Answer:
Margin of Error = z∝/2 * Standard Error
Step-by-step explanation:
The formula for standard error is given by
SE = [tex]\sqrt{\frac{pq}{n} }[/tex]
Where p is the probability or proportion of success q=1-p and n is the number of trials or samples.
Now Margin of Error is given by
ME = z∝/2 * Standard Error
The confidence level is used to estimate the value of alpha.
For example 90% confidence means alpha= 1-0.9= 0.1 and alpha by 2 would be 0.05 . So the value for alpha by 2 would be 1.96
Calculate how many different sequences can be formed that use the letters of the given word. Leave your answer as a product of terms of the form C(n, r). HINT [Decide where, for example, all the s's will go, rather than what will go in each position.]
georgianna
A) C(10, 7)
B) C(2, 10)C(1, 8)C(1, 7)C(1, 6)C(1, 5)C(2, 4)C(2, 2)
C) C(10, 2)C(8, 1)C(7, 1)C(6, 1)C(5, 1)C(4, 1)C(3, 1)C(2, 1)C(1, 1)
D) 10 · C(10, 2)C(8, 1)C(7, 1)C(6, 1)C(5, 1)C(4, 2)C(2, 2)
E) C(10, 2)C(8, 1)C(7, 1)C(6, 1)C(5, 1)C(4, 2)C(2, 2)
Answer: E) C(10, 2)C(8, 1)C(7, 1)C(6, 1)C(5, 1)C(4, 2)C(2, 2)
Step-by-step explanation:
According to the combinations: Number of ways to choose r things out of n things = C(n,r)
Given word: "georgianna"
It is a sequence of 10 letters with 2 a's , 2 g's , 2 n's , and one of each e, o,r, i.
If we think 10 blank spaces, then in a sequence we need 2 spaces for each of g.
Number of ways = C(10,2)
Similarly,
1 space for 'e' → C(8,1)
1 space for 'o' → C(7,1)
1 space for 'r' → C(6,1)
1 space for 'i' → C(5,1)
1 space for 'a' → C(4,2)
1 space for 'n' → C(2,2)
Required number of different sequences = C(10,2) ×C(8,1)× C(7,1)× C(6,1)×C(5,1)×C(2,2).
Hence, the correct option is E) C(10, 2)C(8, 1)C(7, 1)C(6, 1)C(5, 1)C(4, 2)C(2, 2)
what is the distance between the first and third quartiles of a data set called?
Answer:
Interquartile range is the distance between the first and third of a data.
Step-by-step explanation:
Hope it will help you :)
A recent study of the relationship between social activity and education for a sample of corporate executives showed the following results. Social Activity Education Above Average Average Below Average College 30 20 10 High School 20 40 90 Grade School 10 50 130 Using 0.05 as the significance level, what is the critical value for the test statistic
Answer:
9.488
Step-by-step explanation:
The critical value is found by first assessing which statistical test should be used.
We are interested in investigating relationship between social activity and education so chi-square test would be appropriate.
We have 3 rows and 3 columns. The degree of freedom for chi-square critical value is (r-1)(c-1)=(3-1)(3-1)=2*2=4
Chi-square critical value(0.05,4)= 9.488
Of the three properties, reflexive, symmetric, and transitive that define the relation "is equal to," which one could also apply to "is less than" and "is greater than?" transitive reflexive symmetric
Answer: Transitive property.
Step-by-step explanation:
First, for the equality we have:
Reflexive:
For all real numbers x, x = x.
Symmetric:
For all real numbers x, y
if x= y, then y = x.
Transitive:
For reals x, y and z.
if x = y, and y = z, then x = z.
Now, let's talk about inequalities.
first, the reflexive property will say that:
x > x.
This has no sense, so this property does not work for inequalities.
Now, the reflexive.
If x > y, then y > x.
Again, this has no sense, if x is larger than y, then we can never have that y is larger than x. This property does not work for inequalities.
Not, the transitive property.
if x > y, and y > z, then x > z.
This is true.
x is bigger than y, and y is bigger than z, then x should also be bigger than z.
x > y > z.
And this also works for the inverse case:
x < y and y < z, then x < z.
So the correct option is transitive property.
I need help on this question, can someone please answer it correctly?
Answer:the one area < with line underneath then -4
St-by-step explanation: I’m pretty sure this is correct
Answer:
[tex] \boxed{x \leqslant - 4}[/tex]Step-by-step explanation:
[tex] \mathrm{16x - 7 \leqslant - 71}[/tex]
Move constant to Right hand side and change its sign
[tex] \mathrm{16x \leqslant - 71 + 7}[/tex]
Calculate
[tex] \mathrm{16x \leqslant - 64}[/tex]
Divide both sides of the equation by 16
[tex] \mathrm{ \frac{16x}{16} \leqslant \frac{ - 64}{16} }[/tex]
Calculate
[tex] \mathrm{x \leqslant - 4}[/tex]
Hope I helped!
Best regards!
When proving a statement using mathematical induction, part of the process is assuming that the statement is true for the nth case. (True or False).
Answer:
True
Step-by-step explanation:
We assume that is true for the nth case and prove it for the n+1 case
and show that it is true for the case when n=1
Simplify to create an equivalent expression.
-k-(-8k+7)
a=7k−7
b=-7k-7
c=7k+7
d=-7k+7
choose one
Answer:
a. 7k - 7
Step-by-step explanation:
Step 1: Write out expression
-k - (-8k + 7)
Step 2: Distribute negative
-k + 8k - 7
Step 3: Combine like terms
7k - 7
And we have our answer!
Can somebody please solve this problem for me!
Answer:
x = 200.674
Step-by-step explanation:
tan∅ = opposite/adjacent
Step 1: Find length of z
tan70° = 119/z
ztan70° = 119
z = 119/tan70°
z = 43.3125
Step 2: Find length z + x (denoted as y)
tan26° = 119/y
ytan26° = 119
y = 119/tan26°
y = 243.986
Step 3: Find x
y - z = x
243.986 - 43.3125 = x
x = 200.674
A hot metal bar is submerged in a large reservoir of water whose temperature is 60°F. The temperature of the bar 20 s after submersion is 120°F. After 1 min submerged, the temperature has cooled to 100°F. (Let y be measured in degrees Fahrenheit, and t be measured in seconds.) (a) Determine the cooling constant k. k = s−1 (b) What is the differential equation satisfied by the temperature y(t)? (Use y for y(t).) y'(t) = (c) What is the formula for y(t)? y(t) = (d) Determine the temperature of the bar at the moment it is submerged. (Round your answer to one decimal place.)
Answer:
a. k = -0.01014 s⁻¹
b. [tex]\mathbf{\dfrac{dy}{dt} = - \dfrac{In(\dfrac{3}{2})}{40}(y-60)}[/tex]
c. [tex]\mathbf{y(t) = 60+ \dfrac{60 \sqrt{3}}{\sqrt{2}} \ e^{\dfrac{-In(\dfrac{3}{2})\ t}{40}}}[/tex]
d. y(t) = 130.485°F
Step-by-step explanation:
A hot metal bar is submerged in a large reservoir of water whose temperature is 60°F. The temperature of the bar 20 s after submersion is 120°F. After 1 min submerged, the temperature has cooled to 100°F.
(Let y be measured in degrees Fahrenheit, and t be measured in seconds.)
We are to determine :
a. Determine the cooling constant k. k = s−1
By applying the new law of cooling
[tex]\dfrac{dT}{dt} = k \Delta T[/tex]
[tex]\dfrac{dT}{dt} = k(T_1-T_2)[/tex]
[tex]\dfrac{dT}{dt} = k (T - 60)[/tex]
Taking the integral.
[tex]\int \dfrac{dT}{T-60} = \int kdt[/tex]
㏑ (T -60) = kt + C
T - 60 = [tex]e^{kt+C}[/tex]
[tex]T = 60+ C_1 e^{kt} ---- (1)[/tex]
After 20 seconds, the temperature of the bar submersion is 120°F
T(20) = 120
From equation (1) ,replace t = 20s and T = 120
[tex]120 = 60 + C_1 e^{20 \ k}[/tex]
[tex]120 - 60 = C_1 e^{20 \ k}[/tex]
[tex]60 = C_1 e^{20 \ k} --- (2)[/tex]
After 1 min i.e 60 sec , the temperature = 100
T(60) = 100
From equation (1) ; replace t = 60 s and T = 100
[tex]100 = 60 + c_1 e^{60 \ t}[/tex]
[tex]100 - 60 =c_1 e^{60 \ t}[/tex]
[tex]40 =c_1 e^{60 \ t} --- (3)[/tex]
Dividing equation (2) by (3) , we have:
[tex]\dfrac{60}{40} = \dfrac{C_1e^{20 \ k } }{C_1 e^{60 \ k}}[/tex]
[tex]\dfrac{3}{2} = e^{-40 \ k}[/tex]
[tex]-40 \ k = In (\dfrac{3}{2})[/tex]
- 40 k = 0.4054651
[tex]k = - \dfrac{0.4054651}{ 40}[/tex]
k = -0.01014 s⁻¹
b. What is the differential equation satisfied by the temperature y(t)?
Recall that :
[tex]\dfrac{dT}{dt} = k \Delta T[/tex]
[tex]\dfrac{dT}{dt} = \dfrac{- In (\dfrac{3}{2})}{40}(T-60)[/tex]
Since y is the temperature of the body , then :
[tex]\mathbf{\dfrac{dy}{dt} = - \dfrac{In(\dfrac{3}{2})}{40}(y-60)}[/tex]
(c) What is the formula for y(t)?
From equation (1) ;
where;
[tex]T = 60+ C_1 e^{kt} ---- (1)[/tex]
Let y be measured in degrees Fahrenheit
[tex]y(t) = 60 + C_1 e^{-\dfrac{In (\dfrac{3}{2})}{40}t}[/tex]
From equation (2)
[tex]C_1 = \dfrac{60}{e^{20 \times \dfrac{-In(\dfrac{3}{2})}{40}}}[/tex]
[tex]C_1 = \dfrac{60}{e^{-\dfrac{1}{2} {In(\dfrac{3}{2})}}}[/tex]
[tex]C_1 = \dfrac{60}{e^ {In(\dfrac{3}{2})^{-1/2}}}}[/tex]
[tex]C_1 = \dfrac{60}{\sqrt{\dfrac{2}{3}}}[/tex]
[tex]C_1 = \dfrac{60 \times \sqrt{3}}{\sqrt{2}}}[/tex]
[tex]\mathbf{y(t) = 60+ \dfrac{60 \sqrt{3}}{\sqrt{2}} \ e^{\dfrac{-In(\dfrac{3}{2})\ t}{40}}}[/tex]
(d) Determine the temperature of the bar at the moment it is submerged.
At the moment it is submerged t = 0
[tex]\mathbf{y(0) = 60+ \dfrac{60 \sqrt{3}}{\sqrt{2}} \ e^{\dfrac{-In(\dfrac{3}{2})\ 0}{40}}}[/tex]
[tex]\mathbf{y(t) = 60+ \dfrac{60 \sqrt{3}}{\sqrt{2}} }[/tex]
y(t) = 60 + 70.485
y(t) = 130.485°F
Express the quotient of z1 and z2 in standard form given that [tex]z_{1} = -3[cos(\frac{-\pi }{4} )+isin(\frac{-\pi }{4} )][/tex] and [tex]z_{2} = 2\sqrt{2} [cos(\frac{-\pi }{2} )+isin(\frac{-\pi }{2} )][/tex]
Answer:
Solution : [tex]-\frac{3}{4}-\frac{3}{4}i[/tex]
Step-by-step explanation:
[tex]-3\left[\cos \left(\frac{-\pi }{4}\right)+i\sin \left(\frac{-\pi \:}{4}\right)\right]\:\div \:2\sqrt{2}\left[\cos \left(\frac{-\pi \:\:}{2}\right)+i\sin \left(\frac{-\pi \:\:\:}{2}\right)\right][/tex]
Let's apply trivial identities here. We know that cos(-π / 4) = √2 / 2, sin(-π / 4) = - √2 / 2, cos(-π / 2) = 0, sin(-π / 2) = - 1. Let's substitute those values,
[tex]\frac{-3\left(\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}i\right)}{2\sqrt{2}\left(0-1\right)i}[/tex]
=[tex]-3\left(\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}i\right)[/tex] ÷ [tex]2\sqrt{2}\left(0-1\right)i[/tex]
= [tex]3\left(-\frac{\sqrt{2}i}{2}+\frac{\sqrt{2}}{2}\right)[/tex] ÷ [tex]-2\sqrt{2}i[/tex]
= [tex]\frac{3\left(1-i\right)}{\sqrt{2}}[/tex]÷ [tex]2\sqrt{2}i[/tex] = [tex]-3-3i[/tex] ÷ [tex]4[/tex] = [tex]-\frac{3}{4}-\frac{3}{4}i[/tex]
As you can see your solution is the last option.
please help with this
Answer:
[tex]\sin \left(\theta \right)-\frac{1}{2}\cos \left(2\theta \rightt)+C[/tex]
Step-by-step explanation:
We are given the graph of r = cos( θ ) + sin( 2θ ) so that we are being asked to determine the integral. Remember that [tex]\:r=cos\left(\theta \right)+sin\left(2\theta \right)[/tex] can also be rewritten as [tex]\int \cos \left(\theta \right)+\sin \left(2\theta \right)d\theta \right[/tex].
Let's apply the functional rule [tex]\int f\left(x\right)\pm g\left(x\right)dx=\int f\left(x\right)dx\pm \int g\left(x\right)dx[/tex],
[tex]\int \cos \left(\theta \right)+\sin \left(2\theta \right)d\theta \right[/tex] = [tex]\int \cos \left(\theta \right)d\theta \right+\int \sin \left(2\theta \right)d\theta \right[/tex]
At the same time [tex]\int \cos \left(\theta \right)d\theta \right=\sin \left(\theta \right)[/tex] = [tex]sin( \theta \right ))[/tex], and [tex]\int \sin \left(2\theta \right)d\theta \right[/tex] = [tex]-\frac{1}{2}\cos \left(2\theta \right)[/tex]. Let's substitute,
[tex]\int \cos \left(\theta \right)d\theta \right+\int \sin \left(2\theta \right)d\theta \right[/tex] = [tex]\sin \left(\theta \right)-\frac{1}{2}\cos \left(2\theta \right)[/tex]
And adding a constant C, we receive our final solution.
[tex]\sin \left(\theta \right)-\frac{1}{2}\cos \left(2\theta \rightt)+C[/tex] - this is our integral
You drive 15 miles in 0.1hours . How fast did you travel if 8=d/t
Answer:
150Step-by-step explanation:
[tex]distance = 15 miles\\time = 0.1 hours\\\\Speed = \frac{Distance}{time}\\ Speed = \frac{15}{0.1}\\ Speed =150[/tex]
Answer:
[tex]150mph[/tex]
Step-by-step explanation:
Given:
s=15miles
t=0.1hours
Required:
v=?
Formula:
[tex]v = \frac{s}{t} [/tex]
Solution:
[tex]v = \frac{s}{t} = \frac{15m}{0.1h} = \frac{150m}{1h} = 150mph[/tex]
Hope this helps ;) ❤❤❤
Identify the equivalent expressions of 4(2x + x-3) - 3x + 3 by substituting x = 2 and x = 3.
9x - 9
9x - 1
9x + X-9
9(x - 1)
4(3x - 3) + 3 - 3x
Answer:
9x -9
9(x - 1)
4(3x-3) - 3x + 3
Step-by-step explanation:
4(2x + x-3) - 3x + 3
Combine like terms
4(3x-3) - 3x + 3
Distribute
12x -12 -3x+3
Combine like terms
9x -9
Factor out 9
9(x-1)
Answer:
9
18
Step-by-step explanation:
x = 2:
4(4 + 2 - 3) - 6 + 3 = 12 - 6 + 3 = 9
x = 3:
4(6 + 3 - 3) - 9 + 3 = 24 - 9 + 3 = 18
What is the value of 20 + 3 (7 + 4) + 5 + 2 (7 + 9)?
Answer:
90
Step-by-step explanation:
Answer:
90
Step-by-step explanation:
Here is the equation
[tex]20+3\times(7+4)+5+2\times(7+9)[/tex]
In the order of operations parentheses go first so we get
[tex]20+3\times11+5+2\times16[/tex]
Next we do the multiplication
[tex]20+33+5+32\\[/tex]
And finally we add them all up
[tex]20+33+5+32=90\\[/tex]
Thus, 90 is the answer of [tex]20+3\times(7+4)+5+2\times(7+9)[/tex] or [tex]20+3(7+4)+5+2(7+9)[/tex]
Emily made a pot of cream of pumpkin soup for thanksgiving dinner. She put 5
cups of cream in the soup. She poured the soup into 24 small soup bowls. How
much cream (measured in oz.) is used for each small bowl of soup?
Answer:
1 2/3 ounces in each bowl
Step-by-step explanation:
We need to convert 5 cups to ounces
1 cup = 8 ounces
5 cups = 5*8 = 40 ounces
We divide the 40 ounces into 24 bowls
40 ounces / 24 bowl
5/3 ounces per bowl
1 2/3 ounces in each bowl
Answer:
each bowl can contain 5/3 oz. of soup.
Step-by-step explanation:
1 cup = 8 oz.
8 oz.
5 cups x -------------- = 40 oz.
1 cup
to get the measurement of each bowl,
40 oz. divided into 24 bowls.
therefore, each bowl can contain 5/3 oz. of soup.
What is the approximate area of the unshaded region under the standard normal curve below? Use the portion of the standard normal table given to help answer the question.
A normal curve with a peak at 0 is shown. The area under the curve shaded is 1 to 2.
z
Probability
0.00
0.5000
1.00
0.8413
2.00
0.9772
3.00
0.9987
0.14
0.16
0.86
0.98
Answer:
0.14
Step-by-step explanation:
The z score is a score used in statistics to determine by how many standard deviations ti the raw score above or below the mean. If the raw score is above the mean then the z score is positive while If the raw score is below the mean then the z score is negative, It is given by:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
From the normal distribution table, The area under the curve shaded is 1 to 2 = P(1 < z < 2) = P(z < 2) - P(z < 1) = 0.9772 - 0.8413 = 0.1359 ≈ 0.14
The area under the curve shaded is 1 to 2 is 0.14
What are probabilities?Probabilities are used to determine the chances of an event
The shaded region represents the probability of the z-scores
The shaded region 1 to 2 is represented as:
P(1 < z < 2) =
Using the probability of z-score, we have the formula
P(1 < z < 2) = P(z < 2) - P(z < 1)
From the given standard normal table:
P(z < 2) = 0.9772
P(z < 1) = 0.8413
So, we have:
P(1 < z < 2) = 0.9772 - 0.8413
P(1 < z < 2) = 0.1359
Approximate
P(1 < z < 2) = 0.14
Hence, the area under the curve shaded is 1 to 2 is 0.14
Read more about normal distribution at:
https://brainly.com/question/4079902
Determine the number of degrees of freedom for the two-sample t test or CI in each of the following situations. (Round your answers down to the nearest whole number.)a. m = 12, n = 15, s1 = 4.0, s2 = 6.0b. m = 12, n = 21, s1 = 4.0, s2 = 6.0c. m = 12, n = 21, s1 = 3.0, s2 = 6.0d. m = 10, n = 24, s1 = 4.0, s2 = 6.0
Answer:
Part a ) The degrees of freedom for the given two sample non-pooled t test is 24
Part b ) The degrees of freedom for the given two sample non-pooled t test is 30
Part c ) The degrees of freedom for the given two sample non-pooled t test is 30
Part d ) The degrees of freedom for the given two sample non-pooled t test is 25
Step-by-step explanation:
Degrees of freedom for a non-pooled two sample t-test is given by;
Δf = {[ s₁²/m + s₂²/n ]²} / {[( s₁²/m)²/m-1] + [(s₂²/n)²/n-1]}
Now given the information;
a) :- m = 12, n = 15, s₁ = 4.0, s₂ = 6.0
we substitute
Δf = {[ 4²/12 + 6²/15 ]²} / {[( 4²/12)²/12-1] + [(6²/15)²/15-1]}
Δf = 30184 / 1241
Δf = 24.3223 ≈ 24 (down to the nearest whole number)
b) :- m = 12, n = 21, s₁ = 4.0, s₂ = 6.0
we substitute using same formula
Δf = {[ s₁²/m + s₂²/n ]²} / {[( s₁²/m)²/m-1] + [(s₂²/n)²/n-1]}
Δf = {[ 4²/12 + 6²/21 ]²} / {[( 4²/12)²/12-1] + [(6²/21)²/21-1]}
Δf = 56320 / 1871
Δf = 30.1015 ≈ 30 (down to the nearest whole number)
c) :- m = 12, n = 21, s₁ = 3.0, s₂ = 6.0
we substitute using same formula
Δf = {[ s₁²/m + s₂²/n ]²} / {[( s₁²/m)²/m-1] + [(s₂²/n)²/n-1]}
Δf = {[ 3²/12 + 6²/21 ]²} / {[( 3²/12)²/12-1] + [(6²/21)²/21-1]}
Δf = 29095 / 949
Δf = 30.6585 ≈ 30 (down to the nearest whole number)
d) :- m = 10, n = 24, s₁ = 4.0, s₂ = 6.0
we substitute using same formula
Δf = {[ s₁²/m + s₂²/n ]²} / {[( s₁²/m)²/m-1] + [(s₂²/n)²/n-1]}
Δf = {[ 4²/10 + 6²/24 ]²} / {[( 4²/10)²/10-1] + [(6²/24)²/24-1]}
Δf = 1044 / 41
Δf = 25.4634 ≈ 25 (down to the nearest whole number).
The size of a television is the length of the diagonal of its screen in inches. The aspect ratio of the screens of older televisions is 4:3, while the aspect ratio of newer wide-screen televisions is 16:9. Find the width and height of an older 35-inch television whose screen has an aspect ratio of 4:3.
Answer:
The Width = 28 inches
The Height = 21 inches
Step-by-step explanation:
We are told in the question that:
The width and height of an older 35-inch television whose screen has an aspect ratio of 4:3
Using Pythagoras Theorem
Width² + Height² = Diagonal²
Since we known that the size of a television is the length of the diagonal of its screen in inches.
Hence, for this new TV
Width² + Height² = 35²
We are given ratio: 4:3 as aspect ratio
Width = 4x
Height = 3x
(4x)² +(3x)² = 35²
= 16x² + 9x² = 35²
25x² = 1225
x² = 1225/25
x² = 49
x = √49
x = 7
Hence, for the 35 inch tv set
The Width = 4x
= 4 × 7
= 28 inches.
The Height = 3x
= 3 × 7
= 21 inches
Write an expression to represent the given statement. Use n for the variable. Three times the absolute value of the sum of a number and 6
Answer:
3 · |x+6|
Step-by-step explanation:
Write out what you see. "Three times" is 3 · something; "the absolute value of the sum of a number and 6" is |number + 6|. We'll use x for our number. Put it all together and you get 3 · |x+6|
The expression of the statement, Three times the absolute value of the sum of a number and 6 is [tex]\[3\left| n+6 \right|\][/tex] .
Representation of statement:Let n be the number.The sum of the numbers n and 6 is n+6.The absolute value of the sum of the numbers n and 6 is [tex]\[\left| n+6 \right|\][/tex].Hence, three times the absolute value of the sum of a number and 6 is [tex]\[3\left| n+6 \right|\][/tex].
Learn more about the representation of an expression:
https://brainly.com/question/10905086?referrer=searchResults
#SPJ2
The balances in two separate bank accounts that grow each month at different rales are represented by the functions f(x) and gix) In what month do the funds in the f(x) bank account exceed those in the glx)
bank account?
Month (x) f(x) = 2* g(x) = 4x + 12
1
2
16
2.
4
20
O Month 3
O Month 4
O Month 5
O Month 6
Answer:
The balance in two separate bank accounts grows each month at different rates. the growth rates for both accounts are represented by the functions f(x) = 2x and g(x) = 4x 12. in what month is the f(x) balance greater than the g(x) balance?
Answer:
6 months
A function is a relationship between inputs where each input is related to exactly one output.
x = 5,
f(5) = [tex]2^5\\[/tex] = 32
g(5) = 4 x 5 + 12 = 20 + 12 = 32
x = 6,
f(6) = [tex]2^6[/tex] = 64
g(6) = 4 x 6 + 12 = 24 + 12 = 36
At month 6 the funds in the f(x) bank account exceed those in the g(x) bank account.
What is a function?A function is a relationship between inputs where each input is related to exactly one output.
Example:
f(x) = 2x + 1
f(1) = 2 + 1 = 3
f(2) = 2 x 2 + 1 = 4 + 1 = 5
The outputs of the functions are 3 and 5
The inputs of the function are 1 and 2.
We have,
f(x) = [tex]2^{x}[/tex]
g(x) = 4x + 12
x = number of months
Now,
x = 3,
f(3) = 2³ = 8
g(3) = 4 x 3 + 12 = 12 + 12 = 24
x = 4,
f(4) = [tex]2^4[/tex] = 16
g(4) = 4 x 4 + 12 = 16 + 12 = 28
x = 5,
f(5) = [tex]2^5\\[/tex] = 32
g(5) = 4 x 5 + 12 = 20 + 12 = 32
x = 6,
f(6) = [tex]2^6[/tex] = 64
g(6) = 4 x 6 + 12 = 24 + 12 = 36
We see that,
At x = 6,
f(5) = 64
g(5) = 36
Thus,
At month 6 the funds in the f(x) bank account exceed those in the g(x) bank account.
Learn more about functions here:
https://brainly.com/question/28533782
#SPJ2
You are starting a sock company. You must determine your costs to manufacture your product. The start-up cost is $2000 (which helps you purchase sewing machines). Material and labor is $2.50 per pair of socks.
a. Write an equation to model your company’s cost for manufacturing the socks. (i.e. y=mx+b)
b. Which variable represents the domain? Explain your answer.
c. What is the domain for this situation?
d. Which variable represents the range? Explain your answer.
e. What is the range for this situation?
f. Using your equation, what would be the cost of manufacturing 25 pairs of socks?
g. How many socks could you make with $2500?
h. Create a coordinate graph on a sheet of paper to represent this situation. Describe the graph. Include the dimensions you would use for the x and y axes.
PLS HELP ASAP!
a. y = 2.5x + 2000
b. The variable x represents the domain because the domain is the range of the possible x values.
c. x ≥ 0
d. The variable y represents the range because the range is the range of the possible y values.
e. y ≥ 2000
f. y = 2.5(25) + 2000
y = 62.5 + 2000
y = $2062.50
g. 2500 = 2.5x + 2000
2.5x = 500
x = 200
h. I am sorry I cannot make the graph but hopefully you can figure out how to make it using the info I have given in the above parts of the problem :)
How many positive integers less than 1,000,000 have exactly one digit equal to 9 and have a sum of digits equal to 13
Answer:
10,000
Step-by-step explanation:
There are 2970 positive integers less than 1,000,000 have exactly one digit equal to 9 and have a sum of digits equal to 13
What is Number system?A number system is defined as a system of writing to express numbers.
We need to find
positive integers less than 1,000,000 have exactly one digit equal to 9 and have a sum of digits equal to 13
Let all 9 numbers ae
a+b+c+d+e+f+g+h+9=13
a+b+c+d+e+f+g+h=13-9
a+b+c+d+e+f+g+h=4
Then we use combinations
(n+k-1)Ck
¹¹C₄
11!/(11-4)!4!
11!/7!4!
330
Three hundred thirty times of nine is two thousand nine hundred seventy.
Now 330 ×9=2970
Hence there are 2970 positive integers less than 1,000,000 have exactly one digit equal to 9 and have a sum of digits equal to 13
To learn more on Number system click:
https://brainly.com/question/22046046
#SPJ1
If y varies directly with x and y = -11.7 when x = -3, find the value of y when x = 7.
Answer:
y = 27.3Step-by-step explanation:
To find the value of y when x = 7 we must first find the relationship between them.
The statement
y varies directly with x is written as
y = kx
where k is the constant of proportionality
From the question
when y = - 11.7
x = - 3
We have
- 11.7 = -3k
Divide both sides by - 3
k = 3.9
So the formula for the variation is
y = 3.9kWhen x = 7
y = 3.9(7)
y = 27.3Hope this helps you
Answer: 27.3
Step-by-step explanation:
Joint Variation
We have seen how to convert specified odds from a "fair bet" into the gamblerâs belief about the likelihood of an event happening. The following are related.a. Torik gives 5:3 odds that someone will walk in late for class tomorrow. What probability does lie assign for this event? b. Mikko believes there is a 60% chance that at least five students from this class will be at the next basketball game. If he were to set up odds, what would they be? c. Change the 60% to 75%. Now would would be the odds?
20 points!
Please help.
Question 15 please and i will mark the brainliest!!! And thank you to whoever answers
Explanation:
We have 4 options for the first choice and 3 options for the next. So there are 4*3 = 12 different combos possible. The tree diagram below shows 12 different paths to pick from. For instance, the right-most path has us pick the number 4 and the color yellow.
The double number lines show the ratio of cups to gallons. How many cups are in 333 gallons? _____ cups
Answer:
5328 cups.
Step-by-step explanation:
Given that 333 gallons
We know that
1 gallons = 16 cups
1 cups = 0.0625 gallons
Therefore,from the above conversion we can say that
Now by putting the values in the above conversion
333 gallons = 16 x 333 cups
333 gallons = 5328 cups
So , we can say that 333 gallons is equal to 5328 cups.
Thus the answer will be 5328 cups.
Answer:
48 cups(BTW he meant 33 galons, IVE had this before). lol you need to put the double number line image. first u have to divide 64/4 to get 16, Then it says "How many cups are in 3 gallons". There fore, U multiply 16 to 3 to get ur answer "48".
For a certain casino slot machine, the odds in favor of a win are given as 17 to 83. Express the indicated degree of likelihood as a probability value between 0 and 1 inclusive.
Step-by-step explanation:
83P (E)=17-17P (E),
P (E)=17/100=0.17
Suppose the radius of a circle is 5 units. What is its circumference?
Answer:
C≈31.42
Step-by-step explanation:
C=2πr
C=2xπx5
C≈31.42
pls mark as brainliest
Find the equation of a parabola that has a vertex (3,5) and passes through the point (1,13).
Oy= -27 - 3)' +5
Oy=2(x + 3) - 5
Oy=2(0 - 3)' + 5
Oy= -3(2 – 3) + 5
PLEASE HELP ME!!
Answer:
y = 2(x - 3)² + 5
Step-by-step explanation:
The equation of a parabola in vertex form is
y = a(x - h)² + k
where (h, k) are the coordinates of the vertex and a is a multiplier
Here (h, k) = (3, 5), thus
y = a(x - 3)² + 5
To find a substitute (1, 13) into the equation
13 = a(1 - 3)² + 5 ( subtract 5 from both sides )
8 = 4a ( divide both sides by 4 )
a = 2, then
y = 2(x - 3)² + 5 ← equation of parabola in vertex form