A wire carries current in the plane of this paper toward the top of the page. The wire experiences a ma netic force toward the right edge of the page. The direction of the magnetic field causing this force is:
A. in the plane of the page and toward the left edge
B. in the plane of the page and toward the bottom edge
C. upward out of the page
D. downward into the page

Answers

Answer 1

Answer:

D) True. In this case the thumb goes up the page, the fingers are extended out of the page and the palm points to the left

Explanation:

The magnetic force on a conductor is given by

        F = i L x B

bold letters indicate vectors. We can write this expression in the form of magnitudes

         F = i L B sin θ

The direction of the force can be found by the rule of the right hand, the thumb points in the direction of the current, the fingers extended in the direction of the magnetic field and the palm gives the direction of the force

Let's apply this expression to the case presented.

A) False. In this case the force is out of the page and is in contradiction with the real force

B) False. In this case the force is zero since the displacement of the current and the field would be parallel

C) False. In this case the force is to the left

D) True. In this case the thumb goes up the page, the fingers are extended out of the page and the palm points to the left


Related Questions

An intergalactic rock star bangs his drum every 1.30 s. A person on earth measures that the time between beats is 2.50 s. How fast is the rock star moving relative to the earth

Answers

Answer:

v = 0.89 c = 2.67 x 10⁸ m/s

Explanation:

The time dilation consequence of the special theory of relativity shall be used here, From time dilation formula we have:

t = t₀/√[1 - v²/c²]

where,

t = time measured by the person on earth = 2.50 s

t₀ = rest time of the intergalactic rock star = 1.30 s

v = relative speed of the rock star = ?

Therefore,

2.5 s = (1.3 s)/√[1 - v²/c²]

√[1 - v²/c²] = 1.3/2.5

√[1 - v²/c²] = 0.52

[1 - v²/c²] = 0.52²

[1 - v²/c²] = 0.2074

v²/c² = 1 - 0.2074

v²/c² = 0.7926

v/c = √0.7926

v = 0.89 c

where,

c = speed of light = 3 x 10⁸ m/s

v = (0.89)(3 x 10⁸ m/s)

v = 0.89 c = 2.67 x 10⁸ m/s

A 6.7 cm diameter circular loop of wire is in a 1.27 T magnetic field. The loop is removed from the field in 0.16 ss . Assume that the loop is perpendicular to the magnetic field.

Required:
What is the average induced emf?

Answers

Answer:

The induced emf is [tex]\epsilon = 0.0280 \ V[/tex]

Explanation:

From the question we are told

    The diameter of the loop is  [tex]d = 6.7 cm = 0.067 \ m[/tex]

    The magnetic field is  [tex]B = 1.27 \ T[/tex]

    The time taken is  [tex]dt = 0.16 \ s[/tex]

Generally the induced emf is mathematically represented as

          [tex]\epsilon = - N * \frac{\Delta \phi}{dt}[/tex]

Where  N =  1 given that it is only a circular loop

            [tex]\Delta \phi = \Delta B * A[/tex]

Where  [tex]\Delta B = B_f - B_i[/tex]

   where [tex]B_i[/tex] is  1.27 T  given that the loop of wire was initially in the magnetic field

    and  [tex]B_f[/tex] is  0 T given that the loop was removed from the magnetic field

Now the area of the of the loop is evaluated as

          [tex]A = \pi r^2[/tex]

Where r is the radius which is mathematically represented as

       [tex]r = \frac{d}{2}[/tex]

substituting values

       [tex]r = \frac{0.067}{2}[/tex]

        [tex]r = 0.0335 \ m[/tex]

So

         [tex]A = 3.142 * (0.0335)^2[/tex]

          [tex]A = 0.00353 \ m^2[/tex]

So

      [tex]\Delta \phi = (0- 127)* (0.00353)[/tex]

      [tex]\Delta \phi = -0.00448 Weber[/tex]

=>    [tex]\epsilon = - 1 * \frac{-0.00448}{0.16}[/tex]

=>   [tex]\epsilon = 0.0280 \ V[/tex]

A series LR circuit contains an emf source of 19 V having no internal resistance, a resistor, a 22 H inductor having no appreciable resistance, and a switch. If the emf across the inductor is 80% of its maximum value 4 s after the switch is closed, what is the resistance of the resistor

Answers

Answer: R = 394.36ohm

Explanation: In a LR circuit, voltage for a resistor in function of time is given by:

[tex]V(t) = \epsilon. e^{-t.\frac{L}{R} }[/tex]

ε is emf

L is indutance of inductor

R is resistance of resistor

After 4s, emf = 0.8*19, so:

[tex]0.8*19 = 19. e^{-4.\frac{22}{R} }[/tex]

[tex]0.8 = e^{-\frac{88}{R} }[/tex]

[tex]ln(0.8) = ln(e^{-\frac{88}{R} })[/tex]

[tex]ln(0.8) = -\frac{88}{R}[/tex]

[tex]R = -\frac{88}{ln(0.8)}[/tex]

R = 394.36

In this LR circuit, the resistance of the resistor is 394.36ohms.

Find the current through a person and identify the likely effect on her if she touches a 120 V AC source in the following circumstances. (Note that currents above 10 mA lead to involuntarily muscle contraction.)
(a) if she is standing on a rubber mat and offers a total resistance of 300kΩ
(b) if she is standing barefoot on wet grass and has a resistance of only 4000kΩ

Answers

Answer:

A) 0.4 mA

B) 0.03 mA

Explanation:

Given that

voltage source, V = 120 V

to solve this question, we would be using the very basic Ohms Law, that voltage is proportional to the current and the resistance passing through the circuit, if temperature is constant.

mathematically, Ohms Law, V = IR

V = Voltage

I = Current

R = Resistance

from question a, we were given 300kΩ, substituting this value of resistance in the equation, we have

120 = I * 300*10^3 Ω

making I the subject of the formula,

I = 120 / 300000

I = 0.0004 A

I = 0.4 mA

Question said, currents above 10 mA causes involuntary muscle contraction, this current is way below 10 mA, so nothing happens.

B, we have Resistance, R = 4000kΩ

Substituting like in part A, we have

120 = I * 4000*10^3 Ω

I = 120 / 4000000

I = 0.00003 A

I = 0.03 mA

This also means nothing happens, because 0.03 mA is very much lesser compared to in the 10 mA

The current through a person will be:

a) 0.4 mA

b) 0.03 mA

Given:

Voltage, V = 120 V

Ohm's Law:

It states that the voltage or potential difference between two points is directly proportional to the current or electricity passing through the resistance, and directly proportional to the resistance of the circuit.

Ohms Law, V = I*R

where,

V = Voltage

I = Current

R = Resistance

a)

Given: Resistance=  300kΩ

[tex]120 = I * 300*10^3 ohm\\\\I = 120 / 300000\\\\I = 0.0004 A[/tex]

Thus, current will be, I = 0.4 mA

b)

Given: R = 4000kΩ

[tex]120 = I * 4000*10^3 ohm\\\\I = 120 / 4000000\\\\I = 0.00003 A[/tex]

Thus, current will be, I = 0.03 mA

From calculations, we observe that nothing happens, because 0.03 mA is very much lesser compared to in the 10 mA.

Find more information about Current here:

brainly.com/question/24858512

When using a crowbar to remove a nail, the person should hold it at which of the following spots to increase the IMA of the lever? nearest the end prying out the nail furthest from the end prying out the nail right in the middle the location where the person holds it will not affect the IMA

Answers

Answer: the furthest from the end prying out the nail

Answer:

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

the furthest from the end prying out the nail

Explanation:

A parallel-plate vacuum capacitor has 7.72 J of energy stored in it. The separation between the plates is 3.30 mm. If the separation is decreased to 1.45 mm, For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of Stored energy. Part A what is the energy now stored if the capacitor was disconnected from the potential source before the separation of the plates was changed

Answers

Answer

3.340J

Explanation;

Using the relation. Energy stored in capacitor = U = 7.72 J

U =(1/2)CV^2

C =(eo)A/d

C*d=(eo)A=constant

C2d2=C1d1

C2=C1d1/d2

The separation between the plates is 3.30mm . The separation is decreased to 1.45 mm.

Initial separation between the plates =d1= 3.30mm .

Final separation = d2 = 1.45 mm

(A) if the capacitor was disconnected from the potential source before the separation of the plates was changed, charge 'q' remains same

Energy=U =(1/2)q^2/C

U2C2 = U1C1

U2 =U1C1 /C2

U2 =U1d2/d1

Final energy = Uf = initial energy *d2/d1

Final energy = Uf =7.72*1.45/3.30

(A) Final energy = Uf = 3.340J

g In the atmosphere, the shortest wavelength electromagnetic waves are called A. infrared waves. B. ultraviolet waves. C. X-rays. D. gamma rays. E.

Answers

Answer:gamma ray

Explanation:

At a department store, you adjust the mirrors in the dressing room so that they are parallel and 6.2 ft apart. You stand 1.8 ft from one mirror and face it. You see an infinite number of reflections of your front and back.(a) How far from you is the first "front" image? ft (b) How far from you is the first "back" image? ft

Answers

Answer:

a) 3.6 ft

b) 12.4 ft

Explanation:

Distance between mirrors = 6.2 ft

difference from from the mirror you face = 1.8 ft

a) you stand 1.8 ft in front of the mirror you face.

According to plane mirror rules, the image formed is the same distance inside the mirror surface as the distance of the object (you) from the mirror surface. From this,

your distance from your first "front" image = 1.8 ft + 1.8 ft = 3.6 ft

b) The mirror behind you is 6.2 - 1.8 = 4.4 ft behind you.

the back mirror will be reflected 3.6 + 4.4 = 8 ft into the front mirror,

the first image of your back will be 4.4 ft into the back mirror,

therefore your distance from your first "back" image = 8 + 4.4 = 12.4 ft

Light of wavelength 520 nm is used to illuminate normally two glass plates 21.1 cm in length that touch at one end and are separated at the other by a wire of radius 0.028 mm. How many bright fringes appear along the total length of the plates.

Answers

Answer:

The number is  [tex]Z = 216 \ fringes[/tex]

Explanation:

From the question we are told that

      The wavelength is  [tex]\lambda = 520 \ nm = 520 *10^{-9} \ m[/tex]

       The length of the glass plates is [tex]y = 21.1cm = 0.211 \ m[/tex]

      The distance between the plates (radius of wire ) =  [tex]d = 0.028 mm = 2.8 *10^{-5} \ m[/tex]

   Generally the condition for constructive  interference in a film is mathematically represented as

            [tex]2 * t = [m + \frac{1}{2} ]\lambda[/tex]

Where  t is the thickness of the separation between the glass i.e  

    t  = 0 at the edge where the glasses are touching each other and  

     t =  2d at the edge where the glasses are separated by the wire  

   m is the order of the fringe it starts from  0, 1 , 2 ...

So  

       [tex]2 * 2 * d = [m + \frac{1}{2} ] 520 *10^{-9}[/tex]

=>   [tex]2 * 2 * (2.8 *10^{-5}) = [m + \frac{1}{2} ] 520 *10^{-9}[/tex]

=>    

       [tex]m = 215[/tex]

given that we start counting m from zero

   it means that the number of  bright fringes that would appear is

         [tex]Z = m + 1[/tex]

=>    [tex]Z = 215 +1[/tex]

=>     [tex]Z = 216 \ fringes[/tex]

g Two point sources emit sound waves of 1.0-m wavelength. The source 1 is at x = 0 and source 2 is at x = 2.0 m along x-axis. The sources, 2.0 m apart, emit waves which are in phase with each other at the instant of emission. Where, along the line between the sources, are the waves out of phase with each other by π radians?

Answers

Answer:

constructive interferencia  0, 1 , 2 m

destructive inteferencia   1/4, 3/4. 5/4, 7/4 m

Explanation:

This exercise is equivalent to the double slit experiment, the two sources are in phase and separated by a distance, therefore the waves observed in the line between them have an optical path difference and a phase difference, given by the expression

            Δr / λ = Φ / 2π

            Δr = Φ/2π   λ

let's apply this expression to our case

λ = 1 m

            Δr = Φ 1 / 2π

We have constructive interference for angle of  Φ = 0, 2π, ...

let's find the values ​​where they occur

  Φ         Δr

   0          0

  2π         1

  4π        2

Destructive interference occurs by    Φ = π /2, 3π / 2, ...

 Φ          Δr

 π/2       ¼ m

 3π /2    ¾ m

5π /2     5/4 m

7π /2      7/4 m

In a double‑slit interference experiment, the wavelength is lambda=487 nm , the slit separation is d=0.200 mm , and the screen is D=48.0 cm away from the slits. What is the linear distance Δx between the eighth order maximum and the fourth order maximum on the screen?

Answers

Answer:

Δx = 4.68 x 10⁻³ m = 4.68 mm

Explanation:

The distance between the consecutive maxima, in Young's Double Slit Experiment is given bu the following formula:

Δx = λD/d

So, the distance between the eighth order maximum and the fourth order maximum on the screen will be given as:

Δx = 4λD/d

where,

Δx = distance between eighth order maximum and fourth order maximum=?

λ = wavelength = 487 nm = 4.87 x 10⁻⁷ m

d = slit separation = 0.2 mm = 2 x 10⁻⁴ m

D = Distance between slits and screen = 48 cm = 0.48 m

Therefore,

Δx = (4)(4.87 x 10⁻⁷ m)(0.48 m)/(2 x 10⁻⁴ m)

Δx = 4.68 x 10⁻³ m = 4.68 mm

An electron moves through a uniform electric field E = (2.60i + 5.90j) V/m and a uniform magnetic field B= 0.400k in m/s^2.) T.

Required:
a. Determine the acceleration of the electron when it has a velocity v= 8.0i m/s.
b. What If? For the electron moving along the x-axis in the fields in part (a), what speed (in m/s) would result in the electron also experiencing an acceleration directed along the x-axis?

Answers

A) The acceleration of the electron along the x -axis is ; 4.57 * 10⁻¹¹ m /s²

B) The speed that would result in the electron experiencing an acceleration  along the x-axis is 4.57 * 10⁻¹¹  * time  m/s

Given Data :

Electric field ( E ) = ( 2.60i + 5.90j ) V/m

Magnetic field ( B ) = 0.400 k T

Velocity ( v ) = 8.0i m/s

A) Determine the acceleration of the electron

Applying Lorentz force

F = q ( E + ( v * B ) )

  = 1.6 * 10⁻¹⁹ ( 2.60 i  +  5.90 j  + ( 8.0 i * 0.4 k ) ) N

  = 1.6 * 10⁻¹⁹ ( 2.60 i  +  5.90 j + ( 3.2 ( -j ) ) N

  = 1.6 * 10⁻¹⁹ (  2.60 i  + 2.70 j ) N

Ax = 4.57 * 10⁻¹¹ m /s²

B)  The speed of the electron moving along the x-axis

Ax = Fx / Mc

    = ( 1.6 * 10⁻¹⁹ * 2.60 ) / 9.1 * 10⁻³¹

    = ( 4.16 * 10⁻¹⁹ ) / 9.1 * 10⁻³¹

    = 0.457 * 10¹²

    = 4.57 * 10⁻¹¹ m /s²

Therefore The speed that would result in the electron experiencing an acceleration  along the x-axis is 4.57 * 10⁻¹¹  * time

Learn more about acceleration of an electron: https://brainly.com/question/15585270

A belt is run over two drums. The larger drum has weight 4 lbs and a radius of gyration of 1.25 inches while the smaller drum has weight 2.7 lbs and a radius of gyration of 0.75 inches. The tension from the smaller drum is held constant at 6 lbs. If it is known that the speed of the belt is 11 ft/s after 0.16 s, what is the tension between the drums?

Answers

Answer:

269 lb

Explanation:

We first find the tangential acceleration, a on the drums

a = Δv/Δt since the speed of the belt is 11 ft/s after 0.16 s, Δv = 11 ft/s and Δt = 0.16 s

a = Δv/Δt = 11 ft/s ÷ 0.16 s = 68.75 ft/s²

Since torque τ = Tk = Iα where I = moment of inertia of larger drum = Mk² where m = mass of larger drum = 4 lbs, k = radius of gyration of larger drum = 1.25 inches, T = tension due to larger drum and α = angular acceleration of larger drum.

So, T = Iα/k = Mk²α/k = Mαk = Ma (since a = αk )

T = 4 lbs × 68.75 ft/s² = 275 lb

The tension due to the smaller drum is T' = 6 lb  .

So the net tension in the belt is T'' = T - T' = 275 lb - 6 lb = 269 lb

Consider two parallel plate capacitors. The plates on Capacitor B have half the area as the plates on Capacitor A, and the plates in Capacitor B are separated by twice the separation of the plates of Capacitor A. If Capacitor A has a capacitance of CA-17.8nF, what is the capacitance of Capacitor? .

Answers

Answer:

CB = 4.45 x 10⁻⁹ F = 4.45 nF

Explanation:

The capacitance of a parallel plate capacitor is given by the following formula:

C = ε₀A/d

where,

C = Capacitance

ε₀ = Permeability of free space

A = Area of plates

d = Distance between plates

FOR CAPACITOR A:

C = CA = 17.8 nF = 17.8 x 10⁻⁹ F

A = A₁

d = d₁

Therefore,

CA = ε₀A₁/d₁ = 17.8 x 10⁻⁹ F   ----------------- equation 1

FOR CAPACITOR B:

C = CB = ?

A = A₁/2

d = 2 d₁

Therefore,

CB = ε₀(A₁/2)/2d₁

CB = (1/4)(ε₀A₁/d₁)

using equation 1:

CB = (1/4)(17.8 X 10⁻⁹ F)

CB = 4.45 x 10⁻⁹ F = 4.45 nF

Two parallel slits are illuminated with monochromatic light of wavelength 567 nm. An interference pattern is formed on a screen some distance from the slits, and the fourth dark band is located 1.83 cm from the central bright band on the screen. (a) What is the path length difference corresponding to the fourth dark band? (b) What is the distance on the screen between the central bright band and the first bright band on either side of the central band? (Hint: The angle to the fourth dark band and the angle to the first bright band are small enough that tan θ ≈ sin θ.)

Answers

Answer:

a)1984.5nm

b)523mm

Explanation:

A)A destructive interference can be explained as when the phase shifting between the waves is analysed by the path lenght difference

θ=(m+0.5)λ where m= 1,2.3....

Where given from the question the 4th dark Fringe which will take place at m= 3

θ=7/2y

Where y= 567nm

= 7/2(567)=1984.5nm

But

B)tan θ ≈ y/d

And sinθ = mλ/d

y=mλd when m= 1 which is the first bright we have

Then y=(1× 567.D)/d

But the distance from Central to the 4th dark Fringe is 1.83cm then

y= 7λD/2d= 1.83cm

D/d=(2)×(1.83×10^-2)/(7×567×10^-9)

=92221.5

y= (567×10^-9)× (92221.5)

=0.00523m

Therefore, the distance between the first and center is y1-y0= 523mm

The highest mountain on mars is olympus mons, rising 22000 meters above the martian surface. If we were to throw an object horizontaly off the mountain top, how long would it take to reach the surface? (Ignore atmospheric drag forces and use gMars=3.72m/s^2

a. 2.4 minutes
b. 0.79 minutes
c. 1.8 minutes
d. 3.0 minutes

Answers

Answer:

  t = 1.81 min ,     the correct answer is c

Explanation:

This is a missile throwing exercise

The object is thrown horizontally, so its vertical speed is zero (voy = 0), let's use the equation

             y = y₀ + [tex]v_{oy}[/tex] t - ½ g t²

the final height is y = 0 and the initial height is y₀ = 22000 m

            0 = y₀ + 0 - ½ g t²

             

            t = √y 2y₀ / g

let's calculate

           t = √(2  22000 / 3.72)

           t = 108.76 s

let's reduce to minutes

           t = 108.76 s (1 min / 60 s)

           t = 1.81 min

The correct answer is c

An air-filled capacitor consists of two parallel plates, each with an area of 7.60 cm^2, separated by a distance of 1.70 mm. A 25.0-V potential difference is applied to these plates. Calculate: a. the electric field between the plates b. the surface charge density c. the capacitance d. the charge on each plate.

Answers

Answer:

(a) 1.47 x 10⁴ V/m

(b) 1.28 x 10⁻⁷C/m²

(c) 3.9 x 10⁻¹²F

(d) 9.75 x 10⁻¹¹C

Explanation:

(a) For a parallel plate capacitor, the electric field E between the plates is given by;

E = V / d               -----------(i)

Where;

V = potential difference applied to the plates

d = distance between these plates

From the question;

V = 25.0V

d = 1.70mm = 0.0017m

Substitute these values into equation (i) as follows;

E = 25.0 / 0.0017

E = 1.47 x 10⁴ V/m

(c) The capacitance of the capacitor is given by

C = Aε₀ / d

Where

C = capacitance

A = Area of the plates = 7.60cm² = 0.00076m²

ε₀ = permittivity of free space =  8.85 x 10⁻¹²F/m

d = 1.70mm = 0.0017m

C = 0.00076 x  8.85 x 10⁻¹² / 0.0017

C = 3.9 x 10⁻¹²F

(d) The charge, Q, on each plate can be found as follows;

Q = C V

Q =  3.9 x 10⁻¹² x 25.0

Q = 9.75 x 10⁻¹¹C

Now since we have found other quantities, it is way easier to find the surface charge density.

(b) The surface charge density, σ, is the ratio of the charge Q on each plate to the area A of the plates. i.e

σ = Q / A

σ = 9.75 x 10⁻¹¹ /  0.00076

σ = 1.28 x 10⁻⁷C/m²

A person with a near point of 85 cm, but excellent distance vision normally wears corrective glasses. But he loses them while travelling. Fortunately he has his old pair as a spare. (a) If the lenses of the old pair have a power of 2.25 diopters, what is his near point (measured from the eye) when wearing the old glasses, if they rest 2.0 cm in front of the eye

Answers

Answer:

30.93 cm

Explanation:

Given that:

A person with a near point of 85 cm, but excellent distance vision normally wears corrective glasses

The power of the old pair of lens p = 2.25 diopters

The focal point length = 1/p

The focal point length =  1/2.25

The focal point length = 0.444 m

The focal point length = 44.4 cm

The near point of the person from the glass = (85 -2)cm , This is because the glasses are usually 2 cm from the lens

The near point of the person from the glass = 83 cm

Let consider s' to be the image on the same sides of the lens,

∴ s' = -83 cm

We known that:

the focal length of a mirror image 1/f =1/u +1/v

Assume the near point is at an excellent distance s from the glass where the person wears the corrective glasses.

Then:

1/f = 1/s + 1/s'

1/s = 1/f - 1/s'

1/s = (s' -f)/fs'

s = fs'/(s'-f)

s =( 44.4× -83)/(-83 - 44.4)

s = - 3685.2 / - 127.4

s = 28.93 cm

Thus , the near distance point measured from the eye wearing the old glasses, if they rest 2.0 cm in front of the eye = (28.93 +2.0)cm

= 30.93 cm

The valid digits in a measurement are called _____ digits. Question 10 options: insignificant significant uncertain non-zero

Answers

Answer:

Significant

Explanation:

Valid digits in measurements are called significant digits, or also called significant figures.

These significant digits allow data and measurements to be more accurate and exact.

Answer:

Significant digits

Explanation

Took the test got it right

A 750 gram grinding wheel 25.0 cm in diameter is in the shape of a uniform solid disk. (we can ignore the small hole at the center). when it is in use, it turns at a consant 220 rpm about an axle perpendicular to its face through its center. When the power switch is turned off, you observe that the wheel stops in 45.0 s with constant angular acceleration due to friction at the axle. What torque does friction exert while this wheel is slowing down?

Answers

Answer:

Torque = 0.012 N.m

Explanation:

We are given;

Mass of wheel;m = 750 g = 0.75 kg

Radius of wheel;r = 25 cm = 0.25 m

Final angular velocity; ω_f = 0

Initial angular velocity; ω_i = 220 rpm

Time taken;t = 45 seconds

Converting 220 rpm to rad/s we have;

220 × 2π/60 = 22π/3 rad/s

Equation of rotational motion is;

ω_f = ω_i + αt

Where α is angular acceleration

Making α the subject, we have;

α = (ω_f - ω_i)/t

α = (0 - 22π/3)/45

α = -0.512 rad/s²

The formula for the Moment of inertia is given as;

I = ½mr²

I = (1/2) × 0.75 × 0.25²

I = 0.0234375 kg.m²

Formula for torque is;

Torque = Iα

For α, we will take the absolute value as the negative sign denotes decrease in acceleration.

Thus;

Torque = 0.0234375 × 0.512

Torque = 0.012 N.m

Two long straight wires carry currents perpendicular to the xy plane. One carries a current of 50 A and passes through the point x = 5.0 cm on the x axis. The second wire has a current of 80 A and passes through the point y = 4.0 cm on the y axis. What is the magnitude of the resulting magnetic field at the origin?

Answers

Answer:

450 x10^-6 T

Explanation:

We know that the magnetic of each wire is derived from

ByB= uoi/2pir

Thus B1= 4 x 3.14 x 10^-7 x50/( 2 x 3.142x 0.05)

= 0.2 x 10^ -3T

B2=

4 x 3.14 x 10^-7 x80/( 2 x 3.142x 0.04)

= 0.4 x 10^ -3T

So

(Bnet)² = (Bx)² + ( By)²

= (0.2² + 0.4²)mT

= 450 x10^-6T

The magnitude of magnetic field at the origin is required.

The magnitude of resulting magnetic field at origin is [tex]447.2\ \mu\text{T}[/tex]

x = Location at x axis = 5 cm

y = Location at y axis = 4 cm

[tex]I_x[/tex] = Current at the x axis point = 50 A

[tex]I_y[/tex] = Current at the y axis point = 80 A

[tex]\mu_0[/tex] = Vacuum permeability = [tex]4\pi\times 10^{-7}\ \text{H/m}[/tex]

Magnitude of the magnetic field is given by

[tex]B=\dfrac{\mu_0I}{2\pi r}[/tex]

Finding the net magnetic field using the Pythagoras theorem

[tex]B^2=B_x^2+B_y^2\\\Rightarrow B^2=\left(\dfrac{\mu_0I_x}{2\pi x}\right)^2+\left(\dfrac{\mu_0I_y}{2\pi y}\right)^2\\\Rightarrow B=\dfrac{\mu_0}{2\pi}\sqrt{\left(\dfrac{I_x}{x}\right)^2+\left(\dfrac{I_y}{y}\right)^2}\\\Rightarrow B=\dfrac{4\pi\times 10^{-7}}{2\pi}\sqrt{\left(\dfrac{50}{0.05}\right)^2+\left(\dfrac{80}{0.04}\right)^2}\\\Rightarrow B=0.0004472=447.2\ \mu\text{T}[/tex]

The magnitude of resulting magnetic field at origin is [tex]447.2\ \mu\text{T}[/tex]

Learn more:

https://brainly.com/question/14573987?referrer=searchResults

By what angle should the second polarized sheet be rotated relative to the first to reduce the transmitted intensity to one-half the intensity that was transmitted through both polarizing sheets when aligned

Answers

Answer:

   θ  = 45º

Explanation:

The light that falls on the second polarized is polarized, therefore it is governed by the law of Maluz

              I = I₀ cos² θ

in the problem they ask us

            I = ½ I₀

let's look for the angles

             ½ I₀ = I₀ cos² θ

             cos θ  = √ ½ = 0.707

            θ  = cos 0.707

           θ  = 45º

Determine the magnitude and direction of the force between two parallel wires 30 m long and 6.0 cm apart, each carrying 30 A in the same direction.

Answers

Answer:

0.09N, attractive

Explanation:

It can be deducted from the question that the currents are arranged in parallel settings, then it is obvious that the force on each of the wire will be attractive toward the other wire.

the magnitude of force can be determined by using below formula;

F2 = (μ₀/2π)(I₁I₂/d)I₂

μ₀ = constant = 4π × 10^-7 H/m,

I₁, I₂ = currents= 30A

L = the length o the wire=30m

d = distance between these two wires= 0.06m

Since the current are arranged in the same direction, they exhibit attractive force on each other.

Then plugging the values Into the formula above we have

F₂ = (4π × 10^-7 T.m/A)/2π) × ((30A)²/ 0.06m)× 30 m

= 0.09 N, attractive

Therefore, the magnitude and direction of the force is 0.09 N, attractive

A race-car drives around a circular track of radius RRR. The race-car speeds around its first lap at linear speed v_iv i ​ v, start subscript, i, end subscript. Later, its speed increases to 4v_i4v i ​ 4, v, start subscript, i, end subscript. How does the magnitude of the car's centripetal acceleration change after the linear speed increases

Answers

Answer:

The magnitude of the centripetal acceleration increases by 16 times when the linear speed increases by 4 times.

Explanation:

The initial centripetal acceleration, a of the race-car around the circular track of radius , R with a linear speed v is a = v²/R.

When the linear speed of the race-car increases to v' = 4v, the centripetal acceleration a' becomes a' = v'²/R = (4v)²/R = 16v²/R.

So the centripetal acceleration, a' = 16v²/R.

To know how much the magnitude of the car's centripetal acceleration changes, we take the ratio a'/a = 16v²/R ÷ v²/R = 16

a'/a = 16

a' = 16a.

So the magnitude of the centripetal acceleration increases by 16 times when the linear speed increases by 4 times.

An ac source of period T and maximum voltage V is connected to a single unknown ideal element that is either a resistor, and inductor, or a capacitor. At time t = 0 the voltage is zero. At time t = T/4 the current in the unknown element is equal to zero, and at time t = T/2 the current is I = -Imax, where Imax is the current amplitude. What is the unknown element?

Answers

Answer:

Capacitor, is the right answer.

Explanation:

The unknown element is a Capacitor.

Below is the calculation that proves that it is a capacitor.

We know that for the Capacitor

i = Imax × sin(wt+(pi/2)).

i = Imax × sin ((2 × pi/T) × (T/4) + (pi/2))

i = Imax × sin(3.142) = 0 A

at, t = T/2

wt = (2 × pi/T) × (T/2) = pi

wt + (pi/2) = pi + (pi/2) = ( 3 × pi/2) =

i = Imax × sin(3 × pi/2) = -Imax

Which is in a correct agreement with capacitor  therefore, the answer is a Capacitor.

an electric device is plugged into a 110v wall socket. if the device consumes 500 w of power, what is the resistance of the device

Answers

Answer: R=24.2Ω

Explanation: Power is rate of work being done in an electric circuit. It relates to voltage, current and resistance through the following formulas:

P=V.i

P=R.i²

[tex]P=\frac{V^{2}}{R}[/tex]

The resistance of the system is:

[tex]P=\frac{V^{2}}{R}[/tex]

[tex]R=\frac{V^{2}}{P}[/tex]

[tex]R=\frac{110^{2}}{500}[/tex]

R = 24.2Ω

For the device, resistance is 24.2Ω.

The unstretched rope is 20 meters. After getting dunked a few times the 80 kg jumper comes to rest above the water with the rope now stretched to 30 meters. What is the maximum length of the rope in meters when the jumper is being dunked?

Answers

Answer:

Therefore maximum stretch is y2 = 32.36 m

Explanation:

In this problem let's use the initial data to find the string constant, let's apply Newton's second law when in equilibrium

        [tex]F_{e}[/tex] - W = 0

         k Δx = mg

         k = mg / Δx

         k = 80 9.8 / (30-20)

         k = 78.4 N / m

now let's use conservation of energy to find the velocity of the body just as the string starts to stretch y = 20 m

starting point. When will you jump

         Em₀ = U = mg y

final point. Just when the rope starts to stretch

         [tex]Em_{f}[/tex] = K = ½ m v²

         Em₀ = Em_{f}

          mg y = ½ m v²

          v = √ 2g y

          v = √ (2 9.8 20)

          v = 19.8 m / s

now all kinetic energy is transformed into elastic energy

starting point

            Em₀ = K = ½ m v²

final point

            Em_{f} = [tex]K_{e}[/tex] + U = ½ k y² + m g y

            Emo = Em_{f}

           ½ m v² = ½ k y² + mgy

            k y² + 2 m g y - m v² = 0

         

we substitute the values ​​and solve the quadratic equation

            78.4 y² + 2 80 9.8 y - 80 19.8² = 0

            78.4 y² + 1568 y - 31363.2 = 0

              y² + 20 y - 400 = 0

              y = [- 20 ±√ (20 2 +4 400)] / 2

              y = [-20 ± 44.72] / 2

the solutions are

              y₁ = 12.36 m

              y₂ = 32.36 m

These solutions correspond to the maximum stretch and its rebound.

Therefore maximum stretch is y2 = 32.36 m

What is the mass of a rectangular block of
density 2.5 ×10³ k gm³that measures 10cm by 5 cm by 4 cm?
A. 0.002 kg
B. 0.080 kg
C. 0.200 kg
D. 0.500 kg
E. 1.000 kg​

Answers

Answer:

Option (D) : 0.5 kg

Explanation:

[tex]mass = density \times volume[/tex]

[tex]mass = {2500} \times 0.1 \times 0.05 \times 0.04[/tex]

Mass of block = 0.5 kg

the mass of a rectangular block of density 2.5 ×10³ k gm³ that measures 10cm by 5 cm by 4 cm is 0.5 kg.

What is density ?  

Density is the ratio of mass to volume. it tells how much mass a body is having for its unit volume. for example egg yolk has 1027kg/m³ of density, means if we collect numbers of egg yolk and keep it in a container having volume 1 m³ then total amount of mass it is having will be 1027kg. Density is a scalar quantity. when we add egg yolk into the water, egg yolk has greater density than water( 997 kg/m³), because of higher density of egg yolk it contains higher mass in same volume as water. hence due to higher mass higher gravitational force is acting on the egg yolk therefore it goes down on the inside the water. water will float upon the egg yolk. same situation we have seen when we spread oil in the water. ( in that case water has higher density than oil. thats why oil floats on the water)

The Volume of the block is,

V = LBD, where L = length, B = breadth , D = depth of the block.

V = 10 × 5 × 4 = 200 cm³

Density of Block = 2.5 ×10³ kg/m³

Density = Mass / Volume

2.5 ×10³ kg/m³ =  Mass /  200 cm³

2.5 ×10³ kg/m³ × 200 cm³ =  Mass

2.5 ×10³ kg/m³ × 0.2 × 10⁻³ m³ =  Mass

Mass = 0.5 kg

To know more about Mass :

https://brainly.com/question/19694949

#SPJ2.

Light with an intensity of 1 kW/m2 falls normally on a surface and is completely absorbed. The radiation pressure is

Answers

Answer:

The radiation pressure of the light is 3.33 x 10⁻ Pa.

Explanation:

Given;

intensity of light, I = 1 kW/m²

The radiation pressure of light is given as;

[tex]Radiation \ Pressure = \frac{Flux \ density}{Speed \ of \ light}[/tex]

I kW = 1000 J/s

The energy flux density = 1000 J/m².s

The speed of light = 3 x 10⁸ m/s

Thus, the radiation pressure of the light is calculated as;

[tex]Radiation \ pressure = \frac{1000}{3*10^{8}} \\\\Radiation \ pressure =3.33*10^{-6} \ Pa[/tex]

Therefore, the radiation pressure of the light is 3.33 x 10⁻ Pa.

Suppose that a sound source is emitting waves uniformly in all directions. If you move to a point twice as far away from the source, the frequency of the sound will be:________.
a. one-fourth as great.
b. half as great.
c. twice as great.
d. unchanged.

Answers

Answer:

d. unchanged.

Explanation:

The frequency of a wave is dependent on the speed of the wave and the wavelength of the wave. The frequency is characteristic for a wave, and does not change with distance. This is unlike the amplitude which determines the intensity, which decreases with distance.

In a wave, the velocity of propagation of a wave is the product of its wavelength and its frequency. The speed of sound does not change with distance, except when entering from one medium to another, and we can see from

v = fλ

that the frequency is tied to the wave, and does not change throughout the waveform.

where v is the speed of the sound wave

f is the frequency

λ is the wavelength of the sound wave.

Other Questions
While enumerating an address on the caselist, the enumerator is at the question that asks the occupants origin and race. The respondent asks why that type of personal information is collected. What should the enumerator do? HELP NEED PRECALC HELP WILL GIVE BRAINLIEST PLEASE HELP In the diathesis-stress model of explaining schizophrenia, which factors would represent a psychosocial influence? Suppose that a population begins at a size of 100 and grows continuously at a rate of 200% per year. Give the formula for calculating the size of that population after t years. Does the table represent a linear function ?? Which sentence is an example of the indicative mood? PLEASE HELP ASAP!!1. Read and choose the option with the correct answer. Soy Faustina y vivo en Miami, Florida, pero soy de Puerto Rico. Cuando era pequea, los domingos por la maana, me gustaba mirar a mi abuela cuando tena la caa de azcar en su cocina.Based on the text and what you learned in the lesson, what could Faustina learn from watching her grandmother?A. How to collect the cropB. How to cook temblequeC. How to make clothingD. How to store the food2. Read the scenario and choose the option that answers the question.Lisa era la ms joven de la familia.Based on the text, what is true about Lisa?A. She was older than the rest.B. She was younger than the rest.C. She was the oldest.D. She was the youngest. (Prove) The angle subtended by an arc at the center is double the angle subtended by it at anypoint on the remaining part of the circle. If a sample of aluminum with a density of 2.70 g/cm^3 displaces 36.0 mL of water when placed in a beaker, what is its mass? 13.3 g 97.2 g 0.075 g simplify each expression 17x + 4 - 3x If you have $100 in a savings account earning 3% interest per year, how much will you have intwo years? PLEASE ANSWER ASAP!!!!!!!!!!!!!!!!!!!!! The price of coffee has dropped to $2.30. Yesterday's price was $2.55. Find the percentage decrease. Round your answer to the nearest tenth of a percent Please help me I will mark brainliest! The ratio of the number of boys to the number of girls in a school is 3:4. One-third of the boys and three-eighths of the girls wear spectacles, If there are 612 pupils who do not wear spectacles, a)find the total number of the pupils in the school, and b) how many more girls than boys are there in the school Body weight, body fat, inflammatory proteins, and blood pressure drop when people cut back on their usual energy intake by ____ percent. what is the equation for a parabola with a focus at (2,2) and a directix of x=8 1. Did North American Native Americans have access to metals before the Europeansarrived? What did they use for tools? Did they have domesticated animals?Domesticated plants? |I a reason for giving a Page Quality (PQ) rating of Highest, is it the page has no Ads? The average weight of the three lion cubs at the zoo was 288 pounds. Two of the cubs weighed 261 and 252 pounds. What was the weight of the third cub? In the mid 1800s, the Kansas and Nebraska territories were located? help me plz i need help