{\dfrac{2}{\sqrt{9}}} \leq \dfrac{\overline X - \mu}{\dfrac{\sigma}{n}} \leq \dfrac{101.5-103}{\dfrac{2}{\sqrt{9}}}) }[/tex]

[tex]\mathtt{\beta = P( \dfrac{-4.5}{\dfrac{2}{3}} \leq Z \leq \dfrac{-1.5}{\dfrac{2}{3}}) }[/tex]

[tex]\mathtt{\beta = P(-6.75 \leq Z \leq -2.25) }[/tex]

[tex]\mathtt{\beta = P(z< -2.25) - P(z < -6.75 )}[/tex]

From standard normal distribution table

β  = 0.0122 - 0.0000

β  = 0.0122

C. Find beta for the case where the true mean heat evolved is 105. This value of beta is smaller than the one found in part (b) above. Why?

[tex]\mathtt{\beta = P(98.5 \leq \overline x \leq 101.5) }[/tex]

Given that [tex]\mu = 105[/tex]

[tex]\mathtt{\beta = P( \dfrac{98.5 -105}{\dfrac{2}{\sqrt{9}}} \leq \dfrac{\overline X - \mu}{\dfrac{\sigma}{n}} \leq \dfrac{101.5-105}{\dfrac{2}{\sqrt{9}}}) }[/tex]

[tex]\mathtt{\beta = P( \dfrac{-6.5}{\dfrac{2}{3}} \leq Z \leq \dfrac{-3.5}{\dfrac{2}{3}}) }[/tex]

[tex]\mathtt{\beta = P(-9.75 \leq Z \leq -5.25) }[/tex]

[tex]\mathtt{\beta = P(z< -5.25) - P(z < -9.75 )}[/tex]

From standard normal distribution table

β  = 0.0000 - 0.0000

β  = 0.0000

The reason why the value of beta is smaller here is that since the difference between the value for the true mean and the hypothesized value increases, the probability of type II error decreases.

Let X denote the day she gets enrolled in her first class and let Y denote the day she gets enrolled in both the classes. What is the distribution of X

Answers

Answer:

X is uniformly distributed.

Step-by-step explanation:

Uniform Distribution:

This is the type of distribution where all outcome of a certain event have equal likeliness of occurrence.

Example of Uniform Distribution is - tossing a coin. The probability of getting a head is the same as the probability of getting a tail. The have equal likeliness of occurrence.

The quotient of 8 and the difference of three and a number​.
Answer: 8÷(3-x)

Answers

Answer:

Below

Step-by-step explanation:

● 8 ÷ (3-x)

Dividing by 3-x is like multiplying by 1/(3-x)

● 8 × (1/3-x)

● 8 /(3-x)

Foram prescritos 500mg de dipirona para uma criança com febre.Na unidade tem disponivel ampola de 1g/2ml.Quantos g vão ser administrados no paciente

Answers

De acordo com a disponibilidade da unidade, há apenas a seguinte dosagem: 1g/2mL - ou seja, uma grama de dipirona a cada 2mL

O enunciado está meio mal formulado, pois é dito que foram prescritos 500mg de dipirona e é essa quantidade de farmaco que a criança tem que tomar. Deseja-se saber quantos mL deverao ser administrados.

Fazendo a classica regra de 3, podemos chegar no volume desejado:

(atentar que 500mg = 0,5g)

     g               mL

     1    ---------   2

    0,5  ---------  X    

1 . X = 0,5 . 2

X = 1mL

The value of y varies jointly with x and z. If y = 2 when z = 110 and x = 11, find the approximate value of y when x = 13 and z = 195.

Answers

Answer:

y = 4

Step-by-step explanation:

To find the approximate value of y when

x = 13 and z = 195 we must first find the relationship between them

The statement

y varies jointly with x and z is written as

y = kxz

where k is the constant of proportionality

From the question

y = 2

x = 11

z = 110

We have

2 = 11(110)k

2 = 1210k

Divide both sides by 1210

[tex]k = \frac{1}{605} [/tex]

So the formula for the variation is

[tex]y = \frac{1}{605} xz[/tex]

When

x = 13

z = 195

y is

[tex]y = \frac{1}{605} (13)(195)[/tex]

[tex]y = \frac{507}{121} [/tex]

y = 4.1900

We have the final answer as

y = 4

Hope this helps you

If the normality requirement is not satisfied​ (that is, ​np(1​p) is not at least​ 10), then a​ 95% confidence interval about the population proportion will include the population proportion in​ ________ 95% of the intervals. ​(This is a reading assessment question. Be certain of your answer because you only get one attempt on this​ question.)

Answers

Answer:

less than

Step-by-step explanation:

If the normality requirement is not satisfied​ (that is, ​np(1​ - p) is not at least​ 10), then a​ 95% confidence interval about the population proportion will include the population proportion in​ _less than__ 95% of the intervals.

The confidence interval consist of all reasonable values of a population mean. These are value for which the null hypothesis will not be rejected.

So, let assume that If the 95%  confidence interval contains the value for the hypothesized mean, then the sample mean  is reasonably close to the hypothesized mean. The effect of this is that the p- value is going to be greater than 0.05, so we fail to reject the null hypothesis.

On the other hand,

If the 95%  confidence interval do not contains the value for the hypothesized mean, then the sample mean  is far away from the hypothesized mean. The effect of this is that the p- value is going to be lesser than 0.05, so we reject the null hypothesis.

Other Questions
The Greenbaum family agreed to pay for 3 months of an online TV service in exchange for a $5 credit on the bill each month. If the Greenbaums spend a total of $11.85 on the service over the 3 months, what is the normal price of one month of online TV service?$5.00$6.85$8.95$30.55 The distance between two cities on a map is 4 centimeters. If the scale is 0.5 cm:1 km, how many kilometers apart are the actual cities? What moderates much of the air temperature over northwestern Europe? Midyear on July 31st, the Digby Corporation's balance sheet reported: Total Assets of $205.498 million Total Common Stock of $6.350 million Cash of $10.050 million Retained Earnings of $44.117 million. What were the Digby Corporation's total liabilities? a) $165.081 million. b) $144.981 million. c) $155.031 million. d) $161.381 million. What are some of the challenges African Americans had to overcome in the decades after slavery? Politics has been defined as the process whereby what is distributed or denied? Saprobic microorganisms are important decomposers of plant litter, animal matter, and dead microbes. This is an example of a(n) ______________. Which of the following is the solution set of the given equation? (x - 3) - 2(x + 6) = -5 a) {-4} b) {8} c) {-10} Factor of x2 14x + 24A. (x - 6)(x - 4)B. (x - 8)(x - 3)C. (x - 12)(x - 2)D. (x - 24)(x - 1) Which plant cells might not contain any chloroplasts? What defines someone who bullies? Jerome currently has an account balance of $1,859.55. His initial deposit on the account was $825 and it earned 5.7% simple interest. How long has Jerome held theaccount? A gift-wrapping business is staffed by Kaitlyn, Rob, Sam, Susan and Sarah. The production by each of the staff members for an average eight-hour work day is as follows: Assume that the standard or normal productivity in the organization is 10 minutes per package. What is Kaitlyn's efficiency? Kaitlyn Rob Sam Susan Sarah 72 packages 55 packages 52 packages 52 packages 48 packagesa. 0.75 (75%)b. 1.50(150%) c. 9.0 packages per hour d. 1.50 packages per hour e. 9.0 minutes per package Suppose that the function g is defined, for all real numbers, as follows.find g(-5) g(1) g(4) The marketing department of Jessi Corporation has submitted the following sales forecast for the upcoming fiscal year (all sales are on account): 1st Quarter 2nd Quarter 3rd Quarter 4th Quarter Budgeted unit sales 12,200 13,200 15,200 14,200 The selling price of the companys product is $21 per unit. Management expects to collect 65% of sales in the quarter in which the sales are made, 30% in the following quarter, and 5% of sales are expected to be uncollectible. The beginning balance of accounts receivable, all of which is expected to be collected in the first quarter, is $72,600. The company expects to start the first quarter with 2,440 units in finished goods inventory. Management desires an ending finished goods inventory in each quarter equal to 20% of the next quarters budgeted sales. The desired ending finished goods inventory for the fourth quarter is 2,640 units.Required1-A. Complete the company's sales budget.1st Quarter 2nd Quarter 3rd Quarter 4th Quarter YearBudgeted Units SalesSelling Price Per UnitTotal Sales 1-B. Complete the schedule of expected cash collections.1st Quarter 2nd Quarter 3rd Quarter 4th Quarter YearBeginning Accts Receivable1st Quarter Sales2nd Quarter Sales3rd Quarter Sales4th Quarter SalesTotal Cash Collections2. Prepare the companys production budget for the upcoming fiscal year.1st Quarter 2nd Quarter 3rd Quarter 4th Quarter YearBudgeted Unit SalesTotal NeedsRequired Production in Units You are out camping in a remote area. The next day, you plan to hike the mountain trail and return to camp before dusk. Your friends suggest that after hiking, you might want to enjoy a warm shower. They suggest that before you head out in the morning, you should suspend a strong, black cloth bag full of about 5 gallons of water, so that it sits in sunshine all day. When you return, the water should be warm, and you can enjoy a luxury because of good planning. It works and you are delighted and refreshed! The process that you used to get a warm shower illustrates Read the passage. During the spelling test, Adrian sees his friend Malcolm cheating. Adrian knows this is wrong. His first thought is to say something to the teacher, but Malcolm is one of Adrians few friends. If he tells the teacher, it could end their friendship. He decides to think about the situation before saying anything. What type of conflict do the details in this passage most reveal? character vs. self character vs. society character vs. nature character vs. character Variable g is 8 more than variable w. Variable g is also 2 less than w. Which pair of equations best models the relationship between g and w? g = 8w g = w + 2 w = g + 8 w = g 2 w = 8g w = g + 2 g = w + 8 g = w 2 find the x value for this problem Help please!!! Thank you