Answer:
A
Step-by-step explanation:
The graph is a square root function
g A control group of 14 vehicles using regular gasoline showed mean CO2 emissions of 679 pounds per 1000 miles with a standard deviation of 15 pounds. At α = 0.05, in a left-tailed test (assuming equal variances) the test statistic is: Group of answer choices
Answer:
0.236
Step-by-step explanation:
Given :
x1 = 667 ; n1 = 10 s1 = 20
x2 = 679 ; n2 = 14 s2 = 15
Test statistic :
(x1 - x2) / √[Sp² (1/n1 + 1/n2)]
The pooled Variance, Sp² :
Sp² = [(n1 - 1)s1² + (n2 - 1)s2²] / (n1 + n2 - 2)
Sp² = [(9*20²) + (13*15²)] / (10+14-2)
Sp² = 6525 / 22 = 296.59
T = (667 - 679) / √(296.59*(1/10 + 1/14)
T = -12 / 50.844
T = 0.236
Test statistic = 0.236
Solving a word problem on proportions using a unit rate
Lucy made $95 for 5 hours of work.
At the same rate, how much would she make for 13 hours of work?
sl
X Х
5
?
Answer:
$247
Step-by-step explanation:
$95 = 5 h
1 h = 95 ÷ 5 = $19/h
$19 × 13h = $247
she would make $247 after 13 hours of work.
If anyone knows answer with steps that will be greatly appreciated :)
Answer:
The area formula is= 1/2(a+b)×height
1/2×20×6=60metres squared
Step-by-step explanation:
kindly correct me if am wrong
How do u do this I don’t understand pls and thanks
Answer: Look it up on internet
Step-by-step explanation: INTERNET
An architectural drawing lists the scale as 1/4" = 1'. If a bedroom measures 212" by 334" on the drawing, how large is the bedroom?
Answer:
53 by 83.5.
just divided the two numbers by 1/4
Answer:
848 and 1336
Step-by-step explanation:
You would actually multiply 212 and 334 by 4.
You need to multiply 1/4 by 4 to get 1.
212 x 4 = 848
334 x 4 =1336
The diameter of a cone is 34 ft. the height is 16 ft what is the volume in cubic ft?
Answer:
4842.24 cubic feet
Step-by-step explanation:
Use the formula for the volume of a cone, V = [tex]\pi[/tex]r²[tex]\frac{h}{3}[/tex]
The diameter of the cone is 34 ft, so the radius is 17 ft.
Plug in the radius and height into the formula, and solve for the volume:
V = [tex]\pi[/tex]r²[tex]\frac{h}{3}[/tex]
V = [tex]\pi[/tex](17)²[tex]\frac{16}{3}[/tex]
V = [tex]\pi[/tex](289)[tex]\frac{16}{3}[/tex]
V = 4842.24
So, the volume of the cone is 4842.24 cubic feet
Answer:
4,841.32 ft³.
Step-by-step explanation:
Let’s assume that this is a right circular cone and that the radius of the cone is r.
For our problem, r = (1/2)d = (1/2)34 = 17.
The volume of the cone is:
V = (1/3)pi r^2 h, where r is the radius and h is the height.
So, V = (1/3)pi(17^2)16 = 4,841.32 ft³.
The length of a rectangle is 5 ft less than three times the width, and the area of the rectangle is 28 ft^2. Find the dimensions of the rectangle.
Answer:
7 x 4
Step-by-step explanation:
Let the width be x, length will be 3x-5. ATQ, x(3x-5)=28. x=4 and x=-7/3, since length isn't negative, x=4. Width=4 and length=7
Which expression is equivalent to 6x3 + 3y2 – 5x3 + 2y2?
Answer:
The answer is c because6X^3 minus 5X^3 is just X^3 and 3Y^2 plus 2Y^2 is 5Y^2.
Find the missing side lengths. Leave your answers as radicals in simplest form.
Answer:
Step-by-step explanation:
For the question 1:
The given is a special right triangle with angle measures of
90-60-30 and side lengths represented by :
a - a[tex]\sqrt{3}[/tex] and 2a
The side length that sees 90 degrees is represented with a
The side length that sees 60 degrees is represented with a[tex]\sqrt{3}[/tex]
The side length that sees 30 degrees is represented with 2a
Here the side length that sees angle measure 60 is given as [tex]\sqrt{6}[/tex]
so a[tex]\sqrt{3}[/tex] = [tex]\sqrt{6}[/tex] to find the value of a we divide [tex]\sqrt{6}[/tex] with [tex]\sqrt{3}[/tex]
[tex]\frac{\sqrt{6} }{\sqrt{3} }[/tex] = [tex]\sqrt{2}[/tex]
so y = [tex]\sqrt{2}[/tex] and x = 2[tex]\sqrt{2}[/tex]
for second question
the square value of hypotenuse is equal to sum of other two side length's square value
10^2 + 6^2 = x^2
100 + 36 = x^2
136 = x^2
[tex]\sqrt{136}[/tex] = x
Cho hình thang ABCD vuông tại A và D biết AB=AD=3cm, BC=6cm. Tính góc C và D
Answer:
C=6cm
D=3cm
Step-by-step explanation:
C=6×6cm
36cm
D=3×3cm
=9cm
If sin x = –0.1 and 270° < x < 360°, what is the value of x to the nearest degree?
Answer:
354°15'38.99''
Step-by-step explanation:
There are 5 slots, each containing the letters W, R, L, D or O. One letter is picked at random from each slot. What are the odds that the letters stored in these slots read the word WORLD?
Answer:
1/120
Step-by-step explanation:
For the first letter, you have a 1/5 chance of getting w
On the second you have a 1/4 chance to get the r
Then 1/3 and 1/2
Next you just multiply the bottom numbers
That gives you how many diffrent outcomes there can be. Put that over 1 and you have your answer.
Hope this helps <3
Evaluate: 2-4
1
O A.
loo
O B.-8
O c.
1
16
O D.-16
Answer:
c is the answer
[tex] \frac{1}{16} [/tex]
Factor completely 12a^3d^2 – 6ad^3
Answer:
[tex]12a^3d^2-6ad^3[/tex]
To factor an integer, we need to divide it by the ascending sequence of primes 2, 3, 5
In the end, the number of times each prime divides the original integer becomes its exponent.
Prime number 2 to the power of 2 equals 4 .
Prime number 3 to the power of 1 equals 3 .
[tex]2^{2} \times 3\times a^{3} \times b^{2} -(2\times3)ad^{3}[/tex]
Result:- [tex]6ad^2\left(2a^2-d\right)[/tex]
OAmalOHopeO
jane drove 50 miles more then her husband jim. the total distance traveled was 230 miles. find the number of miles that each of them traveled. (let jim be x and jane be x+50)
Answer:
115
Step-by-step explanation:
You divide 230 by 2 cause there are two peoples. I hope that helps :)
If 15% of the customer's total is $22.05, then the customer's total is
Answer:
$147
Step-by-step explanation:
0.15x = $22.05
Divide both sides by 15
22.05/0.15 = $147
Work out the values of a, b and k ? 30 points
Answer:
[tex]\displaystyle a=4, b= \frac{25}{4}, \text{ and } k = \frac{125}{2}[/tex]
Step-by-step explanation:
Note that the graph passes through the points: (0, 4), (1, 25), and (1.5, k).
The standard exponential function has the form:
[tex]\displaystyle y = ab^x[/tex]
The point (0, 4) tells us that y = 4 when x = 0. Therefore:
[tex](4) = a(b)^0[/tex]
Since anything raised to zero is one:
[tex]a=4[/tex]
Hence, our function is now:
[tex]y = 4(b)^x[/tex]
The point (1, 25) tells us that y = 25 when x = 1. By substituting:
[tex](25) = 4(b)^{(1)}[/tex]
Solve for b:
[tex]\displaystyle b = \frac{25}{4}[/tex]
Thus, our completed function is:
[tex]\displaystyle y = 4\left(\frac{25}{4}\right)^x[/tex]
To find k, simply substitute 1.5 for x. This yields:
[tex]\displaystyle y = k = 4\left(\frac{25}{4}\right)^{(1.5)}[/tex]
And evaluate. Hence:
[tex]\displaystyle \begin{aligned} k &= 4\left(\frac{25}{4}\right)^{3/2} \\ \\ &= 4\left(\left(\frac{25}{4}\right)^{1/2}\right)^3 \\ \\ &= 4\left(\frac{5}{2}\right)^3 \\ \\ &= 4\left(\frac{125}{8}\right) \\ \\ &= \frac{125}{2}\end{aligned}[/tex]
In conclusion:
[tex]\displaystyle a=4, b= \frac{25}{4}, \text{ and } k = \frac{125}{2}[/tex]
Find the sum : (i) 23123, 11001 and 21302 (iii) 21031, 12301 and 32211 (v) 21003, 12346 and 21220 (ii) 32101, 12301 and 1032 (iv) 301242, 123310 and 10002
Answer:
(i) 23123 + 11001 + 21302 = 55426(ii) 32101 + 12301 + 1032 = 45434(iii) 21031 + 12301 + 32211 = 65543(iv) 301242 + 123310 + 10002 = 434554(v) 21003 + 12346 + 21220 = 545691:-
[tex]\\ \sf\longmapsto 23123+11001+21302[/tex]
[tex]\\ \sf\longmapsto 55426[/tex]
2:-
[tex]\\ \sf\longmapsto 21031+12301+32211[/tex]
[tex]\\ \sf\longmapsto 65543[/tex]
3:-
[tex]\\ \sf\longmapsto 21003+12346+21220[/tex]
[tex]\\ \sf\longmapsto 54569[/tex]
4:-
[tex]\\ \sf\longmapsto 32101+12301+1032[/tex]
[tex]\\ \sf\longmapsto 45434[/tex]
5:-
[tex]\\ \sf\longmapsto 301242+123310+10002[/tex]
[tex]\\ \sf\longmapsto 434554[/tex]
A square and a rectangle have the same area. If the dimensions of the rectangle are 4 ft by 16 ft, how long is a side of the square?
Answer:
8
Step-by-step explanation:
4×16=64
[tex] \sqrt{64 } = 8[/tex]
I have this question on an assignment and my calculator won't show the horizontal asymptote correctly can I get some help here?
What's the question? I can try and help..
Last year at a certain high school, there were 56 boys on the honor roll and 150 girls on the honor roll. This year, the number of boys on the honor roll decreased by 25% and the number of girls on the honor roll decreased by 12%. By what percentage did the total number of students on the honor roll decrease?
Answer:
15.534% decrease
Step-by-step explanation:
Find the new number of boys and girls on the honor roll:
56(0.75) = 42 boys
150(0.88) = 132 girls
Find the new total number of students on the honor roll:
42 + 132 = 174
Find the percent decrease by dividing the difference in the number of students by the original number.
There were originally 206 total students on the honor roll. Find the difference:
206 - 174 = 32
Divide this by the original amount:
32/206
= 0.15534
So, the number of students on the honor roll decreased by approximately 15.534%
Simplify (-2)-3⋅ (-2)4⋅
Answer: 22
Step-by-step explanation:
−2−(3)(−2)(4)
=22
Find the area of the circle around your answer to the nearest 10th
Answer:
A= π ( 3.8)^2
A= 45.36
OAmalOHopeO
Step-by-step explanation:
area is 2xr(times your answer)
A publisher reports that 54% of their readers own a personal computer. A marketing executive wants to test the claim that the percentage is actually different from the reported percentage. A random sample of 200 found that 44% of the readers owned a personal computer. Is there sufficient evidence at the 0.10 level to support the executive's claim
The null and alternate hypotheses are
H0 : u = 0.44 vs Ha: u > 0.44
Null hypothesis: 44% of readers own a personal computer.
Alternate Hypothesis : greater than 44% of readers own a personal computer.
This is one tailed test and the critical region for this one tailed test for the significance level 0.1 is Z > ±1.28
The given values are
p1= 0.54 , p2= 0.44 ; q2= 1-p2= 0.56
Using z test
Z = p1-p2/√p2(1-p2)/n
Z= 0.54-0.44/ √0.44*0.56/200
z= =0.1/ 0.03509
z= 2.849
Since the calculated value of Z= 2.849 is greater than Z= 1.28 reject the null hypothesis therefore there is sufficient evidence to support the executive's claim.
Null hypothesis is rejected
There is sufficient evidence to support the executive's claim at 0.10 significance level.
https://brainly.com/question/2642983
g(x) = f(x+1) using f(x)= x to the power of 2
Answer:
g(x) = x² + 2x + 1
General Formulas and Concepts:
Algebra I
Terms/Coefficients
ExpandingFunctions
Function NotationStep-by-step explanation:
Step 1: Define
Identify
g(x) = f(x + 1)
f(x) = x²
Step 2: Find
Substitute in x [Function f(x)]: f(x + 1) = (x + 1)²Expand: f(x + 1) = x² + 2x + 1Redefine: g(x) = x² + 2x + 1A tank filled with water begins draining. The number of minutes t since the water began draining from the tank is a function of the number of gallons of water in the tank, v. We will call this function f so that f(t) = v.
Required:
a. Using function notation, represent the of gallons of water in me tank 4 minutes after the water darning from the Ink.
b. Suppose that f(4) = 7, what does this mean in the context of the problem?
Answer:
[tex](a)\ f(4) = v[/tex]
(b) There are 7 gallons left in the tank after 4 minuted
Step-by-step explanation:
Given
[tex]f(t) = v[/tex]
[tex]t \to[/tex] time since water began draining
[tex]v \to[/tex] gallons in the tank
Solving (a): Notation for gallons remaining at 4 minutes
This means that [tex]t=4[/tex]
[tex]f(t) = v[/tex] becomes
[tex]f(4) = v[/tex]
Solving (b): Interpret f(4) = 7
We have:
[tex]f(t) = v[/tex]
[tex]t \to[/tex] time since water began draining
[tex]v \to[/tex] gallons in the tank
This means that:
[tex]t =4[/tex]
[tex]v =7[/tex]
It can be interpreted as:
There are 7 gallons left in the tank after 4 minuted
What’s v=(324pie)(3)
Please help me to find this answer
Step-by-step explanation:
question 1
angle DBA=90°, meaning to find m<D you have to add 90+38 then subtract by 180, because ABD is a triangle
90+18+m<D=180
108+m<D=180
m<D=180-108
=72°
question 2
m<D again in this case angle ABD is also 90
m<D=180-(90+48)
=180-138
=42°
I hope this helps
Find the slope of the graphed line
Answer:
4
Step-by-step explanation:
Pick two points on the line
(0,-5) and (1,-1)
We can find the slope using
m = (y2-y1)/(x2-x1)
= ( -1 - -5)/(1 - 0)
(-1+5)/(1-0)
4/1
= 4
The number of defective circuit boards coming off a soldering machine follows a Poisson distribution. During a specific ten-hour period, one defective circuit board was found. (a) Find the probability that it was produced during the first hour of operation during that period. (Round your answer to four decimal places.) (b) Find the probability that it was produced during the last hour of operation during that period. (Round your answer to four decimal places.) (c) Given that no defective circuit boards were produced during the first five hours of operation, find the probability that the defective board was manufactured during the sixth hour. (Round your answer to four decimal places.)
Answer:
a) the probability that the defective board was produced during the first hour of operation is [tex]\frac{1}{10}[/tex] or 0.1000
b) the probability that the defective board was produced during the last hour of operation is [tex]\frac{1}{10}[/tex] or 0.1000
c) the required probability is 0.2000
Step-by-step explanation:
Given the data in the question;
During a specific ten-hour period, one defective circuit board was found.
Lets X represent the number of defective circuit boards coming out of the machine , following Poisson distribution on a particular 10-hours workday which one defective board was found.
Also let Y represent the event of producing one defective circuit board, Y is uniformly distributed over ( 0, 10 ) intervals.
f(y) = [tex]\left \{ {{\frac{1}{b-a} }\\\ }} \right _0[/tex]; ( a ≤ y ≤ b )[tex]_{elsewhere[/tex]
= [tex]\left \{ {{\frac{1}{10-0} }\\\ }} \right _0[/tex]; ( 0 ≤ y ≤ 10 )[tex]_{elsewhere[/tex]
f(y) = [tex]\left \{ {{\frac{1}{10} }\\\ }} \right _0[/tex]; ( 0 ≤ y ≤ 10 )[tex]_{elsewhere[/tex]
Now,
a) the probability that it was produced during the first hour of operation during that period;
P( Y < 1 ) = [tex]\int\limits^1_0 {f(y)} \, dy[/tex]
we substitute
= [tex]\int\limits^1_0 {\frac{1}{10} } \, dy[/tex]
= [tex]\frac{1}{10} [y]^1_0[/tex]
= [tex]\frac{1}{10} [ 1 - 0 ][/tex]
= [tex]\frac{1}{10}[/tex] or 0.1000
Therefore, the probability that the defective board was produced during the first hour of operation is [tex]\frac{1}{10}[/tex] or 0.1000
b) The probability that it was produced during the last hour of operation during that period.
P( Y > 9 ) = [tex]\int\limits^{10}_9 {f(y)} \, dy[/tex]
we substitute
= [tex]\int\limits^{10}_9 {\frac{1}{10} } \, dy[/tex]
= [tex]\frac{1}{10} [y]^{10}_9[/tex]
= [tex]\frac{1}{10} [ 10 - 9 ][/tex]
= [tex]\frac{1}{10}[/tex] or 0.1000
Therefore, the probability that the defective board was produced during the last hour of operation is [tex]\frac{1}{10}[/tex] or 0.1000
c)
no defective circuit boards were produced during the first five hours of operation.
probability that the defective board was manufactured during the sixth hour will be;
P( 5 < Y < 6 | Y > 5 ) = P[ ( 5 < Y < 6 ) ∩ ( Y > 5 ) ] / P( Y > 5 )
= P( 5 < Y < 6 ) / P( Y > 5 )
we substitute
[tex]= (\int\limits^{6}_5 {\frac{1}{10} } \, dy) / (\int\limits^{10}_5 {\frac{1}{10} } \, dy)[/tex]
[tex]= (\frac{1}{10} [y]^{6}_5) / (\frac{1}{10} [y]^{10}_5)[/tex]
= ( 6-5 ) / ( 10 - 5 )
= 0.2000
Therefore, the required probability is 0.2000