Answer:
Solution : Degree 4
Step-by-step explanation:
We only have one variable in this case, x. Therefore we can take the degree of this variable to be our solution, 4. As you can see x^4 will have a degree of 4, as that is the exponent present.
If Eric can paint $3$ cars in $4$ hours and $2$ trucks in $5$ hours, then how long, in hours, would it take him to paint $4$ cars and a truck? Express your answer as a common fraction.
Answer:
47/6
Step-by-step explanation:
Given that :
Time taken to paint 3 cars = 4 hours
Time taken to paint 2 trucks = 5 hours
How long will it take him to paint 4 cars and a truck
If 3 cars = 4 hours ;
Then ;
1 car = (4/3)hours
If 2 trucks = 5 hours
Then;
1 truck = (5/2) hours = 2 1/2 hours
Time required To paint 4 cars :
4 × (4/3) = 16/3 hours
Time required to paint 1 truck :5/2 hours
Total time required :
(16/3 + 5/2) = (32 + 15) / 6 = 47/6
Let n be the number of five-digit positive integers which are divisible by 36 and have their tens digit and unit digit equal. Find n/100
Answer:
1.) 10044
2.) 100.44
Step-by-step explanation:
Since n is a number of five-digit positive integers which are divisible by 36, start multiplying 36 by number. Starting from 278.
Five digits numbers start from multiplying 36 by 278. Any multiplication below 278 by 36 will give four digits numbers.
36 × 278 = 10,008
36 × 279 = 10,044
10,044 tens digit and unit digit equal. Therefore n = 10044
To find n/100, divide 10044 by 100
10044 / 100 = 100.44
someone please expain how to do this, i’m really confused.
Answer:
13
Step-by-step explanation:
Basically, we have to plug in 4 for r into g(r). Doing so gives us g(4) = 25 - 3 * 4 = 25 - 12 = 13.
Some more examples:
g(6) = 25 - 3 * 6 = 25 - 18 = 7
g(1) = 25 - 3 * 1 = 25 - 3 = 22
Answer:g(4)=13
Step-by-step explanation:
g(4)=25-3r
25-3(4)
25-12
g(4)=13
Find the median of the following frequency distribution
Answer:
3
Step-by-step explanation:
First right out all the data in numerical order from left to right.
2, 2, 2, 3, 4, 5, 7
The median is the middle number in the set. If there is an even amount of data points, find the average of the two middle numbers. If there is an odd number of data points, like in this data set, just take the middle number as you median.
There are 7 data points in this set so the fourth number in the set written in numerical order would be your median.
When writing this set out in numerical order, repeated numbers must be repeated, we find that the fourth, or middle, number is 3. Therefore, 3 is the median of this data set.
Jack bought a car for $50,000. He spent $5000 on repairs. He sold the car at a profit of $5000. At what price did he sell the car.
Answer:$60,000
Step-by-step explanation:
If he bought it for $50,000 and then spent $5,000 on repairs then he spent a total of $55,000. For a profit of $5,000 he would need to sell it for $60,000 Because
60,000 - 55,000 = 5,000
Pregunta N° 1: ¿Cuántas fracciones propias e irreductibles con denominador 24 existen? 1 punto A) 2 B) 4 C) 6 D) 8 E) 10 Pregunta N° 2: ¿Cuántas fracciones impropias e irreductibles con numerador 25 existen? 1 punto A) 19 B) 21 C) 25 D) 29 E) 33 Pregunta N° 3: La edad de Miguel es 4/5 de la edad de su novia. Si las edades de los dos suman 63 años, calcule la edad de la novia de Miguel. 1 punto A) 20 años B) 26 años C) 32 años D) 35 años E) 40 años Pregunta N° 4: Si son las 8 a. m., ¿qué fracción del día ha transcurrido? 1 punto A) 1 B) 2 C) 1/2 D) 1/3 E) 1/5
ayuden porfavor
Answer:
Pregunta 1: Opcion D. 8
Pregunta 2: Opción A. 19 (aunque lo correcto es decir que son 20)
Pregunta 3: 28 años (no está como opción)
Pregunta 4: Opción D. 1/3
Step-by-step explanation:
Las fracciones irreductibles son aquellas que después de dividirlas por un común divisor, una vez que no se pueden dividir más se dice que son irreducibles, por lo tanto no existe ningún número que sea divisor común del numerador y del denominador más que 1.
Fracciones irreductibles con común denominador 24.
Como máximo divisor tenemos el 24 y como mínimo el 1
entre 1/24 y 1 estarán nuestras fracciones o sea:
1/24 < x/24 < 1. Ahora convertimos el 1 en fracción de 24, lo que sería 24/24 para igualar el numerador en ambos lados de la ecuación, para poder determinar x
1/24 < x/24 < 24/24
Como vemos que x tiene que estar entre 1 y 24, las respuestas serán:
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 y 23
Eliminamos los números divisores de 24, aquellos pares, y nos focalizamos en los que no podriamos dividir por nada con 24, o sea los números primos
5, 7, 11, 13, 17, 19, 23. Como nos falta el 1, obtenemos un total de 8 fracciones: 1/24, 5/24, 7/24, 11/24, 13/24, 17/24, 19/24, 23/24
Mismo procedimiento para el 25:
1/25 es una de las fracciones irreductibles. Pensamos en los valores de x
1/25 < x/25 < 25/25
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
Los números divisibles por 25, son los multiplos de 5, asi que esas respuestas no irían. Las fracciones irreductibles son:
1/25, 2/25, 3/25, 4/25, 6/25, 7/25, 8/25, 9/25, 11/25, 12/25, 13/25, 14/25, 16/25, 17/25, 18/25, 19/25, 21/25, 22/25, 23/25 y 24/25 haciendo un total de
20. Por alguna razón está mal formulada la pregunta, son 20 pero no está como opción y como te piden fraccion impropia (numerador > denominador), contamos a partir de 26. FIjate que hasta el proximo entero que sería 50/25, también son 20 fracciones (irreductibles e impropias)
26/25, 27/25, 28/25, 29/25, 31/25, 32/25, 33/25, 34/25, 36/25, 37/25, 38/25, 39/25, 41/25, 42/25, 43/25, 44/25, 46/25, 47/25, 48/25, 49/25
Próxima pregunta:
Miguel tiene 4/5 de la edad de la novia, y ambas edades suman 63.
Plantiemos la siguiente ecuacion donde x es la edad de la novia
4/5x + x = 63
9/5x = 63
x = 63 . 5/9 (como 9/5 pasa al otro lado de la igualdad dividiendo, damos vuelta la fraccion multiplicandola)
x = 35
Si la novia tiene 35 años y la edad de Miguel es 4/5 de esa edad
4/5 .35 = (35 .4) /5 = 28
Es raro porque no está la respuesta como tal.
Próxima pregunta:
Al ser las 8 am, quiere decir que han pasado 8 horas de que empezó el día
y el día tiene 24 horas.
8 horas transcurridas / 24 horas totales = 1/3
Sarah has $20 saved. She gets $10 per week for her allowance, and she saves her allowance for the next 3 weeks. At the end of the week, she gets $150 in birthday money. How much money will she have after the 3 weeks? Which of the following sets of equations represents this problem?
Answer:
$200
Step-by-step explanation:
We know that she already has $20. And we know that every week, for three weeks she gets $10.
20+3(10)+150=m
We add all of this up, and we find that at the end of 3 weeks Sarah has $200 saved.
Points C and D are on a number line (not shown).
The coordinate of point C is -16 and the coordi-
nate of point D is 14. Point E is a point on line
segment CD. If the distance from point E to point C
is 1
4
the distance from point E to point D, what is
the coordinate of point E?
Answer:
17
Step-by-step explanation:
evaluate 15.2% of a 726 + 12.8% of 673
Answer:
196.496
Step-by-step explanation:
0.152x726+0.128x673
110.352+86.144
=196.496
A baker has three banana muffin recipes. Recipe AAA uses 333 bananas to make 121212 muffins. Recipe BBB uses 555 bananas to make 242424 muffins. Recipe CCC uses 111111 bananas to make 484848 muffins. Order the recipes by number of bananas per muffin from least to greatest.
Answer:
The order from least to greatest is B, A, C
Step-by-step explanation:
Given
Recipe A = 3 bananas to 12 Muffins
Recipe B = 5 bananas to 24 Muffins
Recipe C = 11 bananas to 48 Muffins
Required
Order the recipe from least to greatest
To solve this, we have to divide the number of bananas by number of muffins; this will give the unit banana per muffin
Recipe A: 3 bananas to 12 Muffins
[tex]A = \frac{3}{12}[/tex]
[tex]A = 0.25[/tex]
Recipe B: 5 bananas to 24 Muffins
[tex]B = \frac{5}{24}[/tex]
[tex]B = 0.2083[/tex]
Recipe C: 11 bananas to 48 Muffins
[tex]C = \frac{11}{48}[/tex]
[tex]C = 0.229167[/tex]
By comparison;
Recipe B (0.2083) is the smallest; followed by Recipe C (0.229167) then Recipe A (0.25)
Hence; the order from least to greatest is B, A, C
Answer:
its BCA
Step-by-step explanation:
Hey, please help solve the question.
Answer:
75%=x-125
90%=x+250
subtract the second from the first
15%=375
100%=?
100%×375/15
100%=2500marked price is 2500
2500+250=2750
90%=2750
100%=?
cost price=3055.56
The circle shown below is a unit circle, where ∠a=π/3 and the radius of the circle is 1.
Answer:
Step-by-step explanation:
Does The TI-Nspire works just like the TI-84 ?
Answer:
TI-Nspire models automatically detect most points of interest such as x and y-intercepts, maximum values, and minimum values when you are in trace mode. TI-84 Plus models require you to use a series of left and right bounds and guesses to find those same values.
In the diagram of the right triangle shown find the value of c.
Answer:
Hey there!
20^2+25^2=c^2
400+625=c^2
1025=c^2
Square root 1025 is the correct answer, so option C.
Let me know if this helps :)
Answer: B
Step-by-step explanation:
The formula for centripetal acceleration, a, is given below, where v is the velocity of the object and r is the object's distance from the center of the circular path.
This is the same as writing v = sqrt(ar)
===========================================
Work Shown:
[tex]a = \frac{v^2}{r}\\\\ar = v^2\\\\v^2 = ar\\\\v = \sqrt{ar}\\\\[/tex]
I multiplied both sides by r to isolate the v^2 term, then I applied the square root to fully isolate v.
ANSWER QUICKLY PLZZZZZZ ASAP
Answer:
number 4 on edge
Step-by-step explanation:
Answer:
a. 92 minutes b. 7:56am
Step-by-step explanation:
He should leave at 7:56 so he gets to the bus at 8:05,
he gets to Coventry at 9:37 with enough time to walk 12 minutes to get to work before 10am.
I NEED HELP ANSWERING THESE QUESTIONS FIRST ANSWER GET BRAINLIEST!
Answer:
3 - b=12
4- b=14.1
Step-by-step explanation:
Area of the bookshelf=864 square inches
the book shelf is a rectangular prism
if we have height=4b, width=3b, length=b
then the area=length * width
A=(l*w)*2 ( we have 2 shelves)
864=(b*3b)*2
864=6b²
b²=864/6=144
b=√144= 12 inches
4- to cover the sides :
(height * length)*2 ( we have 2 sides)
(4b*b)×2=1600
8b²=1600
b²=1600/8=200
b=√200=14.1
Answer:
Question #3: b = 12 in
Question #4: b = 14.1 in
Step-by-step explanation:
Please see in the image attached the actual proportions that the furniture manufacturer uses to build the furniture in question:
Height = 4 b
Width = 3 b
Depth = b
So for question #3, given that the customer wants a total surface of the shaded shelves to be 864 [tex]in^2[/tex]
we can write that one wants twice the area of each rectangle of width 3 b and depth b to total 864:
[tex]2\,(3b\,*\,b)=864\\6 b^2=864\\b^2=864/6\\b^2=144\\b=12\,\,in[/tex]
Question # 4:
The total lateral surface to be covered by the silk is 1600 [tex]in^2[/tex], therefore if we consider the surface of each lateral plank as:
Area of each lateral plank :
[tex](4b)\,(b) = 4\,b^2[/tex]
Then twice these is: [tex]8\, b^2[/tex]
So we can solve for be requesting that these total surface equal the amount of silk:
[tex]8\,b^2=1600\\b^2=1600/8\\b^2=200\\b=\sqrt{200} \\b\approx 14.1421\,\,in[/tex]
which rounded to the nearest tenth of an inch gives:
[tex]b\approx 14.1\,\,in[/tex]
9 ÷ (-4 1/2) = L.
What is L.
Answer:
[tex]\huge\boxed{L = -2}[/tex]
Step-by-step explanation:
L = 9 ÷ [tex](-4 \frac{1}{2} )[/tex]
L = 9 ÷ [tex](-\frac{9}{2} )[/tex]
L = 9 × [tex](-\frac{2}{9} )[/tex]
L = 1× (-2)
L = -2
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Hi my lil bunny!
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
[tex]\boxed {l = \frac{-18}{41} }[/tex]
[tex]\frac{\frac{9}{-41} }{2} = l[/tex]
Simplifies to:
[tex]\frac{-18}{41} = l[/tex]
Let's solve your equation step-by-step.
[tex]\frac{-18}{41} = l[/tex]
Step 1: Flip the equation.
[tex]l = \frac{-18}{41}[/tex]
So your answer would be : [tex]\boxed {l = \frac{-18}{41} }[/tex]
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Have a great day/night!
❀*May*❀
The pregnancy length in days for a population of new mothers can be approximated by a normal distribution with a mean of days and a standard deviation of days. (a) What is the minimum pregnancy length that can be in the top % of pregnancy lengths? (b) What is the maximum pregnancy length that can be in the bottom % of pregnancy lengths? (a) The minimum pregnancy length is 280 days.
Answer:
(a) 283 days
(b) 248 days
Step-by-step explanation:
The complete question is:
The pregnancy length in days for a population of new mothers can be approximated by a normal distribution with a mean of 268 days and a standard deviation of 12 days. (a) What is the minimum pregnancy length that can be in the top 11% of pregnancy lengths? (b) What is the maximum pregnancy length that can be in the bottom 5% of pregnancy lengths?
Solution:
The random variable X can be defined as the pregnancy length in days.
Then, from the provided information [tex]X\sim N(\mu=268, \sigma^{2}=12^{2})[/tex].
(a)
The minimum pregnancy length that can be in the top 11% of pregnancy lengths implies that:
P (X > x) = 0.11
⇒ P (Z > z) = 0.11
⇒ z = 1.23
Compute the value of x as follows:
[tex]z=\frac{x-\mu}{\sigma}\\\\1.23=\frac{x-268}{12}\\\\x=268+(12\times 1.23)\\\\x=282.76\\\\x\approx 283[/tex]
Thus, the minimum pregnancy length that can be in the top 11% of pregnancy lengths is 283 days.
(b)
The maximum pregnancy length that can be in the bottom 5% of pregnancy lengths implies that:
P (X < x) = 0.05
⇒ P (Z < z) = 0.05
⇒ z = -1.645
Compute the value of x as follows:
[tex]z=\frac{x-\mu}{\sigma}\\\\-1.645=\frac{x-268}{12}\\\\x=268-(12\times 1.645)\\\\x=248.26\\\\x\approx 248[/tex]
Thus, the maximum pregnancy length that can be in the bottom 5% of pregnancy lengths is 248 days.
To get from home to work, Felix can either take a bike path through the rectangular park or ride his bike along two sides of the park. How much farther would Felix travel by riding along two sides of the park than he would by taking the path through the park?
Answer:
c=5.9/6(G)
Step-by-step explanation:
first find the 2 distances.
a^2+b^2=c^2 c=2.4+.7
7^2+2.4^2=c^2 c=3.1
.49+5.85=c^2
c^2=6.34
c=√6.34
c=2.51.
next subtract the two distances to find the difference.
c=2.51-3.1
c=.59
so the distance would be .59 which can be rounded up to .60/G
explanation on how I knew the answer.
Im reviewing for the math 8th grade staar.
Consider the perfect square trinomial identity:
a2 + 2ab + b2 = (a + b)2.
For the polynomial x2 + 10x + 25,
and b =
a =
Answer:
a = x
b = 5
Step-by-step explanation:
for the polynomial x² + 10x + 25, b = 5 and a = x.
In the polynomial x² + 10x + 25, we can observe that the first term, x², is the square of x, and the last term, 25, is the square of 5. This suggests that the polynomial follows the perfect square trinomial identity.
The middle term, 10x, can be rewritten as 2ab, where a represents x and b represents a term that when squared equals the last term, 25.
In this case, b = 5, because 5² = 25.
To find a, we can take the square root of the first term, x². The square root of x² is x, so a = x.
Therefore, for the polynomial x² + 10x + 25, b = 5 and a = x.
Learn more about trinomial identity here
https://brainly.com/question/17033454
#SPJ2
find the exterior angle of a triangle whose interior opposite angles are 43 degree and 27 degree
Answer:
[tex]\huge\boxed{Exterior\ angle = 70\°}[/tex]
Step-by-step explanation:
The measure of exterior angle is equal to the sum of opposite interior angles.
So,
Exterior angle = 43+27
Exterior angle = 70°
The triangle shown below has an area of 4 units
Find the missing side.
Answer:
[tex]\boxed{4 units}[/tex]
Step-by-step explanation:
Hey there!
Well if the base is 4 and we use the formula,
b*h / 2
4*4 = 16
16/2 = 8
So x is 4.
Hope this helps :)
Answer:
x = 2 unitsStep-by-step explanation:
Area of a triangle is given by
base × height
[tex] A = \frac{1}{2} base × height[/tex]
From the question
Area = 4 units²
height = 4 units
let x represent the base
We have
[tex]4 = \frac{1}{2} \times x \times 4[/tex]
4 = 2x
Divide both sides by 2
x = 2 unitsHope this helps you
A point P has coordinates (-8, -2). What are its new coordinates after reflecting point P across the x-axis?
Answer:
(-8,2)
Step-by-step explanation:
This is because when you reflect a point across the x-axis, the x-coordinate fo the point remains the same and the y-coordinate's sign gets switched.
(x,y) --> (x,-y)
(-8,-2) --> (-8,2)
nine hundred fifty-three thousand nine hundred two
Answer:
953 902
Step-by-step explanation:
Answer:
953,902
Step-by-step explanation:
nine hundred =900
fifty-three=53
thousand=1000
nine hundred=900
two=2
What the correct answer
Answer:
653.12 ft²
Step-by-step explanation:
2πrh + 2πr²
2(3.14)(8)(5) + 2(3.14)(8)²
251.2 + ²401.92 = 653.12
Step-by-step explanation:
Here,
radius of a cylinder (r)= 8 ft.
height (h)= 5 ft.
now,
area of a cylinder (a)= 2.pi.r(r+h)
now, putting the values we get,
a = 2×3.14×8(8+5)
after simplification we get,
Area of cylinder is 653.12 sq.ft.
Hope it helps....
You and your friend are playing a game. The two of you will continue to toss a coin until the sequence HH or TH shows up. If HH shows up first, you win. If TH shows up first, your friend wins. What is the probability of you winning?
Answer:
The probability of friend A winning with HH = 1/4.
Step-by-step explanation:
The probability of an event, A is P(A) given by the relationship;
P(A) = (The number of required outcome)/(The number of possible outcomes)
The parameters given are;
The condition of friend A winning = Coin toss sequence HH shows up
The condition of friend B winning = Coin toss sequence TH shows up
The number of possible outcomes = TT, TH, HH, HT = 4
(TH and HT are taken as different for the game to be fair)
The number of required outcome = HH = 1
Therefore;
The probability of friend A winning with HH = 1/4.
Coordinate plane with two lines graphed. The equations of the lines are y equals negative two-thirds x plus four and the other line is y equals two-thirds x. Determine the number of solutions the system of linear equations has and the solution(s) to the equations represented by these two lines? The system of equations has 0 solutions, because the graph has no point of intersection. The system of equations has infinite number of solutions and all real numbers satisfy both equations. The system of equations has 1 solution and it is (3, 2). The system of equations has 1 solution and it is (3, 0).
Answer:
Step-by-step explanation:
y = -2/3x + 4
y = 2/3x
2/3x = -2/3x + 4
4/3x = 4
4x = 12
x = 3
y = 2/3(3)
y = 2
(3,2) one solution
option 3
Pls help me , idk how to do
Answer:
PQRS is a parallelogram with right-angle corners
Step-by-step explanation:
We know that the midsegment of a triangle is parallel to the base.
QR is the midsegment of triangle BCD, so is parallel to BD.
SP is the midsegment of triangle DAB, so is parallel to BD.
QR and SP are both parallel to BD, so are parallel to each other.
RS is the midsegment of triangle CAD, so is parallel to AC.
PQ is the midsegment of triangle ABC, so is parallel to AC.
RS and PQ are both parallel to AC, so are parallel to each other.
__
We have shown that opposite sides of PQRS are parallel to each other, so the figure is at least a parallelogram.
__
By virtue of the congruence of corresponding angles where a transversal crosses parallel lines, each of the so-far named lines can be shown to be perpendicular to any of the lines it meets.* Hence the figure PQRS must be a parallelogram with right angles, a rectangle.
_____
* Transversal BD crosses PQ, AC, and RS at right angles. Hence, transversals RS and PQ cross QR, BD, and SP at right angles. That is, the angles at corners P, Q, R, and S of the parallelogram are right angles.
The domain of this function is {-12, -6, 3, 15}. y=-2/3x+7 Complete the table based on the given domain.
Answer:
Step-by-step explanation:
Domain of a function represents the set of x-values (input values) and y-values (output values) of the function represent the Range of the function.
Given function is,
[tex]y=-\frac{2}{3}x+7[/tex]
If Domain (input values) of this function is,
{-12, -6, 3, 15}
Table for the input-output values of this function,
x -6 3 15 -12
y 11 5 -3 15
Answer:
Step-by-step explanation: