Answer:
4 cups of flour is needed and 4/3 cups of sugar
Step-by-step explanation:
Given
2 dozen Muffins; 3 cups of flour and 1 cup of sugar
Required
Determine the cups of flour if 18 muffins is used
First, we have to determine the proportion of the number of muffins used previously and now;
Represent this with p;
[tex]p = \frac{2\ dozen}{18}[/tex]
[tex]p = \frac{2 * 12}{18}[/tex]
[tex]p = \frac{24}{18}[/tex]
[tex]p = \frac{4}{3}[/tex]
Multiply this to the previous cups of flours and sugars;
Cups of flour = p * previous cups of flour
[tex]Cups\ of\ flour = \frac{4}{3} * 3[/tex]
[tex]Cups\ of\ flour = 4[/tex]
Cups of Sugar = p * previous cups of sugar
[tex]Cups\ of\ sugar= \frac{4}{3} * 1[/tex]
[tex]Cups\ of\ sugar= \frac{4}{3}[/tex]
Hence, 4 cups of flour is needed and 4/3 cups of sugar
A population consists of 100 elements. We want to draw a simple, random sample of 20 elements from this population. On the first selection, the probability of any particular element being selected is ____.
Answer:
1/5Step-by-step explanation:
Probability is the likelihood or chance that an event will occur.
Probability = expected outcome of event /total outcome
Since the population consists of 100 elements, the total outcome of event = 100.
If random sample of 20 element is drawn from the population, the expected outcome = 20
On the first selection, the probability of any particular element being selected = 20/100 = 1/5
According the the U.S. Department of Education, full-time graduate students receive an average salary of $15,000 with a standard deviation of $1,200. The dean of graduate studies at a large state university in PA claims that his graduate students earn more than this. He surveys 100 randomly selected students and finds their average salary is $16,000. Use a significance level of 0.05 to test if there is evidence that the dean's claim is correct. What are the hypotheses
Answer:
Step-by-step explanation:
Given that :
population Mean = 15000
standard deviation= 1200
sample size n = 100
sample mean = 16000
The null and the alternative hypothesis can be computed as follows:
[tex]\mathtt{H_o : \mu = 15000 }\\ \\ \mathtt{H_1 : \mu > 15000}[/tex]
Using the standard normal z statistics
[tex]z = \dfrac{\overline X - \mu}{\dfrac{\sigma }{\sqrt{n}}}[/tex]
[tex]z = \dfrac{16000 -15000}{\dfrac{1200 }{\sqrt{100}}}[/tex]
[tex]z = \dfrac{1000}{\dfrac{1200 }{10}}[/tex]
[tex]z = \dfrac{1000\times 10}{1200}[/tex]
z = 8.333
degree of freedom = n - 1 = 100 - 1 = 99
level of significance ∝ = 0.05
P - value from the z score = 0.00003
Decision Rule: since the p value is lesser than the level of significance, we reject the null hypothesis
Conclusion: There is sufficient evidence that the Dean claim for his graduate students earn more than average salary of $15,000
Dean's Claim of Average Salary = 16000, ie greater than 15000 : is correct
Null Hypothesis [ H0 ] : Average Salary = 15000
Alternate Hypothesis [ H1 ] : Average Salary > 15000
Hypothesis is tested using t statistic.
t = ( x - u ) / ( s / √ n ) ; where -
x = sample mean , u = population mean , s = standard deviation, n = sample size
t = ( 16000 - 15000 ) / ( 1200 / √100 )
= 1000 / 120
t {Calculated} = 8.33,
Degrees of Freedom = n - 1 = 100 = 1 = 99
Tabulated t 0.05 (one tail) , at degrees of freedom 99 = 1.664
As Calculated t value 8.33 > Tabulated t value 1.664 , So we reject the Null Hypothesis in favour of Alternate Hypothesis.
So, conclusion : Average Salary > 15000
To learn more, https://brainly.com/question/17099835?referrer=searchResults
A simple random sample of 28 Lego sets is obtained and the number of pieces in each set was counted.The sample has a standard deviation of 12.65. Use a 0.05 significance level to test the claim that the number of pieces in a set has a standard deviation different from 11.53.
Answer:
Step-by-step explanation:
Given that:
A simple random sample n = 28
sample standard deviation S = 12.65
standard deviation [tex]\sigma[/tex] = 11.53
Level of significance ∝ = 0.05
The objective is to test the claim that the number of pieces in a set has a standard deviation different from 11.53.
The null hypothesis and the alternative hypothesis can be computed as follows:
Null hypothesis:
[tex]H_0: \sigma^2 = \sigma_0^2[/tex]
Alternative hypothesis:
[tex]H_1: \sigma^2 \neq \sigma_0^2[/tex]
The test statistics can be determined by using the following formula in order to test if the claim is statistically significant or not.
[tex]X_0^2 = \dfrac{(n-1)S^2}{\sigma_0^2}[/tex]
[tex]X_0^2 = \dfrac{(28-1)(12.65)^2}{(11.53)^2}[/tex]
[tex]X_0^2 = \dfrac{(27)(160.0225)}{132.9409}[/tex]
[tex]X_0^2 = \dfrac{4320.6075}{132.9409}[/tex]
[tex]X_0^2 = 32.5002125[/tex]
[tex]X^2_{1- \alpha/2 , df} = X^2_{1- 0.05/2 , n-1}[/tex]
[tex]X^2_{1- \alpha/2 , df} = X^2_{1- 0.025 , 28-1}[/tex]
From the chi-square probabilities table at 0.975 and degree of freedom 27;
[tex]X^2_{0.975 , 27}[/tex] = 14.573
[tex]X^2_{\alpha/2 , df} = X^2_{ 0.05/2 , n-1}[/tex]
[tex]X^2_{\alpha/2 , df} = X^2_{0.025 , 28-1}[/tex]
From the chi-square probabilities table at 0.975 and degree of freedom 27;
[tex]X^2_{0.025 , 27}=[/tex] 43.195
Decision Rule: To reject the null hypothesis if [tex]X^2_0 \ > \ X^2_{\alpha/2 , df} \ \ \ or \ \ \ X^2_0 \ < \ X^2_{1- \alpha/2 , df}[/tex] ; otherwise , do not reject the null hypothesis:
The rejection region is [tex]X^2_0 \ > 43.195 \ \ \ or \ \ \ X^2_0 \ < \ 14.573[/tex]
Conclusion:
We fail to reject the null hypothesis since test statistic value 32.5002125 lies between 14.573 and 43.195.
If f(x)=x/2-3and g(x)=4x^2+x-4, find (f+g)(x)
Step-by-step explanation:
(f+g)(x) = f(x) + g(x)
= x/2-3 + 4x²+x+4
= ..........
Compute (3/4)*(8/9)*(15/16)*(24/25)*(35/36)*(48/49)*(63/64)*(80/81)*(99/100) Express your answer in the simplest way possible. (Suggestion: First, try computing 3/4*8/9 then 3/4*8/9*15/16 and so on. Look for patterns.
Answer:
[tex](\frac{3}{4})*(\frac{8}{9})*(\frac{15}{16})*(\frac{24}{25})*(\frac{35}{36})*(\frac{48}{49})*(\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}) = \frac{11}{20}[/tex]
Step-by-step explanation:
Given
[tex](\frac{3}{4})*(\frac{8}{9})*(\frac{15}{16})*(\frac{24}{25})*(\frac{35}{36})*(\frac{48}{49})*(\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100})[/tex]
Required
Simplify
For clarity, group the expression in threes
[tex]((\frac{3}{4})*(\frac{8}{9})*(\frac{15}{16}))*((\frac{24}{25})*(\frac{35}{36})*(\frac{48}{49}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
Evaluate the first group [Divide 8 by 4]
[tex]((\frac{3}{1})*(\frac{2}{9})*(\frac{15}{16}))*((\frac{24}{25})*(\frac{35}{36})*(\frac{48}{49}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
[Divide 9 by 3]
[tex]((\frac{1}{1})*(\frac{2}{3})*(\frac{15}{16}))*((\frac{24}{25})*(\frac{35}{36})*(\frac{48}{49}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
[tex]((\frac{2}{3})*(\frac{15}{16}))*((\frac{24}{25})*(\frac{35}{36})*(\frac{48}{49}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
[Divide 15 by 3]
[tex]((\frac{2}{1})*(\frac{5}{16}))*((\frac{24}{25})*(\frac{35}{36})*(\frac{48}{49}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
[Divide 16 by 2]
[tex]((\frac{1}{1})*(\frac{5}{8}))*((\frac{24}{25})*(\frac{35}{36})*(\frac{48}{49}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
[tex](\frac{5}{8})*((\frac{24}{25})*(\frac{35}{36})*(\frac{48}{49}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
Evaluate the second group [Divide 35 and 25 by 5]
[tex](\frac{5}{8})*((\frac{24}{5})*(\frac{7}{36})*(\frac{48}{49}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
[Divide 49 by 7]
[tex](\frac{5}{8})*((\frac{24}{5})*(\frac{1}{3})*(\frac{4}{7}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
[Divide 24 by 3]
[tex](\frac{5}{8})*((\frac{8}{5})*(\frac{1}{1})*(\frac{4}{7}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
[tex](\frac{5}{8})*((\frac{8}{5})*(\frac{4}{7}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
Merge the first and second group
[tex]((\frac{5}{8})*(\frac{8}{5})*(\frac{4}{7}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
[tex](1*(\frac{4}{7}))*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
[tex](\frac{4}{7})*((\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}))[/tex]
Evaluate the last group [Divide 99 by 9]
[tex](\frac{4}{7})*((\frac{63}{64})*(\frac{80}{9})*(\frac{11}{100}))[/tex]
[Divide 63 by 9]
[tex](\frac{4}{7})*((\frac{7}{64})*(\frac{80}{1})*(\frac{11}{100}))[/tex]
[Divide 64 and 80 by 8]
[tex](\frac{4}{7})*((\frac{7}{8})*(\frac{10}{1})*(\frac{11}{100}))[/tex]
[Divide 10 and 4 by 2]
[tex](\frac{4}{7})*((\frac{7}{4})*(\frac{5}{1})*(\frac{11}{100}))[/tex]
[Divide 100 by 5]
[tex](\frac{4}{7})*((\frac{7}{4})*(\frac{1}{1})*(\frac{11}{20}))[/tex]
[tex](\frac{4}{7})*((\frac{7}{4})*(\frac{11}{20}))[/tex]
[tex](\frac{4}{7})*(\frac{7}{4})*(\frac{11}{20})[/tex]
[tex]1*(\frac{11}{20})[/tex]
[tex]\frac{11}{20}[/tex]
Hence;
[tex](\frac{3}{4})*(\frac{8}{9})*(\frac{15}{16})*(\frac{24}{25})*(\frac{35}{36})*(\frac{48}{49})*(\frac{63}{64})*(\frac{80}{81})*(\frac{99}{100}) = \frac{11}{20}[/tex]
22 tons is equivalent to ______ kilograms.
Answer:
20000 kg
Step-by-step explanation:
Recall that 1 kg = 2.2 lb approximately. Then:
22 tons 1 kg 2000 lb
------------ * ------------ * -------------- = 20000 kg
1 2.2 lb 1 ton
please help solving.
Answer:
right machine first, then left.6 into left machine, then rightStep-by-step explanation:
a) Putting 6 into the first (left) machine will give an output of ...
y = √(6 -5) = √1 = 1
Putting 1 into the second (right) machine will give an output of ...
y = 1² -6 = -5
This answers the second question, but not the first question.
__
If we put 6 into the right machine first, we get an output of ...
y = 6² -6 = 30
Putting 30 into the left machine, we get an output of ...
y = √(30 -5) = √25 = 5 . . . . . the desired output.
The input must go into the right machine first, then its output goes into the left machine to get a final output of 5 from an input of 6.
__
b) The left machine cannot produce negative outputs, so achieving an output of -5 with the arrangement used in part A is not possible. (green curves in the attached graph)
However, as we have shown above, inputting 6 to the left machine first, following that by processing with the right machine, can produce an output of -5. (purple curve in the attached graph)
Find the polynomial for the area.
The area is
Answer: ¹/₂( x² - 10y² + 10xy - xy )
Step-by-step explanation:
From the diagram area of the triangle = ¹/₂ ˣ base ˣ height
where the base = x + 10y and the height = x - y
Therefore putting these into the formula above
Area = ¹/₂ [( x + 10y )( x -y )]
= ¹/₂( x² - xy + 10xy - 10y²)units²
= ¹/₂( x² - 10y² + 10xy - xy )
If A = {2,4,6,8,10) and B = [4,8,10), then which of the following statements is false?
A n B = B
B C B
A C B
A C B because all elements of A are not found in B
Match the base to the corresponding height.
Base (b)
Height (h)
b
h
h
b
The base 1 is matched with height 2, base 2 is matched with height 3 and base 3 is matched with height 1. The base to the corresponding height is matched in the attached figure.
What is a triangle?Triangle is the closed shaped polygon which has 3 sides and 3 interior angles. The height of the triangle is the dimension of the elevation from the opposite peak to the length of the base.
Thus, the base 1 is matched with height 2, base 2 is matched with height 3 and base 3 is matched with height 1. The base to the corresponding height is matched in the attached figure.
In the given figure, three triangles is shown with base and height. Here,
The base 1 is matched with height 2, as the height shown in figure 2 is the dimension of the elevation from the opposite peak to the length of the base 1.Similarly, base 2 is matched with height 3.Base 3 is matched with height 1.
Thus, the base 1 is matched with height 2, base 2 is matched with height 3 and base 3 is matched with height 1. The base to the corresponding height is matched in the attached figure.
Learn more about the base and height of the triangle here;
https://brainly.com/question/26043588
#SPJ2
Graph the following set of parametric equations on your calculator and select the matching graph.
Answer:
Graph 2
Step-by-step explanation:
As you can see the first equation is present with a negative slope, and none of the graphs have a line plotted with a negative slope, besides the second graph. That is your solution.
Look at the chore chart--write a notice and a wonder about the chart. Click on the image to see the chart. Enter ur answer
Answer:
I noticed that to babysit my cousin was the chore that doled out the most, and I wonder why pet my dog is even a chore. Do they not love their pets?
Karim has two investments, one in Company A, and another in Company B. Karim purchased 3,000 shares in company A at $2.65 per share. Since purchasing the shares, the price per share increased to $2.95 per share, after which point Karim decided to sell, realizing a profit. At the same time, Karim purchased 2,000 shares in Company B at $1.55 per share. Since purchasing the shares, the share price fell to $1.30 per share, after which Karim decided to sell the shares, suffering a loss. Karim is required to pay tax at a rate of 28% on the combined profit from both investments. Calculate how much tax Karim must pay.
Answer:
A:$2478
B:$728
Total:$3206
Step-by-step explanation:
2.95x3000=8850
1.30x2000=2600
8850x0.28=2478
2600x0.28=728
2478+728=3206
It takes amy 8 minutes to mow 1/6 of her backyard. At that rate how many more minutes will it take her to finish mowing her backyard
Answer:
40 minutes
Step-by-step explanation:
If it takes her 8 minutes to mow 1/6 of it, we can find the total amount of time it will take by multiplying 8 by 6, since 1/6 times 6 is 1 (1 represents the whole lawn mowed)
8(6) = 48
The question asks for how many more minutes it will take, so subtract 48 by 8.
48 - 8 = 40
= 40 minutes
Answer:
40 minutes
Step-by-step explanation:
We can use ratios to solve
8 minutes x minutes
------------------- = ----------------
1/6 yard 1 yard
Using cross products
8 * 1 = 1/6 x
Multiply each side by 6
8*6 = 1/6 * x * 6
48 = x
48 minutes total
She has already done 8 minutes
48-8 = 40 minutes
If the normality requirement is not satisfied (that is, np(1p) is not at least 10), then a 95% confidence interval about the population proportion will include the population proportion in ________ 95% of the intervals. (This is a reading assessment question. Be certain of your answer because you only get one attempt on this question.)
Answer:
less than
Step-by-step explanation:
If the normality requirement is not satisfied (that is, np(1 - p) is not at least 10), then a 95% confidence interval about the population proportion will include the population proportion in _less than__ 95% of the intervals.
The confidence interval consist of all reasonable values of a population mean. These are value for which the null hypothesis will not be rejected.
So, let assume that If the 95% confidence interval contains the value for the hypothesized mean, then the sample mean is reasonably close to the hypothesized mean. The effect of this is that the p- value is going to be greater than 0.05, so we fail to reject the null hypothesis.
On the other hand,
If the 95% confidence interval do not contains the value for the hypothesized mean, then the sample mean is far away from the hypothesized mean. The effect of this is that the p- value is going to be lesser than 0.05, so we reject the null hypothesis.
The quotient of 8 and the difference of three and a number.
Answer: 8÷(3-x)
Answer:
Below
Step-by-step explanation:
● 8 ÷ (3-x)
Dividing by 3-x is like multiplying by 1/(3-x)
● 8 × (1/3-x)
● 8 /(3-x)
An economist is interested in studying the spending habits of consumers in a particular region. The population standard deviation is known to be $1,000. A random sample of 50 individuals resulted in an average expense of $15,000. What is the width of the 99% confidence interval for the mean of expense? a. 364.28 b. 728.55 c. 329.00 d. 657.99
Answer:
The width is [tex]w = \$ 729.7[/tex]
Step-by-step explanation:
From the question we are told that
The population standard deviation is [tex]\sigma = \% 1,000[/tex]
The sample size is [tex]n = 50[/tex]
The sample mean is [tex]\= x = \$ 15,000[/tex]
Given that the confidence level is 99% then the level of significance is mathematically represented as
[tex]\alpha = 100 - 99[/tex]
=> [tex]\alpha = 1\%[/tex]
=> [tex]\alpha = 0.01[/tex]
Next we obtain the critical value of [tex]\frac{\alpha }{2}[/tex] from the normal distribution table, the value is
[tex]Z_{\frac{\alpha }{2} } = Z_{\frac{0.01 }{2} } = 2.58[/tex]
Generally margin of error is mathematically represented as
[tex]E = Z_{\frac{\alpha }{2} * \frac{\sigma }{\sqrt{n} }[/tex]
substituting values
[tex]E = 2.58 * \frac{1000 }{\sqrt{50} }[/tex]
[tex]E = 2.58 * \frac{1000 }{\sqrt{50} }[/tex]
[tex]E = 364.9[/tex]
The width of the 99% confidence interval is mathematically evaluated as
[tex]w = 2 * E[/tex]
substituting values
[tex]w = 2 * 364.9[/tex]
[tex]w = \$ 729.7[/tex]
Two sides of a triangle are equal length. The length of the third side exceeds the length of one of the other sides by 3 centimeters. The perimeter of the triangle is 93 centimeters. Find the length of each of the shorter sides of the triangle
Answer:
30 cm
Step-by-step explanation:
let x be the lenght of the two sides of equal lenghts, so the other is x+3
and the perimeter is x+x +x +3
P=3x+3
P=3(x+1)
93=3(x+1)
31=x+1
x=30
so the shorter sides are of 30 centimeters and the longest is 33
Sugar, flour, and oats are stored in three drawers. The first drawer is labeled "oats", the second is labeled, "flour", the third is labeled "oats or flour". The label of each drawer does not correspond to what is stored inside of it. In which drawers is what stored?
Answer:
first = flour, second = oats, third = sugar
Step-by-step explanation:
Since the labels are "wrong", we know that the third drawer doesn't have oats or flour, therefore it has sugar. Since the first doesn't have oats, it must have flour and that makes the second drawer oats.
Answer:
first drawer has flour, second has oats, third is sugar
Step-by-step explanation:
on the first drawer, it is labelled oats, so it cannot be oats. on the second it cannot be flour, and on the third it cannot be oats or flour, which means it HAS to be sugar leaving oats and flour to be in either the first, or second.
i know it may sound a little confusing but please let me know if you dont understand
Which defines a line segment?
two rays with a common endpoint
O a piece of a line with two endpoints
O a piece of a line with one endpoint
all points equidistant from a given point
Answer:
O a piece of a line with two endpoints
Step-by-step explanation:
O a piece of a line with two endpoints
A piece of a line with two endpoints.
What is a line segment?In geometry, a line segment is a part of a line this is bounded by distinct end points and includes every point on the line this is between its endpoints.
What are the examples of line segments in real life?A ruler, a scale, a stick, a boundary line.Learn more about line segments here https://brainly.com/question/2437195
#SPJ2
Use the graph showing Phillip's account balance to answer the question that follows. ^
What is the interest rate on Phillip's account?
A - 3.3%
B - 6.7%
C - 9.0%
D - 15.3%
Answer:
A - 3.3%
Step-by-step explanation:
From the graph
Where x= 0
Amount =$ 450
It shows that$450 is the capital
Then
When x= 3
Amount=$494.55
So interest generated within 3 years
= $494.55-$450
=$ 44.55
When x= 9
Amount = $583.65
So interest generated within 9 years
= $583.65-$450
=$ 133.65
PRT/10= Interest
450*x*3/100= 44.55
1350x= 4455
X= 4455/1350
X= 3.3
So the rate is =3.3%
This year Alex’s age is 1/6 of his dads. Four years later, Alex’s age is 1/4 of his dads. How old is Alex and his dad this year?
Answer:
This year:
dads: 36 years
Alex: 6 years
Step-by-step explanation:
a = d/6
a+4 = (d+4)/4
a = Alex´s actual age
d = actual age of the dad
d/6 + 4 = (d+4)/4
4{(d/6) + 4} = d+4
4*d/6 + 4*4 = d+4
4d/6 + 16 = d + 4
4d/6 = d + 4 - 16
4d = (d-12)*6
4d = 6*d +6*-12
4d = 6d - 72
4d - 6d = -72
-2d = -72
d = -72/-2
d = 36
a = d/6
a = 36/6
a = 6
probe:
a+4 = (d+4)/4
6 + 4 = (36+4)/4
10 = 40/4
Peter saved up $20,000 in an account earning a nominal 5% per year compounded continuously. How much was in the account at the end of two years? Round the answer to nearest dollar.
Answer: 22,103
Step-by-step explanation:
Compound interest is the interest calculated on the initial principal and the accumulated interest.
The amount in the account at the end of two years is $22,050.
What is compound interest?Compound interest is the interest calculated on the initial principal and the accumulated interest.
We have,
Principal = $20,000
Rate = r = 5%
It is compounded yearly.
Time = t = 2 years.
The formula for the amount having compound interest:
A = P [tex]( 1 + \frac{r}{n} )^{nt}[/tex]
A = 20,000 [tex](1 + \frac{5}{100\times1})^{2\times1}[/tex]
A = 20,000 ( 1 + 5/100 )²
A = 20,000 ( 105/100 )²
A = (20,000 x 105 x 105) / (100 x 100)
A = 2 x 105 x 105
A = $22,050
Thus the amount in the account at the end of two years is $22,050.
Learn more about compound interest here:
https://brainly.com/question/14740098
#SPJ2
Three students were given the expression shown and were asked to take a common factor out of two of the terms. Use the drop-down menus to complete the statements about whether each student's answer is an equivalent expression. Then choose an expression that is equivalent.
Answer:
Step-by-step explanation:
Given: 4 - 9x +21
Factorizing this expression, we have;
4 -3(3x - 7)
i. Chang's expression: 4 - 3(3x + 7)
This is not an equivalent expression, because by expansion of the bracket, the expression gives: 4 -9x -21
ii. Benjamin's expression: 4 + 3(3x + 7)
This is not an equivalent expression, because by expansion of the bracket, the expression gives: 4 +9x +21
iii. Habib's expression: 4 + 12x
This is not an equivalent expression, because the expression is not related to the given question
Comparing the three student's answers with the appropriate expression, none of the student's is an equivalent expression.
This expression that is equivalent to the given question is;
4 -3(3x - 7) = 4 -9x + 21
Answer:
1,2,4
Step-by-step explanation:
Find (fºg)(2) and (f+g)(2) when f(x)= 1/x and g(x) = 4x +9
[tex](f\circ g)(2)=\dfrac{1}{4\cdot2+9}=\dfrac{1}{17}\\\\(f+g)(2)=\dfrac{1}{2}+4\cdot2+9=\dfrac{1}{2}+17=\dfrac{1}{2}+\dfrac{34}{2}=\dfrac{35}{2}[/tex]
Explain how to solve the inequality (x + 1)(x – 2) ∙ (x – 3) > 0. Explain in your own words, each step necessary to solve the inequality, making sure to follow the proper order of operations. Is this inequality accurate? Explain why or why not.
Answer:
[tex]x > -1[/tex] or
[tex]x > 2[/tex] or
[tex]x > 3[/tex]
Step-by-step explanation:
Given
[tex](x + 1)(x - 2) (x - 3) > 0[/tex]
Required
Solve; with steps
[tex](x + 1)(x - 2) (x - 3) > 0[/tex]
Start by splitting the inequality as follows
[tex]x + 1 > 0[/tex] or [tex]x - 2 > 0[/tex] or [tex]x - 3 > 0[/tex]
Solve the inequalities one after the other
Solving: [tex]x + 1 > 0[/tex]
Subtract 1 from both sides
[tex]x + 1 - 1 > 0 - 1[/tex]
[tex]x > -1[/tex]
Solving: [tex]x - 2 > 0[/tex]
Add 2 to both sides
[tex]x - 2 +2 > 0 +2[/tex]
[tex]x > 2[/tex]
Solving: [tex]x - 3 > 0[/tex]
Add 3 to both sides
[tex]x - 3 +3> 0+3[/tex]
[tex]x > 3[/tex]
Hence, the solution to the inequality is
[tex]x > -1[/tex] or
[tex]x > 2[/tex] or
[tex]x > 3[/tex]
The average person lives for about 78 years. Does the average person live for at least 1,000,000 days? (Hint: There are 367 days in each year.)
what i
Answer:
[tex]\large \boxed{\sf No}[/tex]
Step-by-step explanation:
There are 365 days in 1 year.
The average person lives for about 78 years.
Multiply 78 by 365 to find the value in days.
[tex]78 \times 365= 28470[/tex]
The average person lives for about 28470 days.
The value of y varies jointly with x and z. If y = 2 when z = 110 and x = 11, find the approximate value of y when x = 13 and z = 195.
Answer:
y = 4Step-by-step explanation:
To find the approximate value of y when
x = 13 and z = 195 we must first find the relationship between them
The statement
y varies jointly with x and z is written as
y = kxzwhere k is the constant of proportionality
From the question
y = 2
x = 11
z = 110
We have
2 = 11(110)k
2 = 1210k
Divide both sides by 1210
[tex]k = \frac{1}{605} [/tex]
So the formula for the variation is
[tex]y = \frac{1}{605} xz[/tex]
When
x = 13
z = 195
y is
[tex]y = \frac{1}{605} (13)(195)[/tex]
[tex]y = \frac{507}{121} [/tex]
y = 4.1900
We have the final answer as
y = 4Hope this helps you
Find the probability of winning a lottery with the following rule. Select the winning numbers from 1, 2, . . . ,34 . (In any order. No repeats.)
Complete Question
Find the probability of winning a lottery with the following rule. Select the six winning numbers from 1, 2, . . . ,34 . (In any order. No repeats.)
Answer:
The probability is [tex]P(winning ) = 7.435 *10^{-7}[/tex]
Step-by-step explanation:
From the question we are told that
The total winning numbers n = 34
The total number to select is r = 6
The total outcome of lottery is mathematically represented as
[tex]t_{outcome}) = \left n } \atop {}} \right. C_r[/tex]
[tex]t_{outcome}) = \frac{n! }{(n-r )! r!}[/tex]
substituting values
[tex]t_{outcome}) = \frac{ 34 ! }{(34 - 6 )! 6!}[/tex]
[tex]t_{outcome}) = \frac{ 34 ! }{28 ! 6!}[/tex]
[tex]t_{outcome}) =1344904[/tex]
The number of desired outcome is
[tex]t_{desired} = 1[/tex]
this is because the desired outcome is choosing the six winning number
The probability of winning a lottery is mathematically represented as
[tex]P(winning ) = \frac{t_{desired}}{t_{outcome}}[/tex]
substituting values
[tex]P(winning ) = \frac{1}{1344904 }[/tex]
[tex]P(winning ) = 7.435 *10^{-7}[/tex]
How do you evaluate this?
[tex]_6C_3=\dfrac{6!}{3!3!}=\dfrac{4\cdot5\cdot6}{2\cdot3}=20[/tex]