Answer:
Explanation:
a) From the diagram, the load will be expressed in newton. The load will be the weight of the box on the inclined plane.
Load = mass * acceleration due to gravity.
Given the mass of the object = 100kg
acceleration due to gravity = 9.8m/s²
Load (in Newton) = 100*9.8
Load (in Newton) = 980N
b) The formula for calculating the velocity ratio of an inclined plane is expressed as VR = 1/sinθ where θ is the angle of inclination.
Given θ = 30°,
VR = 1/sin30°
VR = 1/0.5
VR = 1/(1/2)
VR = 1* 2/1
VR = 2
The velocity ratio is 2.
c) Length of the inclined plane can be calculated using the SOH, CAH, TOA trigonometry identity.
According to SOH, sinθ = opposite/hypotenuse
sin30° = 1/2 = opp/hyp
This shows that the opposite side of the triangle is 1 and the hypotenuse is 2. The length if the inclined is the length of the longest side i.e the hypotenuse. Hence the length of the inclined plane is 2m
d) Mechanical Advantage is the ratio of the load to the effort applied on an object.
Given the Load = 980N and the effort applied to the load on the incline plane = 400N
MA = Load/Effort
MA = 980/400
MA = 2.45
e) Efficiency = MA/VR * 100
Efficiency = 2.45/2 * 100
Efficiency = 122.5%
How can you define a solution to an equation?
The law of conservation of momentum states that the total momentum of interacting objects does not change . This means the total momentum a collision or explosion is equal to the total momentum a collision or explosion.what is momentum
Answer:
The momentum of an object is equal to the product of its mass and its velocity.
Explanation:
Consider an object of mass [tex]m[/tex] travelling at a velocity [tex]\vec{v}[/tex]. The momentum [tex]\vec{p}[/tex] of this object would be:
[tex]\vec{p} = m \cdot \vec{v}[/tex].
For the law of conservation of momentum, consider two objects: object [tex]\rm a[/tex] and object [tex]\rm b[/tex]. Assume that these two objects collided with each other.
Let [tex]m_{\rm a}[/tex] and [tex]m_{\rm b}[/tex] denote the mass of the two objects. Let [tex]\vec{v}_{\rm a}(\text{initial})[/tex] and [tex]\vec{v}_{\rm b}(\text{initial})[/tex] denote the velocity of the two object right before the interaction. Let [tex]\vec{v}_{\rm a}(\text{final})[/tex] and [tex]\vec{v}_{\rm b}(\text{final})[/tex] denote the velocity of the two objects right after the interaction. The momentum of the two objects right before the collision would be [tex]m_{\rm a}\cdot \vec{v}_{\rm a}(\text{initial})[/tex] and [tex]m_{\rm b}\cdot \vec{v}_{\rm b}(\text{initial})[/tex], respectively. The momentum of the two objects right after the collision would be [tex]m_{\rm a}\cdot \vec{v}_{\rm a}(\text{final})[/tex] and [tex]m_{\rm b}\cdot \vec{v}_{\rm b}(\text{final})[/tex], respectively.The sum of the momentum of the two objects would be:
[tex]m_{\rm a}\cdot \vec{v}_{\rm a}(\text{initial}) + m_{\rm b}\cdot \vec{v}_{\rm b}(\text{initial})[/tex] right before the collision, and[tex]m_{\rm a}\cdot \vec{v}_{\rm a}(\text{final}) + m_{\rm b}\cdot \vec{v}_{\rm b}(\text{final})[/tex] right after the collision.Assume that the system of these two objects is isolated. By the law of conservation of momentum, the sum of the momentum of these two objects should be the same before and after the collision. That is:
[tex]m_{\rm a}\cdot \vec{v}_{\rm a}(\text{initial}) + m_{\rm b}\cdot \vec{v}_{\rm b}(\text{initial}) = m_{\rm a}\cdot \vec{v}_{\rm a}(\text{final}) + m_{\rm b}\cdot \vec{v}_{\rm b}(\text{final})[/tex].
A construction worker uses an electrical device to attract fallen nails and sharp objects
from a construction site. What is causing the attraction of the metal objects?
O An electrical wave oscillating perpendicular to the electrical device.
O An electrical charge radiating perpendicular to the wire
O Amagnetic wave radiating perpendicular to an electrical device
O A magnetic wave and electrical current moving in opposite directions
Answer:
is the last one, a magnetic wave and electrical current moving in opposite directions
Explanation:
opposite directions always attract in magnetic waves and fields
Question 5
Calculate the kinetic energy of a car (m - 800 kg) moving at 15 m/s. Write your answer to the nearest whole number in the blank space
provided. Only write the numerical value of the answer without units. Do not leave any space in between numbers.
Answer: Joules
Answer:
90,000Explanation:
[tex]m =800kg\\v = 15\\\\K.E = \frac{1}{2}mv^2\\ K.E= \frac{1}{2} \times 800\times 15^2\\= 400 \times 225\\= 90000 joules\\= 90 kilojoules[/tex]
Match the words to the correct blanks in the sentences. Use each choice only once. a. The collapse of a protostar with less than 0.08 times the mass of the Sun is halted by________. b. As a protostar shrinks in size, its central temperature rises along with its________. c. A star that has not yet finished forming is called a_______. d. A forming star spins more rapidly as it collapses because of conservation of________. e. If a protostar has a mass too small for it to sustain nuclear fusion it becomes the type of object known as a________.A. thermal pressureB. angular momentumC. energy balanceD. degeneracy pressureE. brown dwarfF. gravitational equilibriumG. protostar
Answer:
The collapse of a protostar with less than 0.08 times the mass of the Sun is halted by DEGENERACY PRESSURE. b. As a protostar shrinks in size, its central temperature rises along with its THERMAL PRESSURE. c. A star that has not yet finished forming is called a__PROTOSTAR_____. d. A forming star spins more rapidly as it collapses because of conservation of ANGULAR MOMENTUM. e. If a protostar has a mass too small for it to sustain nuclear fusion it becomes the type of object known as a____BROWN DWARF____
Which statement accurately describes electronic tools? Check all that apply
Answer:
Electronic tools provide more accurate data and this data is more efficient fast and easy to understand
Hope this helps you!!
select the correct relationship of the densities of the given substances: !●water < iron < aluminium < mercury ● Iron < water < mercury < aluminium ● water < aluminium < iron < mercury ● none of the above. asap plz!!!
Answer:
option a is correct
Explanation:
water ∠iron∠aluminium∠mercury
water density =1.0000
iron =7.487
aluminium=2.07
mercury=13.59
6. What are the methods to control noise pollution?
Answer: Some of the ways to control noise pollution are as follows: (1) Control at Receiver's End (2) Suppression of Noise at Source (3) Acoustic Zoning (4) Sound Insulation at Construction Stages (5) Planting of Trees (6) Legislative Measures.
Answer:
You have to:
a) Improve your insulation.
b) Install a fence
c) Use modern Acoustic wall panels
d) Plant trees
e) Reduce electronic volumes,e.t.c.
Explanation:
okay.
to what temperature must a given mass of nitrogen at zero degrees be heated so both its volume and pressure will be doubled
Answer:
0 degrees Celsius is 273 degrees Kelvin. As both pressure and volume are proportional to absolute temperature, in order to double both you would need to quadruple the temperature. I.e. 273 X 4 = 1092 Kelvin = 819 Celsius
Explanation:
Calculate the intensity of current flowing through a computer that consumes 180W and operates at 120 V.
A.)0,66 A
B.)12600 A
C.)1,5 A
D.)60 A
Answer:
C) 1.5 A
Explanation:
P = IV
180 W = I (120 V)
I = 1.5 A
Will mark as BRAINLIEST.......
The position vector is given by vector r= 5t² I cap + 2 t³ j cap + 2 k cap. Find it's velocity and acceleration at t=2s.
Answer:
We have the position vector given in terms of time t. r(t) = t^3*i + t^2*j
To find the velocity vector we have to differentiate r(t) with respect to time.
r'(t) = 3t^2*i + 2t*j
The vector representing acceleration is the derivative of the position vector
r''(t) = 6t*i + 2*j
When time t = 2.
The velocity vector is 3*2^2*i + 2*2*j
=> 12*i + 4*j
The speed is the absolute value of the velocity vector or sqrt(12^2 + 4^2) = sqrt (144 + 16) = sqrt 160
The acceleration vector is 6*2*i + 2*j
=> 12*i + 2*j
The required acceleration at t=2 is 12*i + 2*j and the speed is sqrt 160.
Explanation:
Can I have thx and brainliest?
The law of conservation of momentum states that the total momentum of interacting objects does not _____. This means the total momentum _____a collision or explosion is equal to the total momentum _____ a collision or explosion.
Answer:
The law of conservation of momentum states that the total momentum of interacting objects does not change. This means the total momentum before a collision or explosion is equal to the total momentum after a collision or explosion.
Answer:
The answer is
Explanation:
Change. Does not change.means.
Hope this helps....
Have a nice day!!!!
A person holds a 25 kg (250 newton) bag of cement over his head and moves it a distance of 10 m, taking 2 minutes, while another person carries it on a wheelbarrow that same distance, taking 1 minute.Who does more work ? What is the power of each person?
Explanation:
Assuming the 10 m distance is the vertical displacement, the work done by both people is the same.
Work = force × distance
W = (250 N) (10 m)
W = 2500 J
The power of the first person is:
Power = work / time
P = 2500 J / 120 s
P = 20.83 W
The power of the second person is:
P = 2500 J / 60 s
P = 41.67 W
PLZ HELP ASAP!!!! THANK YOU The disturbance that occurs as longitudional waves travel through a medium can be described as a series of A:oscillations and refractions B:propagations and compressions C:destructions and constructions D:rarefactions and compressions
Answer:
D:rarefactions and compressions
Explanation:
Longitudinal waves are readily formed in materials such as a stretched spring. Longitudinal waves are waves which travel in a direction parallel to the vibrations of the medium.
Longitudinal waves are characterized by a series of compressions and rarefactions. The compressions are areas of clusters while rarefactions are areas of expansions. The same can be observed in a sound wave.
A container contains 200g of water at initial temperature of 30°C. An iron nail of mass 200g at temperature of 50°C is immersed in the water. What is the final water temperature? State the assumptions you need to make in your calculations.
[Given the value of specific heat capacity of water is 4200 J kg^-1 °C^-1 and that of iron is
450 J kg^-1 °C^-1]
Answer:
The final temperature is 31.94°
Explanation:
The mass of the water in the container m₁ = 200 g = 0.2 kg
The initial temperature of the water, T₁₁ = 30°C
The mass of the iron, m₂ = 200 g = 0.2 kg
The temperature of the iron T₂₁= 50°C is immersed in the water,
The specific heat capacity of the water, c₁ = 4200 J/(kg·°C)
The specific heat capacity of the iron, c₂ = 450 J/(kg·°C)
Heat capacity relation is given by the formula;
Heat capacity Q = Mass, m × Specific heat capacity, c × Temperature change, (T₂ - T₁)
Given that energy can neither be created nor destroyed, and with the assumption that all the heat lost by the nail is gained by the water we have;
Heat lost by iron nail = Heat gained by the water
m₁ × c₁ × (T₂ - T₁₁) = m₂ × c₂ × (T₂₁ - T₂)
Where, T₂ is the final temperature
0.2 kg × 4200 J/(kg·°C) × (T₂ - 30) = 0.2 kg × 450 J/(kg·°C) × (50° - T₂)
840·T₂ - 25200 = 4500 - 90·T₂
4500 + 25200 = 840·T₂ + 90·T₂
29700 = 930·T₂
T₂ = 29700/930 = 31.94°.
The final temperature = 31.94°.
Distinguish between concave mirror and convex mirror
Answer:
Concave mirror makes someone looking at it look dwarf or short, while convex mirror stretches the person making the person look weird.
The distance covered by a body along the x axis is given by x=2t^3+5t^2+t where t is measured in seconds and x is in meter. Find average speed in a time interval from t= 0s and t=2s
Explanation:
It is given that,
The distance covered by a body along the x-axis is given by :
[tex]x=2t^3+5t^2+t[/tex]
t is in seconds and x is meters
Speed of the body is given by :
[tex]v=\dfrac{dx}{dt}\\\\v=\dfrac{d(2t^3+5t^2+t)}{dt}\\\\v=6t^2+10t+1[/tex]
At t = 0,
[tex]v=6(0)^2+10(0)+1=1\ m/s[/tex]
At t = 2 s,
[tex]v=6(2)^2+10(2)+1=45\ m/s[/tex]
So, the average speed in a time interval from t= 0s and t=2s is 45 m/s.
Can someone please illustrate how the refracted ray will look like?
Answer
As the angle of incidence increases in Figure 2.8, a point is finally reached where the refracted ray does not emerge at the second layer but lie along the interface. This particular angle of incidence at which the angle of refraction is 90° and the refracted ray lies along the interface is known as the critical angle. At and beyond the critical angle, there is no transmitted ray and therefore a very high reflected ray will be recorded .
Therefore,
sinθisin90=Vp1Vp2
But, sin 90 = 1.
At critical angle,
sinθcritical=Vp1Vp2
A critical refracted wave travels along the interface between layers and is refracted back into the upper layer at the critical angle. The waves refracted back into the upper layer are called head waves or first-break refractions because at certain distances from a source, they are the first arriving energy. Recorded first-break refraction is shown in Figure 2.10.
Note that these first-break refractions can give us important information about the shallow velocities on land seismic data.
Note also that seismic data are acquired in such a way that reflections from horizons of interest are in the pre-critical region, even at the farthest offset in the data.
In reality, part of the seismic energy arriving at an interface is transmitted and refracted, and another part of the energy is reflected at that same interface. Given that there are many reflectors in the subsurface, there will be many paths from source to receiver, each of them with a different travel time. The proportion of energy reflected depends on the material properties of the two bounding layers and on the angle of incidence
When light travels from air into water, Group of answer choices its wavelength changes, but its velocity and frequency does not change its velocity remains constant, but its frequency and wavelength changes its velocity, wavelength and frequency all change its velocity and wavelength changes, but its frequency does not change
Answer:
its velocity, wavelength and frequency all change
Explanation:
Whenever a wave crosses the boundary between two media of different densities, its velocity, frequency and wavelength changes. This appears as a bending of the wave as it crosses the boundary from one medium to another.
Refraction is a fundamental property of waves. Hence when light is travelling from air into water, it wavelength, speed and frequency all changes at the interface between the two media.
If 60 L of a gas are at 4 atm and 27 C °, what pressure would it have if the volume is 40 L 127 C °?
Answer:
8 atm
Explanation:
Ideal gas law:
PV = nRT
where P is pressure, V is volume, n is moles, R is universal gas constant, and T is absolute temperature.
If n is constant:
PV / T = PV / T
(4 atm) (60 L) / (27 + 273) K = P (40 L) / (127 + 273) K
0.8 atm = 0.1 P
P = 8 atm
identify properties of a human body system
Answer:
integumentary, skeletal, muscular, nervous, endocrine, cardiovascular, lymphatic, respiratory, digestive, urinary, and reproductive
Explanation:
and this is biology not physics
in the derivation of the time period of a pendulum in electric field when considering the fbd of bob to find the g effective why do we neglect tension
Answer:
we learned that an object that is vibrating is acted upon by a restoring force. The restoring force causes the vibrating object to slow down as it moves away from the equilibrium position and to speed up as it approaches the equilibrium position. It is this restoring force that is responsible for the vibration. So what forces act upon a pendulum bob? And what is the restoring force for a pendulum? There are two dominant forces acting upon a pendulum bob at all times during the course of its motion. There is the force of gravity that acts downward upon the bob. It results from the Earth's mass attracting the mass of the bob. And there is a tension force acting upward and towards the pivot point of the pendulum. The tension force results from the string pulling upon the bob of the pendulum. In our discussion, we will ignore the influence of air resistance - a third force that always opposes the motion of the bob as it swings to and fro. The air resistance force is relatively weak compared to the two dominant forces.
The gravity force is highly predictable; it is always in the same direction (down) and always of the same magnitude - mass*9.8 N/kg. The tension force is considerably less predictable. Both its direction and its magnitude change as the bob swings to and fro. The direction of the tension force is always towards the pivot point. So as the bob swings to the left of its equilibrium position, the tension force is at an angle - directed upwards and to the right. And as the bob swings to the right of its equilibrium position, the tension is directed upwards and to the left. The diagram below depicts the direction of these two forces at five different positions over the course of the pendulum's path.
that's what I know so far
Self-Check
por Learning
A truck mass 8000 kg and a car a mass 1000
kg are travelling at the same velocity. Which one has greater kinetic energy ? Why?
Answer:
K.E of truck > K.E of car
Explanation:
Mass of the truck = 8000Kg
K.E=[tex]\frac{1}{2} mv[/tex]
K.E =[tex]\frac{1}{2}*8000*v\\ 4000v[/tex]
Mass of the car = 1000 Kg
K.E of the car =[tex]\frac{1}{2}*1000*v\\ 500v[/tex]
Therefore Kinetic energy of the truck is greater than that of the car
Identifying Maller
In your own words, describe how matter is identified.
Answer:
Matter can be identified through its properties. One clue to helps us identify matter is magnetism. Magnetism is the ability of a material to be attracted by a magnet. Only certain materials are attracted to magnets, like iron, nickel, and cobalt.
Explanation:
we can identify matter by: physical properties and
chemical properties
the distance between two successive troughs of wave is 0.4m. If the frequency of the source is 825Hz, calculate the speed of the wave
Answer:
speed=330m/s
Explanation:
the speed of wave is given as
speed(meter per second) =frequency(hertz) * wavelength(meters)
so using the above formula we substitute the figures given in the question in the formula we get
speed = 0.4*825
speed =330m/s
note m/s is the si unit for speed which is read as meter per second
therefore speed =330m/s
Students create a standing wave
with three loops on a slinky 3.75 m
long. They time 20 oscillations in
6.73 s. What is the wavelength of
the standing wave?
(Unit = m)
Explanation:
Given that,
Number of loops are 3
Length of slinky is 3.75 m
They time 20 oscillations in 6.73 s.
We need to find the wavelength of the standing wave.
For 3 loops, [tex]L=\dfrac{3\lambda}{2}[/tex]
Here, [tex]\lambda[/tex] is the wavelength of the standing wave
So,
[tex]\lambda=\dfrac{2L}{3}\\\\\lambda=\dfrac{2\times 3.75}{3}\\\\\lambda=2.5\ m[/tex]
So, the wavelength of the standing wave is 2.5 m.
This force governs atomic decay.
Answer:
The weak force governs the decay of a neutron into a proton (a process known as beta decay). The strong force binds quarks together into protons and neutrons (the residual strong force holds protons and neutrons together in the nucleus). Gravity governs the motion of an apple falling from a tree.
Explanation:
Answer:
Weak Nuclear force
A narrow beam of light containing red (660 nm) and blue (470 nm) wavelengths travels from air through a 1.00 cm thick flat piece of crown glass and back to air again. The beam strikes at an incident angle of 30 degrees. (a) At what angles do the two colors emerge
Answer:
The color blue emerges at 19.16° and the color red emerges at 19.32°.
Explanation:
The angle at which the two colors emerge can be calculated using the Snell's Law:
[tex]n_{1}sin(\theta_{1}) = n_{2}sin(\theta_{2})[/tex]
Where:
n₁ is the refractive index of the incident medium (air) = 1.0003
n₂ is the refractive index of the refractive medium:
blue light in crown glass = 1.524
red light in crown glass = 1.512
θ₁ is the angle of the incident light = 30°
θ₂ is the angle of the refracted light
For the red wavelengths we have:
[tex] \theta_{2} = arcsin(\frac{n_{1}sin(\theta_{1})}{n_{2}}) = arcsin(\frac{1.0003*sin(30)}{1.512}) = 19.32 ^{\circ} [/tex]
For the blue wavelengths we have:
[tex] \theta_{2} = arcsin(\frac{n_{1}sin(\theta_{1})}{n_{2}}) = arcsin(\frac{1.0003*sin(30)}{1.524}) = 19.16 ^{\circ} [/tex]
Therefore, the color blue emerges at 19.16° and the color red emerges at 19.32°.
I hope it helps you!
give an example of a balanced force and explain what makes it a balanced force
1. Si tengo medio kilo de fruta y te doy un cuarto y tú me das tres cuartos de kilo, ¿cuánto tengo? 2. Si en una carrera te queda por recorrer la mitad de la mitad de 1 km, ¿cuánto te falta? 3. ¿Qué pesa mas, un kilo y medio de hierro o tres medios kilos de paja? porfavor es urgente.
Answer:
1. Tienes 1 kg de fruta.
2. Queda por recorrer 1/4 km.
3. Ambos pesan lo mismo.
Explanation:
1. Tienes 1/2 kg y cuando te doy 1/4 te queda:
[tex] m = \frac{1}{2} - \frac{1}{4} = \frac{1}{4} [/tex]
Ahora cuando te doy 3/4 kg te queda en total:
[tex] m_{T} = \frac{1}{4} + \frac{3}{4} = 1 kg [/tex]
Por lo tanto, tienes 1 kg de fruta al final.
2. Si falta por recorrer la mitad de la mitad, tenemos:
[tex] d = \frac{1/2}{2} = \frac{1}{4} [/tex]
Entonces, queda por recorrer 1/4 km.
3. El peso (P) del hierro es:
[tex] P = m*g [/tex]
[tex] P = (1 + 1/2)kg*9.81 m/s^{2} = 14.72 N [/tex]
Y el peso de la paja es:
[tex] P = 3/2 kg*9.81 m/s^{2} = 14.72 N [/tex]
Por lo tanto, ambos pesan lo mismo.
Espero que te sea de utilidad!